Possibly useful relations:

$$
\begin{array}{lll}
T(K)=T\left({ }^{\circ} C\right)+273.15 & T\left({ }^{\circ} F\right)=\frac{9}{5} T\left({ }^{\circ} C\right)+32^{\circ} & \Delta L=\alpha L \Delta T \\
\Delta V=\beta V \Delta T & P V=n R T & P V=N k T \\
n=N / N_{A} & v_{\text {rms }}=\sqrt{\frac{3 k T}{m}} & \overline{\mathrm{KE}}=\frac{1}{2} m \overline{v^{2}}=\frac{3}{2} k T \\
Q=m c \Delta T & Q=m L_{V} & Q=m L_{f} \\
Q=m L_{s} & \frac{Q}{t}=\frac{\kappa A\left(T_{2}-T_{1}\right)}{d} & \frac{Q}{t}=\sigma \epsilon A\left(T_{\text {hot }}^{4}-T_{\text {cold }}^{4}\right) \\
W=P \Delta V & \text { monoatomic: } \Delta U=\frac{3}{2} n R \Delta T & \Delta U=Q-W \\
\text { Isochoric: } \Delta V=0 & \text { Isothermal: } \Delta T=0 & \text { Isobaric: } \Delta P=0 \\
\text { Adiabatic: } \Delta Q=0 & \epsilon=\frac{W}{Q_{H}}=1-\frac{Q_{C}}{Q_{H}} & \epsilon_{\text {Carnot }}=1-\frac{T_{C}}{T_{H}} \\
\mathrm{COP}_{\text {ref }}=\frac{Q_{C}}{W} & \mathrm{COP}_{\mathrm{hp}}=\frac{Q_{H}}{W} & \\
S=\left(\frac{Q}{T}\right)_{\text {reversible }} & \Delta S_{\text {closed }} \geq 0 & S=k \ln W \\
\mathrm{~W}=(\# \text { microstates }) / \text { macrostate } & \\
& \\
R=8.314 \mathrm{~J} /(\mathrm{mol} \cdot \mathrm{~K}) & N_{A}=6.02 \times 10^{23} \mathrm{~mol}^{-1} & k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \\
\sigma=5.69 \times 10^{-8} \mathrm{~J} /\left(\mathrm{s} \cdot \mathrm{~m}^{2} \cdot \mathrm{~K}^{4}\right) & \\
1 \mathrm{cal}=4.186 \mathrm{~J} & 1 \text { kcal }=10^{3} \mathrm{cal} & 1 \text { Liter }=10^{-3} \mathrm{~m}^{3} \\
1 \mathrm{~atm}=10^{5} \mathrm{~Pa} & &
\end{array}
$$

