See: 02/29/16 lecture & Last years Test, problem #2

Problem 1. [25 points]

Consider the circuit shown, where V = 10 V, $R_1=3$ k Ω , $R_2=10$ k Ω , and $R_3=10$ k Ω .

- a) [7 points] What is the total equivalent resistance of the three resistors?
- b) [8 points] What is the current through each resistor?
- c) [5 points] How much energy is dissipated as heat in resistor R_1 in 10 seconds?
- d) [5 points] Assume that the resistors are actually the filaments of incandescent light bulbs. If R_2 is disconnected from the circuit, will the R_1 bulb get brighter or dimmer? Explain your reasoning.

a)
$$I_{Rp} = I_{R2} + I_{R3} = I_{DKR} + I_{DKR} = I_{DKR} = I_{DKR} = I_{Rp} = I_{$$

& $I_2 + I_3 = I_1$: $I_2 = I_3 = I_1/2$...) C) $P_1 = I_1^2 R_1 = (1.25 \times 10^{-3} A)^2 (3 \times 10^3 \Omega) = 4.69 \times 10^{-3} W$ $E = Pt = (4.69 \times 10^{-3} W)(10s) = 4.69 \times 10^{-2} T$

d) (iresist is now: IV Since R2 is removed, the resistance of what was the parallel combination has increased (is now 10 K2, it was 5 K2): total Reg has

increased (it is now $R_2+R_3=13$ K.R instead of 8KR) Thus the current I=I, has decreased (Vis the same) \rightarrow therefore the power has decreased, thus the bulb is dimmer See: 02/10/16 lecture & Last year's test, problem #4

Problem 2. [25 points]

Two charges, $Q_1 = +2 \mu C$ and $Q_2 = -2 \mu C$ are located 6 meters apart, as shown above. Location A is midway between the charges, and location B is 4 meters above the midpoint.

- a) [6 points] Find the electric field (magnitude and direction) at location A.
- b) [5 points] What would be the force (magnitude & direction) on an electron if it was located at A?
- c) [4 points] What is the direction (don't worry about the magnitude) of the electric field at location B?
- d) [6 points] What is the electric potential at location B?
- e) [4 points] Sketch at least 8 electric fields lines generated by these charges.

a)
$$E_1 = \frac{KQ_1}{\Gamma_1^2} = \frac{(9 \times 10^9 \frac{Nm^2}{c^2})(2 \times 10^6 c)}{(3m)^2} = 2000 \text{ N/c}; \text{ to the right}$$
 Total. $E_A = E_1 + E_2$

$$E_2 = \frac{KQ_2}{\Gamma_2^2} = \frac{(9 \times 10^9 \frac{Nm^2}{c^2})(2 \times 10^6 c)}{(3m)^2} = 11$$

$$= \frac{1000 \text{ N/c}}{(3m)^2}$$

c)
$$\vec{F}_{18}$$
 vertical components cancel : to the right

d)
$$V_B = \frac{KQ_1}{\Gamma_1} + \frac{KQ_2}{\Gamma_2}$$
 $\Gamma_1 = \Gamma_2 = 5m$ here :. $V_B = \frac{K}{(5m)} \left[Q_1 + Q_2 \right] = \frac{K}{(5m)} \left[2\mu (-2\mu c) \right]$

a) [7 points] You are toasting your breakfast bagel using a 3.2 amp DC current entering your toaster. The current is on for 10 seconds. How many electrons go through the toaster during this time? If it was, instead, a 3.2 amp AC current, how many electrons go through the toaster?

DC: $I = \frac{\Delta Q}{\Delta t}$:: $\Delta Q = I\Delta t = (3.2A)(10s) = 32C$ $Q = \Lambda[q_e]$ where $\Lambda = \#$ elections :: $\Lambda = \frac{Q}{|q_e|} = \frac{32C}{1.6 \times 10^{-19}C} = 2 \times 10^{20}$

AC: = Zero elections -> charge sloshes back and forth, but no net charge moves through toaster

b) [7 points] A 3 μ F capacitor is charged to a voltage of 20 V. If it is then discharged through a 100 M Ω resistor, how long does it take for the voltage on the capacitor to fall to 1 V?

 $\gamma = RC = (100 \times 10^{6} \Omega)(3 \times 10^{-6} F) = 300 s$ $V(4) = V_{o} e^{-t/\tau}$ $1V = (20V)e^{-t/\tau}$ $e^{-t/\tau} = \frac{1}{20}$ $ln(\frac{1}{20}) = -t/\tau$ See: Practice problem for $t = -\gamma ln(\frac{1}{20})$ t = -(300s) ln(0.0s) ln(0.0s) = -(300s) ln(0.0s) ln(0.0s) = -(300s) ln(0.0s) ln(0.0s) = -(300s) ln(0.0s) ln(0.0s) = -(300s) ln(0.0s)

c) [6 points] You have connected a Galvanometer in series with a 10 M Ω resistor. Is the resulting device useful as an Ammeter or as a Voltmeter?

Voltmeters are made using galvarometers in series with a large resistance.

Problem 4. [30 points]

0.04mm

The plates of a parallel-plate capacitor each have an area of 16 cm², and they are separated by 0.04 mm. It is connected to a 9 V battery as shown.

- a) [5 points] What is the magnitude of the charge on each plate?
- b) [5 points] On the diagram, draw several equipotential lines in the region between the capacitor plates.
- c) [5 points] Which way (up, down, left, or right) does the electric field between the plates point?
- d) [5 points] What is the magnitude of the electric field between the plates?
- e) [5 points] The battery is disconnected from the circuit (without allowing the capacitor to discharge). Now, a sheet of paraffin (dielectric constant = 2.2) is inserted between the plates; it fills the space completely. What is the new charge and the new voltage on the capacitor?
- f) [5 points] Prof. Armstrong takes a much larger capacitor, $C = 100 \mu F$, and charges it using a 250 V power supply. He then disconnects it from the power supply, and connects a metal screwdriver across the plates. All the stored energy is discharged in 10⁻⁶ s with a loud bang. What is the power (in watts) of this discharge?

a)
$$C = K & A & K = 1 \text{ for ain}$$

$$C = (1)(8.85 \times 10^{-12} F_m) \left(\frac{16 \times 10^{-4} m^2}{0.04 \times 10^{-3} m}\right) = 3.54 \times 10^{-10} F = 354 pF$$

b) Dee diagram; equally spaced parallel lines c) $E = 10^{-10} \text{ points}$ down (away from positive charges)

d) Uniform field: $V = Ed$: $E = \frac{1}{2} = \frac{9V}{0.04 \times 10^{-3} m} = \frac{2.25 \times 10^{-5} V_m}{2.25 \times 10^{-5} V_m} = \frac{22.5 \times 10^{-5} V_m}{2.25 \times 10^{-5} V_m}$

e) Chew = $K & E_0 A = KC = (2.2)(3.54 \times 10^{-10} F) = 7.79 \times 10^{-10} F$

Queue = $10^{-10} C = 10^{-10} C$

Cnew =
$$K \mathcal{E}_0 A = KC = (2.2)(3.54 \times 10^{-10} F) = 7.79 \times 10^{-10} I$$

Quew = Cnew Vnew : $V_{\text{new}} = \frac{Q_{\text{new}}}{Q_{\text{new}}} = \frac{3.19 \times 10^{-10} C}{7.79 \times 10^{-10} F}$
= $\frac{19.09 \times 10^{-10} F}{19.09 \times 10^{-10} F}$

f)
$$E_{cap} = \frac{1}{2}CV^2 = \frac{1}{2}(100 \times 10^6 \text{ F})(250 \text{ V})^2 = 3.12 \text{ J}$$

Power = $\frac{1}{2}(100 \times 10^6 \text{ F})(250 \text{ V})^2 = 3.12 \text{ J}$
 $\frac{1}{2}(100 \times 10^6 \text{ F})(250 \text{ V})^2 = 3.12 \text{ J}$

3 Megawatts