
Some Analysis of Vertical Drift Chamber Data Using ROOT

Lloyd Joseph Snow

August 5, 2009

Abstract

Dr. David Armstrong and several others have been making and testing vertical drift chambers (VDCs) for use at Je�erson
Lab. This summer I am analyzing and interpreting some of the data from one of the VDCs using ROOT, a software package
developed at CERN speci�cally for data analysis. The result of my work is a ROOT macro which automates a few tedious
analysis tasks which had previously been done by hand or not at all.

1 Background

1.1 The rest of the project

1.1.1 Vertical Drift Chambers

A vertical drift chamber is a container housing a gas mixture and many regularly spaced conducting wires. The VDCs of
Dr. Armstrong's group presently use a gas mixture of 65% Argon and 35% ethane and have 280 wires separated into two
layers sandwiched between foils kept at 4000 volts. A VDC detects particles passing through it when they ionize the gas
in the chamber. The ionized gas and the liberated electrons then �ow based on their charge and other factors. Liberated
electrons �ow to the nearest wire in the chamber causing an electrical signal upon contact.

The data harvested from the chamber are these signals in the form of recorded time values for each wire in the chamber.
There are trigger mechanisms involved, two plastic scintillators, that start and stop the recording of the time values for the
wires. One start followed by a stop is a single event for the chamber and the data related to that event is a time value, in
picoseconds, for every wire in the chamber. If a wire never signaled during the event, then it's time value is by default zero.
Thus the nonzero time values are of wires which signaled because a passing particle ionized gas whose liberated electrons
eventually drifted towards that one wire.

The purpose of the start signal is to tell the hardware to start actually recording any incoming signals. The time value
for a given wire is the time from the �rst signal from the wire after the start signal until the moment that the stop signal
is given. This means that the wires with the largest time value are in fact the wires that were hit earliest after the start
signal. The actual time value of the time from the start signal to the time of the wire's signal is not the actual data that
will be recorded, but it could be inferred if desired by subtracting the time value corresponding to the earliest moment after
the start signal. That �earliest moment� time value is reliably calculable from the data and is referred to as the t-naught

value for a given wire.
A track in the VDC is the calculated path of the passing particle. Tracks are reconstructed from the run data.

1.1.2 Cosmic Ray Tests

Presently the VDC in production by Dr. Armstrong's group is being tested cosmic rays to trigger the start mechanisms,
and thus for a given run of the chamber, each event should involve the passing of a cosmic ray. This data is compiled
automatically into a ROOT �le in a certain format which my macro is written to read and analyze. A run is the ROOT
�le collecting the events and their sets of time values from one continuous operation of the VDC.

1.2 Software

1.2.1 ROOT

ROOT, Roots Object Oriented Technologies, is a C++ library or program that is developed at CERN and used widely in
many physics projects. ROOT can be included in a C++ project as a software library or any ROOT distribution comes
with binaries that can be executed to use ROOT in an interactive program mode that utilizes CINT to code dynamically
from a command line or also dynamically from user-written macros loaded from �les.

The primary virtue of a macro is that they can generally be run without portability concerns on any system that has
ROOT installed. A macro is loosely C++ code, but need not be enough to compile independent of its usage in CINT.

1

1.2.2 ROOT uses CINT

CINT, the C Interpreter, is supposed to be a C++ interpreter that can take C++ code and interpret it dynamically much
like many other interpreted-by-design programming languages such as Lua. CINT does not perfectly support the present
C++ standard, and anyone used to the C++ that would work on modern compilers will periodically �nd themselves
confronted by de�ciencies between CINT and those same modern compilers in what code does and does not compile. In
short, knowing C++ beforehand can work against you just as much as it can work for you when it comes to CINT.

2 Results

The result of my industrious toil is a �le named �reu.C�. In the interests of being portable, �reu.C� is a ROOT macro, and
presents the user with a text-based interface. It gathers together the common code necessary for all the various analysis
tasks that I was instructed to automate. From the main menu it shows, the user is able to select from the various tasks.
After a task is executed, the program returns to the ROOT prompt, but the data from the last run of the macro is still in
scope and accessible and can be used again by calling the function �reu()� from the ROOT prompt.

Many of the �gures to follow show output gleaned from C775_1197.root which is a ROOT �le representing a certain
run with the VDC at 4050 Volts and the threshold voltage at 1.0 Volts.

Figure 1: Main menu of reu.C

2.1 Visualize the frequency of occurrence of speci�c time values for a given run

As mentioned before, an event as found in the ROOT �le representing a run of data from the chamber is a collection of
time values garnered from the vertical drift chamber. The �time spectrum� of a run is the histogram showing the frequency

2

of occurence of time values throughout the run. For a working vertical drift chamber, the time spectra are expected to have
a characteristic shape. The characteristic shape of a time spectrum stems from the pattern of acceleration that the freed
electrons should be experiencing as they approach the wire. Aside from background noise, the spectrum should resemble
a leading hump or plataeu followed by and conjoined to a much higher hump. The �rst part are time values from free
electrons that were freed further away from the wire, and the second part are time values from free elections that were freed
much closer to the wire. Bear in mind that these are the recorded time values only and so the largest time values are from
the wires that signalled earliest.

The �rst task I had to do was to make graphs of the characteristic time spectra. Three modes of display were requested:
One mode displaying time spectra of time values for individual channels in separate histograms arranged across the screen
as a grid, a second mode displaying time spectra of time values for individual channels all overlaid on the same histogram,
and a third mode displaying the time spectrum of all the channels together. These modes are options 0, 1, and 2 from the
main menu.

The second and third modes provide simple ways to visually verify that all the time spectra for all the wires are sharing
the same or similar characteristics.

Figure 2: Output of option 0 performed on channels 0-7 of C775_1197.root

3

Figure 3: Output of option 1 performed on channels 0-7 of C775_1197.root

4

Figure 4: Output of option 2 performed on channels 0-7 of C775_1197.root

namespace root_has_clunky_class_designs

{

class Koala

{

void TeaGrid__();

void TeaOverlay__();

void TeaSummation__();

};

};

Figure 5: Major functions pertinent to time spectra

2.2 Visualize the frequency of hits per wire in a run

A wire in the chamber is considered �hit� in a given event of the given run if and only if its time value is nonzero. It is
of interest to compare the amount of times wires are hit in a run. To this end, option 3 draws a histogram of frequency
of hits versus wire number. This histogram should normally show a consistent slope (this is related to the position of the
scintillators during the run) and any signi�cant abberations from this slope re�ect possible defects.

5

Figure 6: Output of option 3 performed on channels 0-31 of C775_1197.root

namespace root_has_clunky_class_designs

{

class Koala

{

void TeaWire_Hits__();

};

};

Figure 7: Major functions pertinent to hits per wire

2.3 Visualize the frequency of total hits per event

It is also of interest to examine the frequency with which events in the run have a certain total number of hits in their
wires. Option 4 draws a histogram of frequency versus total hits per an event. Since most events happen to represent at
most one track and nothing else, the results on this digram loosely correlate to track length in a sense and are useful check
because track length corresponds to angle. A passing particle incident perpendicular to the plane of the wires would leave
a very short track, as in perhaps one nonzero timevalue in an event. Particles making less of an angle with the plane of the
wires will leave longer tracks. However, the the later task in section 2.5 is better for this purpose.

6

Figure 8: Output of option 4 performed on channels 0-31 of C775_1197.root

namespace root_has_clunky_class_designs

{

class Koala

{

void TeaTotal_Hits_Frequency__();

};

};

Figure 9: Major functions pertinent to total hits per event

2.4 Calculate e�ciencies for wires and for the chamber given a run of data

One of the main purposes of my analysis was to show that the chamber was actually working e�ciently and as expected.
To this end, options 5 and 6 calculate the wire e�ciencies and the corresponding chamber e�ciency. In both options, the
e�ciency of a given wire is the amount of actual �hits� upon that wire divided by the amount of �triggers� about that wire.
The two options di�er only in their criteria for a �hit� or a �trigger.�

Option 5 is the simple wire e�ciency option wherein a trigger involving a certain wire is when enough wires to either
side of that wire had nonzero time values. Regardless of whether or not the certain wire in question also had a nonzero
time value, a trigger only involves the surrounding wires. A hit is a trigger where the certain wire in question also had a

7

nonzero time value.
Option 6 is the improved wire e�ciency option which has all the requirements of option 5, but also requires that the

time values in a trigger re�ect an expected pattern. This additional criteria throws out many false triggers and gives better
results. Since the larger time values re�ect the actual time values from where the particle passed closer to the wire, the
time values from each wire in a track should �rst grow larger and the smaller with the largest values towards the center of
the track, and thus this expect pattern helps cull many false tracks from consideration.

The names used to refer to the wire e�ciencies in option 5 are 3 wire e�ciency, 5 wire e�ciency, and 7 wire e�ciency.
These refer to guaging e�ciency by comparing triggers and hits the correspond to tracks of the length mentioned in the
e�ciency name.

The names used to refer to the wire e�ciencies in option 6 are of the form a-b-c wire e�ciency where a, b, and c are
integers representing the amount of wires to the left of the wires to be tested, the amount of wires in the center, and the
amount of wires to the right of the wires to be tested respectively. For example, 3-1-3 wire e�ciency tests the same length
tracks that 7 wire e�ciency tests, but because of the required pattern of the time values, many more triggers are found for
7 wire e�ciency than for 3-1-3 wire e�ciency.

Figure 10: Output of option 5 performed on channels 0-31 of C775_1197.root witha graph of the 7 wire e�ciency

8

Figure 11: Output of option 6 performed on channels 0-31 of C775_1197.root and looking at the 3-1-3 wire e�ciency

9

namespace root_has_clunky_class_designs

{

class Koala

{

wingedness__ classify_wire_wingedness(

UInt_t start ,TeaChannel_Data& given

,UInt_t left_wing_amount ,UInt_t center_amount

,UInt_t right_wing_amount

) const;

symmetry__ classify_wire_symmetry(

UInt_t start ,TeaChannel_Data& given

,bool odd ,UInt_t wing_size

,UInt_t wire_amount

) const;

Double_t TeaWire_Efficiency_2__invisible(

UInt_t left_wing_amount ,UInt_t center_amount

,UInt_t right_wing_amount

);

Double_t TeaWire_Efficiency_2__(

UInt_t left_wing_amount = 3 ,UInt_t center_amount = 1

,UInt_t right_wing_amount = 3 ,bool show_hits_ = false

,bool show_triggers_ = true ,bool show_faux_triggers_ = false

,bool draw_it = true

);

TeaWire_Efficiency__(UInt_t draw_eff = 3);

};

};

Figure 12: Major functions pertinent to wire e�ciencies

2.5 Visualize the frequency of track size for a given run of data

It is also of interest to examine the frequency with which tracks of a certain size occur in the run and the frequency with
which wires are involved in them. Option 7 draws a histogram of frequency versus track size and one of frequency of
involvement versus wire. It was only requested to have the simplistic criteria for a track, meaning that a track here is just
several consecutive nonzero time values in an event. Because track length corresponds to angle, these histograms provide a
good means to guage the ballpark angles of the tracks that the chamber is presently recording. A passing particle incident
perpendicular to the plane of the wires would leave a very short track, as in perhaps one nonzero timevalue in an event.
Particles making less of an angle with the plane of the wires will leave longer tracks.

10

Figure 13: Output of option 7 performed on channels 0-31 of C775_1197.root

namespace root_has_clunky_class_designs

{

class Koala

{

void TeaTrack_Length__();

};

};

Figure 14: Major functions pertinent to track size

2.6 Find, Reconstruct, and Fit tracks according to a simpli�ed model

One of the most tangible results from this project was macro option 8 which searches event by event for potential tracks of
cosmic rays, reconstructs the distance from the wire of the ray for each wire, and then �ts a simple line to the distances.
Although future work on track reconstruction will be done di�erently, this was at least another good check that the chamber
is actually producing intelligible results.

Macro option 10 actually allows one to graph the reconstructed distances of the track and see the linear �t superim-
posed on the graph, and macro option 12 allows one to separate the reconstructed graphs based on whether or not the
rms of their linear �t is above or below a certain value. Macro option 9 allows creation, viewing, and editting of the

11

�reconstruction_data.txt� con�g �le that contains many of the constants and numbers that the track reconstruction needs
but cannot �nd in the ROOT �le. Many of these numbers are related to the function that was derived from a di�erent
simulation, called Gar�eld, that characterized much of the physics involved in track reconstruction. The macro only uses
the set of equations produced from Gar�eld to �nd the reconstructed distances of the track from the wire. Additionally,
reconstruction is an iterative process with each iteration producing a result closer to the actual track itself. This is why the
reconstruction option in the macro takes considerably longer than any other option to run to completion.

In any of the outputs, the text describing a track has the number of the event within the ROOT �le, the number of
the starting wire, the length of the total track, the reconstructed distances of the track from each wire, the distances of
the linear �t to the reconstructed distances from each wire, root mean squared values (called residuals) of the the distance
between the reconstructed distances and �t itself, an average root mean squared value, the calculated angle of the track,
and the �nal values of the terms in the equations used to reconstruct the track distance.

Figure 15: Output of option 10 to look at the track in event #478 of C775_1197.root

12

namespace root_has_clunky_class_designs

{

class Koala

{

struct TeaTrack_Reconstruction_Data

{

void alter();

};

struct TeaTrack

{

void graph(bool fit = true);

};

void TeaTrack_Reconstruction__(

UInt_t event_low_ ,UInt_t event_high_

,std::ostream& out ,bool legible = false

,UInt_t lower_length = 5 ,UInt_t upper_length = 8

);

};

};

bool main_menu(bool looping = false);

Figure 16: Major functions pertinent to track reconstruction

2.7 Graph chamber e�ciency versus a run property

The last task the macro had to complete was to perform a comparison of the chamber e�ciency in several runs having
di�erent values of some arbitrary value. Option 11 does this. This is option can be used as a check to see that adjusting
certain run parameters is having the expected result for a vertical drift chamber.

The intended use for this option was to con�rm the e�ects of threshold voltage and chamber voltage on e�ciency, but
there was only data enough to run the analysis for the di�ering threshold voltages since all of the latest runs have been at
the same chamber e�ciency. However, the threshold voltage analysis did con�rm that as the threshold voltage decreases,
the chamber grows more e�cient up to a certain point where the gains in e�ciency begin to level o�.

13

Figure 17: Graph output of option 11 showing the e�ects of threshold voltage on the chamber e�ciency for 8 distinct runs.
The di�erent colored lines represent the chamber e�ciency for di�erent e�ciencies.

namespace root_has_clunky_class_designs

{

void eff_vs_run_property_analysis(

const std::string& run_property_name

,const TeaSequence<froot<Double_t> >& files

);

};

Figure 18: Major functions pertinent to chamber e�ciency versus a run property.

3 Conclusion

3.1 Shortfalls

3.1.1 T-naught

T-naught values are per wire values that represent the smallest actual time value that is possible for that wire. They do
not vary by run, but rather vary with the conditions the chamber is setup in such that it would be nice to automatically

14

analyze the time spectra for a run of the chamber to determine the t-naught values for each wire in a run. The t-naught
values are in short the time intercept as extrapolated from a linear �t to the far side of the major hump in the spectrum.

It is tedious but doable for a human to look at graphs like those in option 0 and roughly approximate this value,
and although it would have been nice if the macro could automate this task, I was too unexperienced with the matter of
characterizing and �nding speci�c parts of graphs or histograms. After roughly a week's worth of time wasted on attempting
to both �nd previous solutions online and trying to code a good solution myself, I decided to abandon that task in favor
of �nishing the other objectives. In retrospect, skipping this was probably a good idea, but I would like to note that the
problem of �nding these t-naught values automatically is certainly something that is doable, but perhaps it is a problem
better posed to someone with a broader experience in dealing with graphs and data via software.

3.2 Recommended Future Work

3.2.1 Portability versus Speed

As mentioned before, a root macro represents portable semi-C++ code that any ROOT installation can interpret dynami-
cally. The reason I chose to keep the code as a macro is because of the limited time available for development and the fact
that I have no prior experience with developing a program to run on multiple platforms.

Because the macro is interpreted rather than compiled, it is certainly slower than it could be, and most notably track
reconstruction for large runs has taken a prohibitively long time to run to completion. I would recommend future versions
of the macro actually be honestly compiled C++ programs that incorporate ROOT only as a third party library, and
although it might be tempting to some to just develop the application in the same linux �avor that tycho runs, I would
recommend against committing the application to any speci�c platform. Although some details will di�er between compiling
the application on di�erent platforms, as long as the functionality used is available on all the platforms, the majority of the
code will not need to be changed to port it to a di�erent application. Using large and common C++ libraries such ROOT
and Boost would be a good idea for this.

At least with these allowances, the largest problem in keeping the application viable for multiple platforms will be in
setting up the project to compile correctly on each platform. This can be time consuming and frustrating to no end, but a
cross platform IDE like code::blocks that is designed speci�cally to provide a common development environment regardless
of platform could mitigate this trouble signi�cantly. I would be more inclined to recommend a collaboration with the
computer science department if this is pursued further as a healthy amount of prior experience drastically facilitates the
matter.

3.2.2 Code Design

The macro has poor code design. It was largely built up major function by major function as each task was presented and
later realized. Many of the tasks share much common code already, but it is likely that further redundant code could be
eliminated and replaced by more common functions or classes. Furthermore, the code should be restructured into seperate
classes somehow and divided up into multiple source �les as at just above 3000 lines the one �le it occupies has become
rather crowded. Additionally, because of many bad experiences with CINT, the code does not use as many other classes,
such as the incredibly useful classes in the Boost libraries, as it could. It is possible to use those other classes with CINT,
but the approach necessary is di�erent than what an actual C++ compiler would demand.

Since the project started so late, after many initial problems with CINT and trying to follow the normal pattern of
code-reuse that I am used to, I basically gave up on trying to use any third party libraries and almost all of the standard
template library. I did not deem it worthwhile to write code based on useful classes only to later �nd that CINT was
not con�gured properly to deal with them like a normal (competent) C++ compiler, and I decided it would be more time
e�cient just to write quick classes, like TeaSequence, to provide the functionality I desired rather than to pray that I could
resolve each and every CINT con�ict in a reasonable amount of time.

Developing the same code as a standalone C++ application that uses ROOT as a third party library will almost
completely do away with all the limitations in the code design due to CINT's unique support for C++, and without these
limitations, the code can be completely revolutionized by actually reusing on demand as development progresses well tested
and well designed classes already written by someone else without either the impediment of having to �gure out how to get
CINT to compile normal C++ code or the impediment of having to just write the class yourself.

3.3 Summary

The �reu.C� macro now automates many tedious analysis chores, and room for further development of the macro's design
and capabilities is wide open. Using this macro, tests of the VDCs as they are built should be able to happen in faster
times than before.

15

