Parity-Violating Electron Scattering at JLab

David S. Armstrong College of William & Mary

> (replacing Juliette Mammei, who kindly provided most of the slides)

e

Parity-Violating Electron Scattering at JLab

Electroweak interaction (neutral current)

- not one of the *canonical* probes for Hadron Physics (*i.e.* strong or electromagnetic)

- nevertheless, much of the program should be of interest to this community

-Focus today:

- new results since MENU2010
- plans for 12 GeV era at Jefferson Lab

Outline

- 1) Intro to Parity-Violating Electron Scattering (PVES)
- 2) The Vector Strange Form Factors $a \approx completed program$
- 3) Qweak: first results on the proton's weak charge
- 4) Neutron radius in Heavy Nuclei
- 5) Standard Model Tests with PVES: plans at JLab-12 GeV

1) Search for physics Beyond the Standard Model

 Low energy (Q² << M²) precision tests complementary to high energy measurements

- Neutrino mass and their role in the early universe $0\nu\beta\beta$ decay, θ_{13} , β decay,...
- Matter-antimatter asymmetry in the present universe EDM, DM, LFV, $0\nu\beta\beta$, θ_{13}
- Unseen Forces of the Early Universe

0vββ decay, $θ_{13}$, β decay,... EDM, DM, LFV, 0vββ, $θ_{13}$ Weak decays, **PVES**, g_u -2,...

LHC new physics signals likely will need additional indirect evidence to pin down its nature

- **Neutrons:** Lifetime, P- & T-Violating Asymmetries (LANSCE, NIST, SNS...)
- **Muons:** Lifetime, Michel parameters, g-2, Mu2e (PSI, TRIUMF, FNAL, J-PARC...)
- **PVES:** Low-energy weak neutral current couplings, precision weak mixing angle (SLAC, Jefferson Lab, Mainz)

new since MENU2010: first result from QWeak

2) Study nucleon and nuclear properties

- Strange quark content of nucleon *new since MENU2010: HAPPEX-III*
- Neutron radius of heavy nuclei new since MENU2010 first PREx results

A brief history of parity violation

1930s – weak interaction needed to explain nuclear β decay

late 1970s – parity violation observed in electron scattering - SLAC E122

Parity-violating electron scattering

SLAC Experiments

SLAC E122 – crucial confirmation of WSG electroweak model

- Electron-deuteron deep inelastic scattering
- High luminosity: photoemission from NEA GaAs cathode
- Rapid helicity-flip (sign of e- polarization)
- Polarimetry to determine beam polarization
- Magnetic spectrometer: backgrounds and kinematic separation

SLAC E158 – 1999

- electron-electron scattering purely leptonic interaction
- electron-electron weak attractive force had never been measured!

 $A_{PV} \sim -131 \pm 14 \pm 10 \text{ ppb}$ $\sin^2 \theta_W = 0.2403 \pm 0.0013$

A_{PV} ~ 100 ± 10 ppm

 $\sin^2\theta_{W} = 0.20 \pm 0.03$

Genesis of a Strange Idea

 $P = uud + u\overline{u} + d\overline{d} + s\overline{s} + g + \dots$

Puzzle: Initial DIS measurements of spin-structure of nucleon (EMC): valence quarks contribute unexpectedly low fraction to total spin - "Spin Crisis"

Possible reconciliation: large fraction of spin from \overline{ss} ? eg. D. B. Kaplan and A. Manohar, Nucl. Phys. B310, 527 (1988).

Theoretical realization: not only did many available nucleon model calculations allow this, but they also allowed (and in some cases *favored*) large strange quark contributions to *other* properties of nucleon.

Consternation and excitement: at the time, data gave no constraint on strange contributions to charge distribution and magnetic moment!

Challenge: how to isolate strange vector form factors?

Answer: exploit the weak neutral current as a probe

strange quark contribution

Define the nucleon form factors associated with a given quark current q as:

Assume isospin symmetry, and we have

this
and this
are well known
(Assume neutral weak charges are known)
(Assume neutral weak charges are known)
$$\begin{pmatrix} G_{E,M}^{\gamma,p} \\ G_{E,M}^{\gamma,n} \\ G_{E,M}^{\gamma,n}$$

Nucleon Form Factors

NC and EM probe same hadronic flavor structure, with different couplings:

$$G_{E/M}^{\gamma} = \frac{2}{3} G_{E/M}^{u} - \frac{1}{3} G_{E/M}^{d} - \frac{1}{3} G_{E/M}^{s}$$
$$G_{E/M}^{Z} = \left(1 - \frac{8}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{u} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{s}$$

Assume Charge Symmetry:

$$G_{E/M}^{p,u} = G_{E/M}^{n,d}, \quad G_{E/M}^{p,d} = G_{E/M}^{n,u}, \quad G_{E/M}^{p,s} = G_{E/M}^{n,s}$$

Strange Form Factors

Qweak: Proton's weak charge

 Q^p_W -Neutral current analog of electric charge:

The Standard Model makes a firm prediction of Q_W^p

	EM Charge	Weak Charge	
u	2/3	$1-\frac{8}{3}sin^2(\theta_w)\approx 0.38$	"Accidental suppression" →sensitivity to new physics
d	-1/3	$-1 + \frac{4}{3}sin^2(\theta_w) \approx -0.69$	
P (uud)	+1	$1 - 4 \sin^2(\theta_w) \approx 0.07$	Note: $Q_W^n = -1$
N (udd)	0	-1	

Q-weak is particularly sensitive to the quark vector couplings (C_{1u} and C_{1d}).

 $Q_W^p = -2(2C_{1u} + C_{1d})$ $Q_W^n = -2(C_{1u} + 2C_{1d})$

MENU 2013

Qweak: Proton's weak charge

For electron-quark scattering:

$$A_{PV} = \frac{G_F Q^2}{4\pi\alpha} (g_A^e g_V^i + \beta g_V^e g_A^i)$$
$$Q_W^p = -2(2C_{1u} + C_{1d})$$

Use four-fermion contact interaction to parameterize the effective PV electronquark couplings (mass scale and coupling)

New physics:

$$\sigma \propto |M_{\gamma} + M_{\rm Z} + M_{\rm new}|^2$$
$$\sim |M_{\gamma}|^2 + 2M_{\gamma}M_{\rm Z}^* + 2M_{\gamma}M_{\rm new}^*$$

new Z', leptoquarks, SUSY ...

Planned 4% measurement of proton's weak charge - probes TeV scale new physics

Α

 $C_{1i} \equiv 2g_A^e g_V^i$

Small θ

e, N

e, N

$$\frac{\Lambda}{g} \sim \left(\sqrt{2}G_F \Delta Q_W^p\right)^{-\frac{1}{2}} \sim O(\text{TeV})$$

 $C_{2i} \equiv 2g_V^e g_A^i$

Large θ

 $g.G_F$

e,N

Erler, Kurylov, and Ramsey-Musolf, PRD 68, 016006 2003

Extracting the weak charge

The previous strange form factor program (experiments at MIT/Bates, JLab and MAMI) allow us to subtract our hadronic contribution

The Qweak Apparatus

The C_{1q} & the neutron's weak charge

Combining this result with the most precise atomic parity violation experiment we can also extract, for the first time, the neutron's weak charge:

$$Q_W^n = -0.975 \pm 0.010$$

 $Q_W^n(SM) = -0.9890$

Qweak – first result

First result (4% of data set): $A_{PV}^{p} = -279 \pm 35(stat) \pm 29 (sys) \text{ ppb}$ $\langle Q^{2} \rangle = 0.0250 \pm 0.0006 \text{ GeV}^{2}$ The weak charges $Q_{W}^{p} = 0.064 \pm 0.012$ $Q_{W}^{p}(SM) = 0.0710$ $Q_{W}^{n} = -0.975 \pm 0.010$ $Q_{W}^{n}(SM) = -0.9890$

Lots of work to push down systematic errors, but no show-stoppers found....

Expect final result in 12-18 months time.

More details: Fundamental Symmetries 3, this afternoon

Qweak has data (under analysis) on a variety of observables of potential interest for Hadron physics:

- Beam normal single-spin asymmetry* for elastic scattering on proton
- Beam normal single-spin asymmetry for elastic scattering on ²⁷Al
- PV asymmetry in the $N \rightarrow \Delta$ region.
- Beam normal single-spin asymmetry in the $N \rightarrow \Delta$ region.
- Beam normal single-spin asymmetry near W= 2.5 GeV
- Beam normal single-spin asymmetry in pion photoproduction
- PV asymmetry in inelastic region near W=2.5 GeV (related to γZ box diagrams)
- PV asymmetry for elastic/quasielastic from ²⁷Al
- PV asymmetry in pion photoproduction

*: *aka* vector analyzing power *aka* transverse asymmetry; generated by imaginary part of two-photon exchange amplitude (*pace* Wim van Oers)

Neutron skin – PREx

Exploit the large weak charge of neutron to extract radius of neutron distribution in heavy nucleus; theoretically clean probe.

²⁰⁸Pb

E+M charge

Neak charge

4

r (fm)

Proton

Neutron

2

0.1

0.08

Density (fm⁻³) 90'0

0.02

0

MENU 2013

PREX, PREX II and CREX

 $R_n - R_p = 0.33 \stackrel{+0.16}{_{-0.18}}$

 ^{208}Pb more closely approximates infinite nuclear matter The ^{48}Ca nucleus is smaller, so A_{PV} can be measured at a Q² where the figure of merit is higher

 R_n^{208} and R_n^{48} are expected to be correlated, but the correlation depends on the correctness of the models

The structure of ⁴⁸Ca can be addressed in detailed microscopic models

Measure both R_n^{208} and R_n^{48} - test nuclear structure models over a large range of A

More info: yesterday's talks by G. Urcioli and M. Thiel in Fundamental Symmetries 2

Future: PVES at JLab in 12 GeV era

- MOLLER precision Standard Model test by measuring weak charge of electron in PV electron-electron scattering (revisit SLAC E158)
- SOLID precision Standard Model test by measuring PV DIS on deuteron: access the quark weak axial couplings C_{2a}

(also – a similar measurement was made at 6 GeV in Hall A at Jefferson Lab, X. Zheng et al., being readied for publication, but I'm not authorized to show the results; stay tuned...)

Large kinematic coverage: disentangle CSV and higher-twist effects

Doubly-charged scalar, heavy Z', SUSY, dark Z...

Lepton compositeness – strong coupling – 47 TeV

MOLLER and weak mixing angle

Reminder: at tree-level $Q_w^e = (1 - 4 \sin^2 \theta_w)$

LHC events

100

M_н [GeV]

10/2/2013

0.235

0.234

0.233

0.232

0.231

0.23

0.229

0.228

0.227

=

APV .

E158

A_{FB}(b) T

MOLLER A_{LR}(had)

1000

The MOLLER Experiment

$$C_{1q} = (g_{RR}^{eq})^2 + (g_{RL}^{eq})^2 - (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2$$
$$C_{2q} = (g_{RR}^{eq})^2 - (g_{RL}^{eq})^2 + (g_{LR}^{eq})^2 - (g_{LL}^{eq})^2$$

 $C_{2u} = -\frac{1}{2} + 2 \sin^2 \theta_W \approx -0.04$

= $\frac{1}{2}-2\sin^2\theta_W \approx 0.04$

MENU 2013

Red ellipses are PDG fits

Blue bands represent expected data: Qweak (left) and PVDIS--6GeV (right)

Green bands are proposed SOLID PVDIS

SOLID – Large Acceptance Device

Moderate running times

- Large Acceptance
- High Luminosity on LH2 & LD2
- Better than 1% errors for small bins
- Kinematics:
- Large Q² coverage
- x-range 0.25-0.75
- $-W^{2} > 4 \text{ GeV}^{2}$

- Requirements:
- Solenoid contains low energy backgrounds (Møller, pions, etc)
- Baffling to cut backgrounds
- Trajectories measured after baffles
- Fast tracking—GEM, particle ID, calorimetry, and pipeline electronics
- Precision polarimetry (0.4%) Compton and atomic hydrogen Moller

SOLID – Parity-Conserving Physics

- SIDIS with Transversely Polarized 3He approved 90 days
- SIDIS with Longitudinally Polarized 3He approved 35 days
- SIDIS with Transversely Polarized Proton approved 120 days
- Near Threshold Electroproduction of J/Psi approved 60 days

PVDIS approved for 169 days (half of full request)

PVES Experiment Summary

Summary

- Strange vector form factors of proton small, consistent with zero.
- Qweak: First measurement of proton's weak charge, consistent with Standard Model, 25x more data on tape
- PREx: two-sigma evidence for neutron "skin" of ²⁰⁸Pb; will improve after JLab comes online after 12 GeV upgrade, and will extend to ⁴⁸Ca
- MOLLER and SOLID: major programs after JLab upgrade two complementary Standard Model tests.

Grazie to the MENU 2013 organizers for inviting Juliette Mammei to give this talk, and for accepting me as a poor substitute....