MOLLER Experiment

- Moller scattering: intro
- Previous measurement: SLAC E158
- MOLLER: new physics reach
- Experimental Concept and Challenges
- Status & Timeline

Many slides courtesy of K. Kumar, K. Paschke, J. Mammei, M. Dalton, etc....

Moller Scattering

- complementary to semileptonic expts

Pioneering Experiment: SLAC E158

- Spokespersons: E. Hughes, K. Kumar, P. Souder
- Stanford Linear Accelerator Center (SLAC): used 45 and 48 GeV e⁻ beams
- electron beam $\approx 80\%\,$ polarized (longitudinal) 120 Hz $\,$ 11 μA
- 3 data-taking runs: 2002-2003
- $A_{PV} \approx 130 \text{ ppb}$ (280 ppb at tree level)

 $A_{PV} = (-131 \pm 14 \pm 10) \times 10^{-9}$

Phys. Rev. Lett. 95 081601 (2005)

E158: Implications

Running of $sin^2 \theta_W$ established at 6σ level

MOLLER: New Physics Reach

One goal of neutral current measurements at low energy AND colliders: Access $\Lambda > 10$ TeV for as many f_1f_2 and L,R combinations as possible

Precision of proposed experiment:

best contact interaction reach at low Q^2

MOLLER: if SUSY seen at LHC...

MOLLER: if Z' seen at LHC...

Virtually all GUT models predict new Z's (E6, SO(10)...): LHC reach ~ 5 TeV
With high luminosity at LHC, 1-2 TeV Z' properties can be extracted

Suppose a 1 to 2 TeV heavy Z' is discovered at the LHC...

MOLLER: Weak Mixing Angle (1)

MOLLER: Weak Mixing Angle (2)

MOLLER: Overview

How to improve on E158 precision?

Go to JLab @ 11 GeV (Hall A)

- take hit in figure of merit (factor 4) because of E_{lab}
- gain in Luminosity by order of magnitude (85 μ A, 1.5 m target)
- gain in beam quality/stability
- spectrometer design: improve signal/background separation

 $\theta_{lab} = 0.25^{\circ} - 1.1^{\circ}$ E' = 1.8 - 8.8 GeV

Detected Rate: 150 GHz!

 $A_{PV} = 35.6 \text{ ppb}$

Goal (5000 hrs running): $\delta(A_{PV}) = 0.73 \text{ ppb}$ $\delta(Q^e_W) = \pm 2.1 \text{ (stat.)} \pm 1.0 \text{ (syst.) \%}$ $\delta \sin^2 \theta_W = \pm 0.00026 \text{ (stat.)} \pm 0.00012 \text{ (syst.)}$ $\longrightarrow \sim 0.1\%$

MOLLER: Experimental Challenges

150 GHz Rate:

- flip Pockels cell at ~2 kHz
- 80 ppm pulse-to-pulse statistics
 - need 10 ppm or smaller electronic noise and target density fluctuations
 - need beam monitoring resolution at 10 ppm and few μ m level at 1 kHz
- Flux integration; radiation-hard, highly-segmented detectors

85 μ A on 150 cm ℓ H₂ target

- 5 kW target (twice power of QWeak target)

Beam Quality

- 0.5 nm & 0.05 nrad helicity-correlated beam fluctuations on target

Electron Beam Polarimetry

- require 0.4% precision (SLD achieved 0.5%)
- redundant techniques: Compton and Atomic Hydrogen Moller polarimetry

Full Azimuthal Acceptance

- small θ_{lab} wide range of scattered energies
- novel spectrometer magnet design: two toroids
- complicated collimation, alignment, shielding design

Backgrounds

MOLLER: Kinematics

Normally: want to avoid double-counting (both electrons) Instead, **exploit:** odd number of magnet coils: throw away half of ϕ acceptance!

All of those rays of $\theta_{CM} = [90, 120]$ that _____ you don't get here...

... are collected as θ_{CM} = [60,90] over here!

Full azimuthal acceptance, broad kinematic coverage

MOLLER: Schematic

Spectrometer: Two warm toroids 150 kW of photons from target – reject superconductors

MOLLER: Spectrometer Concept

MOLLER: Hybrid Toroid Design

MOLLER: Detectors

Main Detectors:

- fused silica
- air lightguides & PMTs
- highly segmented in $\ r$ and ϕ

beam of neutrals from target

MOLLER: Target

Choose: liquid hydrogen (as did E158)

Why?

- Most thickness for least radiation length
- easy to assure is unpolarized
- no complex nucleus to scatter from

 $10.7 \frac{g}{cm^2}$ X₀ = 17.5% \longrightarrow benchmark simulation with tracking detectors

MOLLER: Backgrounds

- Elastic e-p scattering
- well-understood, measurable in data
- 8% dilution, 7.5±0.3% correction
- Inelastic e-p scattering
- <1% dilution</p>
- large EW coupling, 4.0±0.4% correction
- A_{PV} varies with r and φ
- Photons and Neutrons
- mostly 2-bounce collimation system
- special runs to measure "blocked" response of detectors
- π 's and μ 's
- real & virtual photo-production and DIS
- continuous parasitic measurement
- estimate: A_{PV} 0.5 ppm 0.1% dilution

Mollers, elastic e-p's inelastic e-p's

MOLLER: Transverse Asymmetry

Two Photon Exchange: Beam normal single spin asymmetry; if electron beam has transverse component $\rightarrow \phi$ dependence

 $A_T \sim 14 \text{ ppm}$ (>10⁴ our precision goal)

- need to average this down to tolerable correction...

Average transverse asymmetry, energy weighted detectors

5

15

20

 θ_{lab} (millirad)

25

10

super-elastics

MOLLER: Systematics

source of error	% error	
absolute value of Q ²	0.5	
beam second order	0.4	
longitudinal beam polarization	0.4	
inelastic e-p scattering	0.4	
elastic e-p scattering	0.3	
beam first order	0.3	_
pions and muons	0.3	
transverse polarization	0.2	
photons and neutrons	0.1	
Total	1.0	

Dedicated Tracking & Scanner detectors

Laser spot-size control at 10^{-4} level Slow flips via Wien-filter & g-2 beam energy

Active feedback: intensity, position and angle

Monitor online: kinematic separation Slow feedback using Wien-filter

MOLLER: Compton Polarimetry

MOLLER: Atomic Hydrogen Moller Polarimetry

Virgin territory: Redundant technique, equal precision to Compton

E. Chudakov and V. Luppov, IEEE Trans. Nucl. Sci., vol 51, no. 4, Aug 2004 1533

$$\frac{n_{+}}{n_{-}} = e^{-2\mu B/kT} \approx 10^{-14}$$

Ambitious development project Adopt high-field solid target Moller as fall-back plan

MOLLER: Collaboration

Proposal: ~100 authors, 30 institutions; experience from E158, HAPPEx, PV-A4, G0, PREx, Qweak

Steering Committee:

– D. Armstrong, R. Carlini, G. Cates, K. de Jager, Y. Kolomensky, K. Kumar (chair), F. Maas, D. Mack, K. Paschke, M. Pitt, G. Smith, P. Souder, W. van Oers

Working Groups & Conveners:

- Polarized Source: G. Cates
- Beam & Beam Instrumentation: M. Pitt
- Target: G. Smith
- Spectrometer: K. Kumar
- Integrating Detectors: D. Mack
- Tracking Detectors: D. Armstrong
- Polarimetry: K. Paschke
- Electronics/DAQ: R. Michaels
- Simulations: N. Simicevic / K. Grimm

Collaboration seeks to grow!

Expressions of interest – not finalized

sub-system	Institutions
polarized source	UVa, JLab, Miss. St.
Target	JLab, VPI, Miss. St.
Spectrometer	Canada, ANL, MIT, UVa
Integrating Detectors	Syracuse, Canada, JLab, FIU, UNC A&T, VPI
Luminosity Monitors	VPI, Ohio U.
Pion Detectors	UMass/Smith, LATech
Tracking Detectors	William & Mary, Canada, INFN Roma
Electronics	Canada, JLab
Beam Monitoring	VPI, UMass, JLab
Polarimetry	UVa, Syracuse, JLab, CMU, ANL, Miss. St., Claremont-Ferrand, Mainz
Data Acquisition	Ohio U., Rutgers U.
Simulations	LATech, UMass/Smith, Berkeley, UVa

MOLLER: Timeline

- Project received PAC approval: Jan 2009
- Director's review of physics goals and concept: Jan 2010
- Aim to develop project funding (US + foreign): 2011-12
- Aim to install at JLab after 12 GeV upgrade: late 2015

Daunting challenges... pushes precision in both absolute and relative terms

MOLLER: Summary

• Projected Result from an A_{PV} measurement in Moller Scattering:

 $\delta(Q^{e}_{W}) = \pm 2.1 \text{ (stat.)} \pm 1.0 \text{ (syst.) \%}$ $\delta(\sin^{2}\theta_{W}) = \pm 0.00026 \text{ (stat.)} \pm 0.00012 \text{ (syst.)} \sim 0.1\%$

- Opportunity with high visibility and large potential payoff
 - The weak mixing angle is a fundamental parameter of EW physics
 - A cost-effective project has been elusive until now
 - expensive ideas reach perhaps 0.2% (reactor or accelerator v's, LHC Z production...)
 - sub-0.1% requires a new machine (e.g. Z- or v-factory, linear collider....)
 - physics impact on nuclear physics, particle physics and cosmology
 - pin down parameter for other precision low energy measurements
 - help decipher new physics signals at LHC
 - critical part of the web of "Precision Frontier" measurements (e.g. see MRM's talk)
- 11 GeV JLab beam is a unique instrument that makes this feasible

Grazie !