## Problem 1.

A car starts from rest and travels in a straight line for 12 seconds with a uniform acceleration of  $1.5 \text{ m/s}^2$ . The driver then applies the brakes, causing the car to slow with a deceleration of  $2.0 \text{ m/s}^2$ , until it comes to a full stop.

- a) What is the maximum speed of the car?
- b) How far is the car away from its initial location when it stops?
- c) What is the total elapsed time?

a) 
$$U_0 = 0$$
  $U = U_0 + \alpha t = 0 + (1.5 m/s^2)(12s) = [18 m/s]$ 

b) While accelerating: 
$$x_1 = U_0 t + \frac{1}{2} a t^2 = \frac{1}{2} (1.5 \text{m/s}^2)(12 \text{s})^2 = 108 \text{m}$$

while decelerating: here  $V_0 = 18 \, \text{m/s}$ , V = 0 for full stop,  $\alpha = -2.0 \, \text{m/s}^2$  $\therefore \quad V^2 = V_0^2 + 2 \alpha \, \Delta \times$ 

$$\Delta x = \frac{U^2 - U_0^2}{2a} = \frac{O^2 - (18 \, m/s)^2}{2(-2.0 \, m/s^2)} = 81 \, m = x_2$$

total distance =  $x_1 + x_2$ = [189m]

C) While accelerating: 
$$t_1 = 12s$$
 (given)

while decelerations:  $U = V_0 + at_2$ 
 $\vdots$ 
 $t_2 = U - V_0$ 
 $\vdots$ 
 $t_3 = U - V_0$ 

$$= \frac{O - 18m/s}{-2.0 \, m/s^2} = 9s$$

total time = 12s+9s = 215

## Problem 2.

A plump cat, mass  $m_c = 6$  kg sits on top of a board, which has a mass of  $m_b = 2$  kg. You are pushing up on the board from below with a force of F = 96 N. You can use the approximate value  $g = 10 \text{ m/s}^2$ .



- a) What is the acceleration of the board?
- b) What is the force (magnitude and direction) that the board exerts on the cat?
- c) What is the force (magnitude and direction) that the cat exerts on the board?

$$\frac{\int F}{m_c + m_b}$$

$$\int W = (m_c + m_b)q$$

 $F-W = (m_c + m_b)a$ 

$$Q = \frac{F - (m_c + m_b)g}{(m_c + m_b)g} =$$

$$Q = \frac{F - (m_c + m_b)g}{(m_c + m_b)} = \frac{96N - (2 + 6 \text{ Kg})(10 \frac{m}{5^2})}{(2 \text{ Kg} + 6 \text{ Kg})} = \frac{1 + 2m/52}{(2 \text{ kg} + 6 \text{ Kg})}$$
[upwards]

b) now, consider cut as system:

Fret = ma

a is some is above

(cat stays on board)

FBD:



c) Sir Troac's 3rd Law: Fbc=-Fcb

I force cot exects on board

| alternate solution | . Lif you forgot Newton                   | is 3rd law)                                                                     |
|--------------------|-------------------------------------------|---------------------------------------------------------------------------------|
| FBD of board:      | 个F                                        |                                                                                 |
|                    | Mb: 1 Mbg N                               | F= person's force<br>Mbg = weight of bou<br>N = normal force<br>exerts on board |
| Fret = ma          | Ving V                                    | exerts on board                                                                 |
| F-mbg-N=mba        |                                           |                                                                                 |
| : N=F-n            | ng-mba                                    |                                                                                 |
| = 96N ·            | - (2Kg)(10 m/s2) - (2Kg)(2 m              | <sup>1</sup> /5 <sup>2</sup> )                                                  |
|                    | - 20N - 4N = [72N]<br>(drumward           |                                                                                 |
|                    | but clearly easier to<br>& get the result | just apply the 3rd law in one step!                                             |
|                    | <u>-</u>                                  |                                                                                 |

## Problem 3.

Long-distance swimmer Diana Nyad decides to swim across the James River. She swims at a speed of 0.50 m/s with respect to the water. The current in the river is 0.30 m/s and flows from West to East. She starts on the South bank of the river and wishes to arrive at the opposite shore at a spot directly North of her starting point.

- a) In what direction (with respect to the water) must she swim?
- b) The river is 2.4 kilometers wide at her location. How many minutes will it take her to reach the other side?



b) 
$$U_{DQ} = U_{D\omega} cos\theta = (0.5 \frac{m}{s}) cos(36.9^{\circ}) = 0.4 \frac{m}{s}$$
  
 $t = \frac{\Delta x}{U} = \frac{2400 m}{0.4 m/s} = 6000 s \times \frac{1 min}{60 s} = 100 min$ 

## Problem 4.

A physics student throws a brick off the top of a building. The brick is thrown at an angle of 25° to the horizontal with an initial speed of 8 m/s.



- a) Find the horizontal and vertical components of the initial velocity.
- b) The brick takes 2 seconds to hit the ground. How tall is the building?
- c) What is the velocity of the brick (magnitude and direction) in the instant before it hits the ground?

a) 
$$V_{\text{oy}} = V_{\text{o}} \cos \theta = (8m/s)\cos 25^{\circ} = 7.25m/s$$
  
 $V_{\text{oy}} = V_{\text{o}} \sin \theta = (8m/s)\sin 25^{\circ} = 3.38m/s$ 

b) Projectile motion 
$$y = y_0 + V_{0y}t + \frac{1}{2}a_yt^2$$
  
Choose:  $\int_{3x}^{9}$ , origin @ base of building ::  $y_0 = H$ ,  $y = 0$ ,  $a_y = -g$ ,  $t = 2s$   
 $O = H + V_0 sin \Theta t - \frac{1}{2}gt^2$   
::  $H = \frac{1}{2}gt^2 - V_0 sin \Theta t = \frac{1}{2}(9.8 \text{ m/s}^2)(2s)^2 - (3.38 \frac{\text{m}}{5})(2s)$   
=  $\sqrt{12.8 \text{ m}}$ 

C) 
$$U_{x} = U_{0x} = 7.25 m/s$$
  
 $U_{y} = U_{0y} - gt = 3.38 m/s - (9.8 m/s^{2})(2s) = -16.2 m/s$   
 $U = \sqrt{U_{5c}^{2} + U_{y}^{2}} = \sqrt{(7.25 m/s)^{2} + (-16.2 m/s)^{2}} = [17.75 m/s]$ 

$$U_y = tan^{-1} \left( \frac{|U_y|}{|U_{zel}|} \right) = \left( 65.9^{\circ} \text{ below horizontal} \right)$$