Turn in this question sheet with answers, plus your work sheets. There are 3 problems.
Open text (Jackson only), open notes (this class only), open old homework (this class only).
Name: \qquad

1. [30 points total]
a) With the Born approximation, compute the unpolarized differential cross section for the scattering electromagnetic radiation (with wave number k) off a uniform dielectric sphere of radius a and relative dielectric constant $\epsilon_{r}=\epsilon / \epsilon_{0} \approx 1$. [Note the word "unpolarized." Any polarization sums or averages must be done.]
b) Show that in the limit $k a \ll 1$ the differential cross section reduces to the small sphere result found in your notebooks, and which may be expressed as,

$$
\frac{d \sigma}{d \Omega}=\frac{1}{18} k^{4} a^{6}\left|1-\epsilon_{r}\right|^{2}\left(1+\cos ^{2} \theta\right)
$$

c) Express the $q=|\vec{q}|$ that may have appeared in part (a) in terms of k and the angle θ between the incoming and outgoing waves. Recall $\vec{q}=k\left(\hat{n}_{0}-\hat{n}\right)$ and where \hat{n}_{0} is the direction of the incoming wave and \hat{n} is the direction of the outgoing wave,
d) For $k a \gg 1$, choose the statement that is closest to true:
(i) The differential cross section is highly peaked in the forward direction, and in particular quite large at $\theta=0$.
(ii) The differential cross section is highly peaked in the forward direction, although zero at exactly $\theta=0$.
(iii) The differential cross section still has broad support over a wide range of angles.
(iv) None of the above is close to true.

Answers:
a)

$$
\frac{d \sigma}{d \Omega}=
$$

b) Will find on work sheets.
c) $q=$ \qquad
d) Write a roman numeral here: ().
2. [30 points total] Charges $+q$ and $-q$ exist at the ends of a neutral rod of length d. The rod rotates in the $x-y$ plane with constant angular velocity ω about the z axis which passes through its center.
a) If we express the dipole moment as $\vec{p}(t)=\operatorname{Re}\left(\vec{p} e^{-i \omega t}\right)$, find \vec{p}.
b) Compute the radiated power per unit solid angle $d P / d \Omega$ to leading non-trivial order (electric dipole radiation).
c) Find the total radiated power P.

Answers:
a) $\vec{p}=$
b)

$$
\frac{d P}{d \Omega}=
$$

c) $P=$
3. [40 points total]
(a) A rectangular waveguide made from a nearly perfect conductor has sides of length a and b, in the x and y directions, respectively. Consider the TM modes $\left(E_{z} \neq 0\right)$ and starting with an expression like

$$
E_{z}(x, y)=\left(A \cos k_{x} x+B \sin k_{x} x\right)\left(C \cos k_{y} y+D \sin k_{y} y\right)
$$

find an expression for $E_{\mathcal{Z}}(x, y)$ that satisfies the boundary conditions. (If you get help from a footnote in Jackson, you should work out why the information found there is correct.)
(b) Give an expression for $\gamma^{2}=\epsilon_{0} \mu_{0} \omega^{2}-k^{2}$ (where k is the wavenumber in the z-direction in the full expression $E_{z}(x, y, z, t)=\operatorname{Re} E_{z}(x, y) e^{i(k z-\omega t)}$. Also specifically give $\gamma_{\text {lowest }}^{2}$ for the lowest nontrivial mode.
(c) Find the transverse electric field \vec{E}_{t}.
(d) Discuss (briefly) how you would proceed to calculate the energy loss in the case that the conducting walls of the waveguide were not perfect conductors.

Answers:
a) $E_{z}(x, y)=$ \qquad ,
b) $\gamma^{2}=$ \qquad ,

$$
\gamma_{\text {lowest }}^{2}=
$$

\qquad ,
c) $\vec{E}_{t}=$ \qquad .
d) Discussion: will find on work sheets.

