Final Results from the QWeak Experiment

PVES 2018 Workshop *MITP/Univ. Mainz* April 24 2018

David S. Armstrong William & Mary

for the QWeak Collaboration

Jefferson Lab

04/28/2018

Search for physics *Beyond the Standard Model*

- Received Wisdom: Standard Model is incomplete, and is low-energy effective theory of more fundamental physics
- Low energy (Q² << M²): Precision Frontier complementary to Energy Frontier measurements (LHC)
 - Neutrino masses and role in the early universe $0\nu\beta\beta$ decay, θ_{13} , β decay,...
 - Matter-antimatter asymmetry in the present universe EDM, DM, LFV, $0\nu\beta\beta$, θ_{13}
 - Unseen Forces of the early Universe

Weak decays, **PVES**, g_{u} -2,...

Any LHC new physics signals likely need additional indirect measurements to pin down their nature

- Neutrons: Lifetime, P- & T-Violating Asymmetries [LANSCE, Grenoble, NIST, SNS...]
- Muons: Lifetime, Michel parameters, g-2, Mu2e [PSI, TRIUMF, FNAL, J-PARC...]
- **PVES:** Low-energy weak neutral current couplings, precision weak mixing angle [SLAC, Jefferson Lab, Mainz]
- Atoms: atomic parity violation

Idea - select observables that are:

- 1) zero, or significantly suppressed, in Standard Model
- 2) Robust predictions within Standard Model

PVES: Brief History

Pioneering (1978) early SM tests SLAC E122 PVDIS – Prescott *et al.* A = -152 ppm Bates 12C, Mainz Be

Strange Form Factors (1998 –2009) SAMPLE, HAPPEX, G0, A4 $A \sim 1 - 50$ ppm

Standard Model Tests (2003 - present)
SLAC E158 Moller: A = - 131 ppb JLAB
Qweak: A ~ -230 ppb
→ smaller asymmetries,
smaller absolute & relative errors

Future: Standard Model, Neutron radius, hadron structure studies: MOLLER, P2@MESA, SOLID, 12C@MESA, PREX-II, CREX

Figure courtesy of Kent Paschke

Weak Charge

Electroweak Lagrangian → Parity-Violating neutral-current electron-quark term:

$$\mathcal{L}_{PV}^{EW} = \frac{G_F}{\sqrt{2}} \left[g_A^e(\bar{e}\gamma_\mu\gamma_5 e) \cdot \sum_q g_V^q(\bar{q}\gamma^\mu q) + g_V^e(\bar{e}\gamma_\mu e) \cdot \sum_q g_A^q(\bar{q}\gamma^\mu\gamma_5 q) \right]$$

$$C_{1q} = 2g_A^e g_V^q$$

$$C_{1i} = 2g_A^e g_V^i$$

	-Elect	roweak Charges-
Particle	Electric Charge	Weak Vector Charge (sin $^2 heta_Wpproxrac{1}{4}$)
u	$+\frac{2}{3}$	$-2C_{1u}=+1-rac{8}{3}\sin^2 heta_Wpprox+rac{1}{3}$
d	$-\frac{1}{3}$	$-2C_{1d}=-1+rac{4}{3}\sin^2 heta_Wpprox-rac{2}{3}$
p(uud)	+1	$Q_W^p = 1 - 4 \sin^2 \theta_W pprox 0 \qquad \leftarrow$ Proton's Weak Charge
n(udd)	0	$Q_W^n = -1$

Weak Charge Triad in Neutral Current Studies

 Q^{e}_{W} and Q^{p}_{W} are suppressed in Standard Model \rightarrow increased sensitivity to new physics. ie. 6% on Q^{p}_{W} =0.0708 sensitive to new neutral current amplitudes as weak as ~ 4x10⁻³ G_F

PVES: Parity-violating electron scattering

Scatter longitudinally-polarized electrons from unpolarized target Originally proposed by Ya. B. Zeldovich JETP 36 (1959)

Electroweak interference

PVES 2018

QWeak: History

QWeak Experiment: Hall C at Jefferson Lab

(Newport News, VA, USA)

- Initial organizational meeting: 2000
- Proposal: 2001
- Design/construction: 2003 2010
- Data-taking: 2010 2012
 (~ 1 year total beam time)
- Two main Runs, separated by 6-month down.

- •• Last experiment in Hall C in "6 GeV era" CEBAF
- First results on proton's weak charge (based on first 4% of the dataset) published in Phys. Rev. Lett. 111, 141803 (2013)
- •• Apparatus described in NIM A781, 105 (2015)
- Final unblinded results first released at PANIC 2017 (Beijing) by Roger Carlini September 3, 2017
- Publication in press in *Nature* expected \approx May 10 issue

Meeting PVES Challenges

 $A_{ep} \approx 200 \, ppb$ want $\approx 4\%$ precision

- 180 µA beam current (JLab record)
- High power cryogenic target
- Rapid helicity reversal (960 Hz)
- Small scattering angle: toroidal magnet, large acceptance
- GHz detected rates: data-taking in integrating mode
- Radiation hard detectors
- Low noise 18-bit ADCs
- Exquisite control of helicity-correlated beam parameters
- Four different kinds of helicity reversal:
 - Rapid (Laser beam at source: Pockels cell)
 - Slow (insertable $\lambda/2$ plate in laser beam)
 - Ultra slow (Wien-reversal, g-2 spin flip)
- Two independent high-precision beam polarimeters
- High resolution Beam Current monitors
- Dedicated Tracking system for kinematics determination

The Q_{Weak} Apparatus

The Q_{Weak} Apparatus – during installation

Main Detectors

• Main detectors

Toroidal magnet focuses elastic electrons onto each bar

- 8 fused-silica Cerenkov bars: 200 cm x 18 cm x 1.25 cm
- Rad-hard, low luminescence
- 900 MHz e⁻ per detector
- Azimuthal symmetry maximizes rates & reduces systematic uncertainties
- 2 cm lead pre-radiators: a) reduce soft backgrounds discovered in commissioning
 b) boost signal size (but cost to energy resolution)

Close up of one detector in situ

Simulation of scattering rate MD face

Hydrogen Target

Target boiling might have

been problematic!

35 cm, 2.5 kW liquid hydrogen target (world's highest power cryotarget) Designed using Computational Fluid Dynamics

- Temperature ~20 K
- Pressure: 220 kPa
- Beam: 150 180 μA
- 4% X₀

Rapid helicity-reversal: 960 Hz common-mode rejection of boiling noise

Achieved ~50 ppm noise (< 225 ppm counting statistics)

12

Beam Polarimetry

Møller polarimeter $(\vec{e} + \vec{e} \rightarrow e + e)$

- Precise, but invasive
- Thin, polarized Fe target
- Brute force polarization
- Limited to low current

Compton polarimeter $(\vec{e} + \gamma \rightarrow e + \gamma)$

- Installed for Q-weak
- Runs continuously at high currents
- Statistical precision: 1% per hour
- Electron Detector: Diamond strips
 Detect *both* recoil electron and photon.

Helicity-Correlated Beam Parameter Sensitivities

 $A_{beam} = \sum_{i} \frac{\partial A}{\partial \chi_i} \Delta \chi_i$ where *i* runs over x,y,x'(angle),y'(angle), and energy.

Natural: Linear regression of natural beam motion Driven: Drive sinusoidal beam oscillations with large amplitude

Beam Parameter	Run 1 $\Delta \chi_i$	Run 2 $\Delta \chi_i$	Typical $\partial A/\partial \chi_i$
X	-3.5 ± 0.1 nm	-2.3 ± 0.1 nm	-2 ppb/nm
X'	-0.30 ± 0.01 nrad	-0.07 ± 0.01 nrad	50 ppb/nrad
Y	$-7.5\pm0.1~\mathrm{nm}$	$0.8\pm0.1~\mathrm{nm}$	< 0.2 ppb/nm
Y'	-0.07 ± 0.01 nrad	-0.04 ± 0.01 nrad	< 3 ppb/nrad
Energy	$-1.69 \pm 0.01 \text{ ppb}$	$-0.12 \pm 0.01 \text{ ppb}$	-6 ppb/ppb

Run 1:
$$A_{\text{beam}} = 18.5 \pm 4.1 \text{ ppb}$$
 Run 2: $A_{\text{beam}} = 0.0 \pm 1.1 \text{ ppb}$

Target Windows

Background from detected electrons that scattered from thin Aluminum entrance and exit windows:

- 1. Measure \approx 1500 ppb asymmetry from thick dummy target (identical Al alloy).
- Precisely measure the $(2.52 \pm 0.06)\%$ "dilution" from windows. 2.
- Net correction is $\approx 20\%$ of hydrogen signal: 1.2% uncertainty on result

Aluminum Parity-Violating Asymmetry

Kinematics (Q^2) determination

To determine Q^2 , we go to "tracking" mode:

- Currents ~ 50 pA
- Use Vertical + Horizontal Drift Chambers
- Reconstruct individual scattering events

$$A_{PV} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \{Q_w^p + B(\theta, Q^2)Q^2\}$$

$$Q^2 = 0.0249 \, (\text{GeV}/c)^2$$

 $q = 0.80 \, \text{fm}^{-1}$

Correct for radiative effects in target with Geant 4 simulations, benchmarked with gas-target & solid target studies

Secondary Scattering

- Spin precession of scattered e^{-} in magnet: some transverse polarization P_{T}
- P_T analyzed by scattering in Pb pre-radiators \rightarrow transverse asymmetry in detectors: opposite sign in the two PMTs (R & L) in each detector $A_{diff} = A_R - A_L$ Parity Signal = $\frac{A_R + A_L}{2}$ \therefore Effect cancels to first order
- Analyzing power in Pb:
 - 1. Beam-normal single spin asymmetry (high energy): 2γ exchange
 - 2. Mott scattering (low energy in shower) \rightarrow dominant effect

 A_{diff} is of same scale (hundreds of ppb) as A_{PV}

Secondary Scattering

- This transverse asymmetry couples with position & angle dependence of optical response of detectors.
- Any non-cancellation between R and L PMTs: detector imperfections & nonsymmetric flux distributions.
- Optical properties and flux distributions measured with tracking system.
- Quantified small non-cancellation with detailed GEANT 4 simulation.

Contributions to A _t	bias Uncertainty
Optical Model:	± 2.7 ppb
Simulation cross checks: Glue Joints Effects:	± 2.3 ppb ± 1.5 ppb
Effective Model:	±1.5 ppb
A _{bias} Correction	4.3 ± 3.0 ppb

Asymmetry: Dominant Systematic Uncertainties

Fractions of total systematic error

/

Quantity	Run 1	Run 1	Run 2	Run 2
	error (ppb)	fractional	error (ppb)	fractional
BCM Normalization: A_{BCM}	5.1	25%	2.3	17%
Beamline Background: A_{BB}	5.1	25%	1.2	5%
Beam Asymmetries: A_{beam}	4.7	22%	1.2	5%
Rescattering bias: A_{bias}	3.4	11%	3.4	37%
Beam Polarization: P	2.2	5%	1.2	4%
Target windows: A_{b1}	1.9	4%	1.9	12%
Kinematics: R_{Q^2}	1.2	2%	1.3	5%
Total of others	2.5	6%	2.2	15%
Combined in quadrature	10.1		5.6	

$$A_{\rm msr} = A_{\rm raw} + A_T + A_L + A_{\rm BCM} + A_{\rm BB} + A_{\rm beam} + A_{\rm bias}$$

$$A_{ep} = R_{tot} \frac{A_{msr}/P - \sum_{i=1,3,4} f_i A_i}{1 - \sum_{i=1}^4 f_i}$$

All Corrections to Asymmetry

	Quantity	Run 1	Run 2	Correlation
	$A_{ m raw}$	$-192.7\pm13.2~\mathrm{ppb}$	$-170.7\pm7.3~\rm{ppb}$	
	A_{T}	$0 \pm 1.1 \text{ ppb}$	$0\pm0.7~{ m ppb}$	0
_	$A_{ m L}$	$1.3 \pm 1.0 \text{ ppb}$	$1.2\pm0.9~\rm{ppb}$	1
Λ	$A_{ m BCM}$	$0 \pm 4.4 \text{ ppb}$	$0\pm2.1~{ m ppb}$	0.67
	$A_{\rm BB}$	$3.9\pm4.5~\mathrm{ppb}$	$-2.4\pm1.1~\rm{ppb}$	0
	$A_{ m beam}$	$18.5 \pm 4.1 \text{ ppb}$	$0.0 \pm 1.1 \mathrm{~ppb}$	0
	$A_{ m bias}$	$4.3 \pm 3.0 \text{ ppb}$	$4.3\pm3.0~\rm{ppb}$	1
	$A_{ m msr}$	$-164.6 \pm 15.5 \text{ ppb}$	$-167.5\pm8.4~\mathrm{ppb}$	
	P	$87.66 \pm 1.05~\%$	$88.71 \pm 0.55~\%$	0.19
	f_1	$2.471 \pm 0.056~\%$	$2.516 \pm 0.059~\%$	1
	A_1	$1.514\pm0.077~\rm{ppm}$	$1.515\pm0.077~\rm{ppm}$	1
i	f_2	$0.193 \pm 0.064~\%$	$0.193 \pm 0.064~\%$	1
_	f_3	$0.12 \pm 0.20~\%$	$0.06 \pm 0.12~\%$	1
	A_3	$-0.39\pm0.16~\rm{ppm}$	$-0.39\pm0.16\mathrm{ppm}$	1
	f_4	$0.018 \pm 0.004 ~\%$	$0.018 \pm 0.004~\%$	1
	A_4	$-3.0\pm1.0~\mathrm{ppm}$	$-3.0\pm1.0\mathrm{ppm}$	1
	$R_{ m RC}$	1.010 ± 0.005	1.010 ± 0.005	1
	$R_{ m Det}$	0.9895 ± 0.0021	0.9895 ± 0.0021	1
	$R_{ m Acc}$	0.977 ± 0.002	0.977 ± 0.002	1
	R_{Q^2}	0.9928 ± 0.0055	1.0 ± 0.0055	1
	$R_{ m tot}$	0.9693 ± 0.0080	0.9764 ± 0.0080	1
	$\sum f_i$	$2.80 \pm 0.22~\%$	$2.78 \pm 0.15~\%$	1 $ $

$$A_{
m msr} = A_{
m raw} + A_T + A_L + A_{
m BCM} + A_{
m BB} + A_{
m beam} + A_{
m bias}$$

$$A_{ep} = R_{\text{tot}} \frac{A_{\text{msr}}/P - \sum_{i=1,3,4} f_i A_i}{1 - \sum_{i=1}^4 f_i}$$

$$f_1$$
: Al f_2 : beamline
 f_3 : neutrals f_4 : inelastics

$$R_{\rm tot} = R_{\rm RC} R_{\rm Det} R_{\rm Acc} R_{Q^2}$$

Asymmetry: Dominant Corrections

Behavior of Asymmetry under Slow Reversals

The data behaved as expected under all three types of slow helicity reversal.

Combining the data without sign corrections gives

```
NULL average = -1.75 \pm 6.51 ppb
```

- consistent with zero, as expected

PVES 2018

Blinded Analysis

Run 1 and 2 *each* had their own independent "blinding factor" (additive offset in range ± 60 ppb) to avoid analysis bias.

Un-Blinded Results

Marvelous agreement between the two Runs

(several systematic corrections rather different in the two Runs)

Period	Asymmetry (ppb)	Stat. Unc. (ppb)	Syst. Unc. (ppb)	Tot. Uncertainty (ppb)
Run 1	-223.5	15.0	10.1	18.0
Run 2	-227.2	8.3	5.6	10.0
Run 1 and 2 combined				
with correlations	-226.5	7.3	5.8	9.3

Extracting Weak Charge from Asymmetry Result

$$A_{ep} = -226.5 \pm 7.3 (\text{stat}) \pm 5.8 (\text{syst}) \text{ ppb at } \langle Q^2 \rangle = 0.0249 (\text{GeV} / c)^2$$

Global fit of world PVES data up to $Q^2 = 0.63 \text{ GeV}^2$ to extract proton's weak charge:

$$A_{ep}/A_0 = Q_W^p + Q^2 B(Q^2, \theta), \qquad A_0 = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right].$$

	Quantity	Value	Error	Method
Including ¹³³ Cs APV result allows	$\begin{array}{c} \boldsymbol{Q}_{\boldsymbol{W}}^{\boldsymbol{p}} \\ \boldsymbol{sin}^{2} \boldsymbol{\theta}_{\boldsymbol{W}} \\ \boldsymbol{\rho}_{s} \\ \boldsymbol{\mu}_{s} \\ \boldsymbol{G}_{A}^{Z(T=1)} \end{array}$	0.0719 0.2382 0.19 -0.18 -0.67	0.0045 0.0011 0.11 0.15 0.33	Qweak A ep + PVES data base
extraction of neutron weak charge & separation of C _{1u} , C _{1d} quark	$ \begin{array}{c} $	0.0718 -0.9808 -0.1874 0.3389 on = -0.9317	0.0045 0.0063 0.0022 0.0025	$\left\{ \begin{matrix} \text{Qweak A}_{ep} \\ + \\ \text{PVES data base} \\ + \\ \text{APV}^{133} \text{Cs} \end{matrix} \right\}$
coupling constants	Q_W^p sin ² θ_W	0.0684 0.2392	0.0039 0.0009	Qweak A ep + PVES data base + LQCD (strange)
	Q ^p _W	0.0706	0.0047	EMFF's & theory axial + LQCD (strange)

Electroweak Radiative Corrections

Full expression for Q_W^p has energy dependent corrections – need precise calculations

The \Box_{WW} and \Box_{ZZ} are well determined from pQCD ($\propto \frac{1}{q^2 - M_{W(Z)}^2 + i\epsilon}$) The $\Box_{\gamma Z}$ isn't pQCD friendly due to the photon leg ($\propto \frac{1}{a^2 + i\epsilon}$) 04/28/2018

Electroweak Radiative Corrections

 $Q_W^p = \left(1 + \Delta \rho + \Delta_e\right) \left(1 - 4\sin^2\theta_W(0) + \Delta'_e\right) + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}(0)$

Term	Expression	Value
ρ_{NC}	$1 + \Delta_{ ho}$	1.00066
Δ_e	$-lpha/2\pi$	-0.001161
Δ'_e	$-rac{lpha}{3\pi}(1-4\hat{s}^2)\left[\ln\left(rac{M_Z^2}{m_e^2} ight)+rac{1}{6} ight]$	-0.001411
\hat{lpha}	$\equiv \alpha(M_Z)$	1/127.95
\hat{s}^2	$= 1 - \hat{c}^2 \equiv \sin^2 heta_W(M_Z)$	0.23129
$lpha_s(M_W^2)$	_	0.12072
\Box_{WW}	$\frac{\hat{\alpha}}{4\pi\hat{s}^2} \left[2 + 5\left(1 - \frac{\alpha_s(M_W^2)}{\pi}\right) \right]$	0.01831
\Box_{ZZ}	$\frac{\hat{\alpha}}{4\pi\hat{s}^{2}\hat{c}^{2}}\left[9/4 - 5\hat{s}^{2}\right]\left(1 - 4\hat{s}^{2} + 8\hat{s}^{2}\right)\left(1 - \frac{\alpha_{s}(M_{Z}^{2})}{\pi}\right)$	0.00185
$\Box_{\gamma Z}$	axial-vector hadron piece of $\Box_{\gamma Z}$: $\Re e \Box_{\gamma Z}^{A}$	0.0044

Parity-Violation in DIS region from Qweak

Preliminary Result

Note: interference effects of heavy new physics (*i.e.* Z', leptoquarks) suppressed at Z resonance \rightarrow LEP/SLC mass limits \leq TeV, while low energy observables probe few TeV scale

Sensitivity to New Physics at TeV scale

Parameterize generically by adding contact term to Lagrangian:

$$\mathcal{L}_{\rm NC}^{\rm eq} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \bar{q} \gamma^{\mu} q.$$
 Standard Model term
$$\mathcal{L}_{\rm NP}^{\rm PV} = -\frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q h_V^q \bar{q} \gamma^{\mu} q$$
 New Physics term
$$\underset{A=\text{mass scale}}{\overset{g=\text{coupling}}{\Lambda=\text{mass scale}}}$$

Limits on Semi-Leptonic PV Physics beyond the SM

Red box: SM values

APV: atomic parity violation ¹³³Cs C.S. Wood et al. Science **275**, 1759 (1997); Dzuba et al. PRL **109**, 203003 (2012)

Example: Implications for Leptoquarks

- Impact on Q_w(p) of leptoquarks studied by Erler, Kurylov, Ramsey-Musolf, Phys. Rev. D 68, 016006 (2003)
- Analysis dated (2003), but suggestive; included HERA, LEP, and APV data Leptoquarks (missing more recent HERA data: see Aaron, et al. Phys. Lett. B 705, 52 (2011).)

New Qweakdata (6.2% 1σ error) has sensitivity to distinguish among LQ types at 95% CLScalar LeptoquarksVector Leptoquarks

LQ	Consistency	$\Delta Q_W(p)/Q_W(p)$	LQ	Consistency	$\Delta Q_W(p)/Q_W(p)$
S_1^L	0.57	9%	$U_{1\mu}^L$	0.26	-8%
$S_1^{\hat{R}}$	0.01	-6%	$U_{1\mu}^{\hat{R}}$	0.56	6%
\tilde{S}_1^R	0.44	-6%	${\widetilde U}^R_{1\mu}$	0.99	25%
S_3	0.76	10%	$U_{3\mu}$	0.31	-4%
R_2^L	0.44	-13%	$V_{2\mu}^{L'}$	0.87	9%
$R_2^{\overline{R}}$	0.89	15%	$V_{2\mu}^{\bar{R}}$	0.11	-7%
$\tilde{R}_2^{\overline{L}}$	0.13	-4%	${ ilde V}^L_{2\mu}$	0.56	14%

- LHC limits currently at ~ 1 TeV
- Low energy precision data continues to play important role in recent analyses including LHC data: see Phys. Rep. 641, 1 (2016)

е

LQ

SM tests with Precision Low-Energy Parity Violation

Experiment	% Precision	$\Delta sin^2 \theta_w$	Λ /g [TeV] (mass reach)
SLAC-E122	8.3	0.011	1.5
SLAC-E122	110	0.44	0.25
APV (²⁰⁵ TI)	3.2	0.011	3.8
APV (¹³³ Cs)	0.58	0.0019	9.1
SLAC-E158	14	0.0013	4.8
Jlab-Hall A	4.1	0.0051	2.2
Jlab-Hall A	61	0.051	0.82
JLab-Qweak (p)	6.2	0.0011	7.5
JLab-SoLID	0.6	0.00057	6.2
JLab-MOLLER	2.3	0.00026	11.0
Mainz-P2	2.0	0.00036	13.8
APV (225Ra+)	0.5	0.0018	9.6
APV (213Ra+ / 225Ra+)	0.1	0.0037	4.5
PVES (¹² C)	0.3	0.0007	14

Published

Planned

New Physics at Lower Energy Scales?

QWeak result also sensitive to possible new physics with mass scales well below energy frontier, which may be "hidden" or hard to access at colliders (long as it is parity-violating).

[see Bill Marciano's talk from yesterday]

Example: Implications for "Dark Parity Violation"

"Dark Z" – possible portal for new force to communicate with SM?

(Davoudiasl, Lee, Marciano, Phys. Rev. D89, 095006 (2014), & Marciano (private communication)

Standard Model

SU(3)xSU(2)xU(1)

 $U(1)_{v} A' U(1)_{p}$

 $\wedge \wedge \wedge \mathbf{X} \wedge \wedge \wedge \wedge$

Kinetic

mixing

Dark

Sector

O(GeV) scale

- New source of low-energy PV through mass mixing between Z_0 and Z_d
- Sensitivity is at low Q, not Z-pole
- Complementary to direct searches for heavy dark photons
 - observable even if direct decay modes are "invisible"
- New Q_{weak} point rules out some of the allowed region

A suite of Auxiliary Measurements

Many ancillary measurements done to quantify various systematic effects:

 Q_{weak} has data (under analysis) on a variety of observables of interest for hadronic physics:

Beam normal single-spin asymmetry* (BNSSA) for elastic scattering on proton BNSSA for elastic scattering on ¹²C, ²⁷Al PV asymmetry in the $N \rightarrow \Delta$ region. BNSAA in the $N \rightarrow \Delta$ region. BNSSA near W= 2.5 GeV BNSSA in pion photoproduction PV asymmetry in inelastic region near W=2.5 GeV (related to γZ box diagrams) PV asymmetry for elastic from ²⁷Al [see W. Deconinck's talk on May 3] PV asymmetry in pion photoproduction

> *: *aka* vector analyzing power *aka* transverse asymmetry; generated by imaginary part of two-photon exchange amplitude

The QWeak Collaboration

101 collaborators26 grad students11 post docs27 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸ University of Manitoba,
- ⁹ University of Virginia ¹⁰ TRIUMF

- ¹¹ Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide
- ²⁴Syracuse University
- ²⁵ Duquesne University

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ K. Bartlett,² J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,^{7,25} J. Birchall,⁸ R.D. Carlini,^{5, 2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk^{*,8} J.M. Finn^{*2}, T. Forest,^{15, 16}, C. Gal,⁹ D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,², A.R. Lee,¹³ J.H. Lee,^{6, 2} L. Lee,¹⁰ S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,¹³, J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ H. Nuhait,¹⁶ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵ P. Solvignon*,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8} B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ P. Zang,²⁴ and S. Zhamkochyan ³

Summary

Precision measurement of proton's weak charge:

 $Q_W^p = 0.0719 \pm 0.0045$

Excellent agreement with Standard Model prediction = 0.0708

Constrains generic new parity-violating "Beyond the Standard Model" physics at TeV scale: $\Lambda/g > 3.6 \text{ TeV}$ (arbitrary u/d ratio of couplings)

Result robust against extraction technique

Completes "Weak Charge triad": (e, n, p)

Result in-press in Nature

Important addition to global electroweak fits to constrain many new physics scenarios

Thanks!

Extra Slides

Isovector Axial Form-Factor

Figure adapted from D. Balaguer Rios et al. (PVA4)

Global fit including Q_{weak} is in good agreement with theory [S.L. Zhu, S.J. Puglia, B.R. Holstein, M.J. Ramsey-Musolf, Phys. Rev. D **62**, 033008 (2000)]