Experiences from Q_{weak}

Physics Beyond the Standard Model and Precision Nucleon Structure Measurements with Parity-Violating Electron Scattering ECT*, Trento August 1 2016

08/01/2016

Caveat Emptor

What this talk is not:

- Detailed motivation/theory review for the Q_{weak} experiment
- No new physics result: we are not ready to unblind (yet)

What this talk is:

- Review of some of important experimental issues & where the analysis stands
- Emphasis on topics that were unexpected and/or relevant for future PVES measurements
- My own (personal) choice of emphasis

Weak Charge

Electroweak Lagrangian → Parity-Violating electron-quark term:

$$\mathcal{L}_{PV}^{EW} = \frac{G_F}{\sqrt{2}} \left[g_A^e(\bar{e}\gamma_\mu\gamma_5 e) \cdot \sum_q g_V^q(\bar{q}\gamma^\mu q) + g_V^e(\bar{e}\gamma_\mu e) \cdot \sum_q g_A^q(\bar{q}\gamma^\mu\gamma_5 q) \right]$$
$$C_{1q} = 2g_A^e g_V^q$$

$$A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{2M^*_{EM}M_{Weak}}{|M_{EM}|^2} \qquad {\rm For \ for$$

For forward angle scattering at low
$$Q^2$$
:
 A_{PV} accesses Q^p_W

Extracting the Weak Charge

Previous experiments (strange form factor program: SAMPLE, HAPPEX, GO, PVA4) explored hadron structure; allow subtraction of hadronic contribution

First result

Q_{weak} ran from Fall 2010 – May 2012 (Hall C at JLab)

Four distinct running periods:

- Hardware checkout (Fall 2010-January 2011)
- Run 0 (Jan-Feb 2011)
- Run 1 (Feb May 2011)
- Run 2 (Nov 2011 May 2012)

We have completed and unblinded the analysis of "Run 0" (about 1/25th of our total dataset).

D. Androic et al. Phys. Rev. Lett. 111 (2013)141803.

$$A_{PV}^{p} = -279 \pm 35(stat) \pm 29(sys)$$
 ppb

 $\langle E_{beam} \rangle = 1155 \text{ MeV}$

 $\langle Q^2 \rangle = 0.0250 \pm 0.0006 \,\,{\rm GeV^2}$

 $\theta_{eff} = 7.90$ °

Good agreement with Standard Model prediction

In this talk, I focus on the Run 1 & Run 2 data

Armstrong ECT*

Meeting PVES Challenges

- 180 µA beam current (JLab record)
- High power cryogenic target
- Rapid helicity reversal (960 Hz)
- Small scattering angle: toroidal magnet, large acceptance
- GHz detected rates: data-taking in integrating mode
- Radiation hard detectors
- Low noise 18-bit ADCs
- Exquisite control of helicity-correlated beam parameters
- Four different kinds of helicity reversal:
 - Rapid (Pockels cell at source)
 - Slow (insertable $\lambda/2$ plate)
 - Ultra slow (Wien-reversal, g-2 spin flip)
- Two independent high-precision beam polarimeters
- High resolution Beam Current monitors
- Dedicated Tracking system for kinematics determination

The Q_{weak} Apparatus

Main Detectors

Main detectors

Toroidal magnet focuses elastic electrons onto each bar

- 8 Quartz Cerenkov bars
- Azimuthal symmetry maximizes rates & reduces systematic uncertainties
- 2 cm lead pre-radiators: a) reduce soft backgrounds discovered in commissioning

b) boost signal size (but cost to energy resolution)

(see Michael Gericke's talk)

Close up of one detector in situ

Measured

Hydrogen Target

Target boiling might have

been problematic!

35 cm, 2.5 kW liquid hydrogen target (world's highest power cryotarget) Designed using Computational Fluid Dynamics (see Silviu Covrig's talk)

- Temperature ~20 K
- Pressure: 30-35 psia
- Beam at 150 180uA 🗲

960 Hz helicity reversal rate (240 Hz quartets)

 $1/960 \text{ Hz} = 1042 \,\mu\text{s}$ settling time after reversal: $112 \,\mu\text{s}$ integration time: $928 \,\mu\text{s}$ (89% live)

LH2 statistical width (per quartet):

- Counting statistics: 200 ppm
- Main detector resolution: 92 ppm
- BCM width: 50 ppm
- Target noise/boiling: 37 ppm

Redundant, low-noise Beam Current Monitors essential (see Mark Pitt's talk)

Beam Polarimetry

Originally, was expected to be largest systematic uncertainty

Møller polarimeter $(\vec{e} + \vec{e} \rightarrow e + e)$

- Precise, but invasive
- Thin, polarized Fe target
- Brute force polarization
- Limited to low current

Compton polarimeter $(\vec{e} + \gamma \rightarrow e + \gamma)$

- Installed for Q-weak
- Runs continuously at high currents
- Statistical precision: 1% per hour
- Electron Detector: Diamond strips

Detect *both* recoil electron and photon.

Beam Polarimetry

Good agreement between Møller & Compton (electron detector)

Compton photon detector: issues with PbWO₄ calorimeter (afterglow?) Systematics:

- Compton (E_{det}) : $\Delta P/P = 0.42\%$
- Møller: $\Delta P/P = 0.65\%$

Combined Total: $\Delta P/P = 0.61\%$ (systematics + statistics + scaling)

(see Bob Michaels' talk)

Compton: A. Narayan et al, Phys. Rev. X 6.011013 (2016) 11

Armstrong ECT*

Helicity-Correlated Beam Parameters

- Beam Intensity asymmetry: active (≈ 60 s scale) feedback system (Pockels cell voltage)
- Careful alignment of Pockels cell in source essential:
 - \rightarrow smallest position differences after photocathode yet seen at JLab
- Did not (generally) benefit from "kinematic damping": $X, X' \propto \sqrt{\frac{p_0}{p}}$ (theoretical reduction factor ~60)
- Mis-matched beam transport distorts phase-space ellipse
- One time, we devoted significant time to allow good "matching": did see suppression of helicity-correlated differences

Parameter	Max run-averaged HC value	$\operatorname{Run1}(\operatorname{Modulationset})$	$\operatorname{Run2}(\operatorname{Modulationset})$
Beam intensity	$\langle A_Q \rangle < 10^{-7}$	$-5.0 \pm 2.9 \; (10^{-8})$	$2.8 \pm 1.4 \; (10^-8)$
Beam energy	$\langle \Delta E/E \rangle \le 10^{-9}$	$-2.0\pm0.3~(10^{-}9)$	$0.36 \pm 0.18 \; (10^-9)$
Beam position	$egin{array}{lll} \langle \Delta X angle < 2 \ { m nm} \ \langle \Delta Y angle < 2 \ { m nm} \end{array}$	$1.6 \pm 1.2 \mathrm{nm} \ -6.3 \pm 0.9 \mathrm{nm}$	$2.2\pm0.9\mathrm{nm}$ $0.2\pm0.4\mathrm{nm}$
Beam angle	$\langle \Delta \theta_X angle < 30 \text{ nrad} \\ \langle \Delta \theta_Y angle < 30 \text{ nrad}$	-0.15 ± 0.04 nrad 0.04 ± 0.04 nrad	-0.05 ± 0.02 nrad -0.05 ± 0.01 nrad

(see Arne Freyberger's and Caryn Palatchi's talks)

Armstrong ECT*

Helicity-Corrector Magnets

- Set of fast pulsed magnets (5 MeV region of injector)
- Kick beam trajectory with helicity (position and angle)
- Measured response at target: stable, as long as accelerator tune unchanged
- "grad student feedback" (daily)

ΔX and ΔY position differences

No need for different size kicks for different IWHP (slow flip) states: Good setup of polarized source

Helicity magnets used for much of our 2nd run.

Helicity-Correlated Beam Parameter Sensitivities

 $A_{beam} = \sum_{i} \frac{\partial A}{\partial \chi_{i}} \Delta \chi_{i}$ where *i* runs over x,y,x'(angle),y'(angle), and energy.

Need to determine the sensitivities:

Natural: Linear

regression of natural beam motion

Driven: Drive sinusoidal beam oscillations with large amplitude

Run2 measured asymmetry

Armstrong ECT*

Beamline Background

Concern: Small-angle scattered beam interacting with downsteam beamline components ∴ small-aperture W-Cu "beam collimator" (1.6 kW deposited power)

Beamline Background: Halo

Beam Halo:

- measured beam outside of 13 mm diameter (intrinsic beam spot 150 μ m)

- typically 10^{-7} to 10^{-6} of beam, but varied up to 10^{-3} in uncontrolled manner.
- could interact in beam collimator, generating backgrounds in Main Detector

Measured directly by blocking signal electrons at primary collimator: Typical background yield: 0.2% of signal

But: Halo had helicity-correlated component (position and/or intensity)

Large halo asymmetry (up to 20 ppm) scaled down by small fraction (0.2%)

Was largest systematic error in our "Run 0" published result (23 ppb).

Causes helicity-correlated beam sensitivities measured using linear regression to be unstable and to differ from the (stable) sensitivities measured using driven beam motion.

Beamline Background: Monitors

Beamline Background: Correlations

Asymmetries from different background detectors highly correlated

study.

3) Using correlation slope and background detector asymmetry, make corrections

08/01/2016

Beamline Background: Corrections

Correcting for beamline background improves statistical consistency of data (correction size: 3.6 ppb)

Armstrong ECT*

Secondary Scattering

- Spin precession of scattered electron in QTor magnet: some transverse polarization P_T
- P_T analyzed by scattering in Pb pre-radiators \rightarrow transverse asymmetry in detectors: opposite sign in the two PMTs (+ &) in each detector

$$A_{diff} = A_{+} - A_{-}$$
 Parity Signal = $\frac{A_{+} + A_{-}}{2}$: Effect cancels to first order

- Analyzing power in Pb:
 - 1. Beam-normal single spin asymmetry (high energy): 2γ exchange
 - 2. Mott scattering (low energy in shower)

 A_{diff} is of same scale (hundreds of ppb) as A_{PV}

Secondary Scattering

- This transverse asymmetry couples with position & angle dependence of optical response of detectors
- Any non-cancellation between + and PMTs: detector imperfections & nonsymmetric flux distributions
- Optical properties and flux distributions measured with tracking system
- Quantifying any non-cancellation with detailed GEANT 4 simulation
- Any non-cancellation likely averages down in the 8 independent detectors

Last significant systematic uncertainty to quantify before we unblind

Target Windows

Background from detected electrons that scattered from thin Aluminum entrance and exit windows:

- 1. Measure \approx 1600 ppb asymmetry from thick dummy target (identical Al alloy).
- 2. Precisely measure that \approx 2.8% "dilution" from windows.
- Net correction is $\approx 25\%$ of hydrogen signal

Aluminum Parity-Violating Asymmetry

Two kinds of slow flips: IHWP at source (IN/OUT) and Wien filter

Statistical error: 4.3% Systematic error: 0.7%

Plan to extract the ²⁷Al elastic asymmetry, Theoretical support from Chuck Horowitz.

Target Windows

Dilution:

- Reduce beam current to $< 1 \, \mu A$
- "Counting mode" measurement of rates from empty target and full IH₂ target
- Simulation to account for radiative effects on window signal due to hydrogen

At present dilution uncertainty 2.8% (relative). Errors shared equally between:

- BCM calibration
- Detector deadtime (unexpectedly large)
- Simulation

Working on an alternate approach that essentially eliminates the first two of these. Uses low-density IH_2 gas target data. Challenge is density determination.

Radiative Corrections to Asymmetry:

 Simulation to account for small (8%) kinematic shift in asymmetry for upstream Al window, due to presence of IH₂

Net target window correction: 5% relative error (on 25% correction): 1.2% error, dominated by statistics on Al asymmetry determination

Kinematics (Q^2) determination

To determine Q^2 , we go to "tracking" mode:

- Currents ~ 50 pA
- Use Vertical + Horizontal Drift Chambers
- Reconstruct individual scattering events

Correct for radiative effects in target with Geant 4 simulations, benchmarked with gas-target & solid target studies

One challenge: no beam position monitors at 50 pA

 $A_{PV} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \{Q_w^p + B(\theta, Q^2)Q^2\}$

Lessons Learned Summary

Secondary scattering from pre-radiators

Helicity-correlated halo (leading to beamline background)

- need "blocked octant" capability
- multiple background detectors
- generated in injector?

Accelerator Optics matching (kinematic damping)

Helicity magnets

Driven Beam modulation not just linear regression of natural beam motion

- coupling of driven modulation and accelerator feedback systems

Wien reversal – not as passive as one would like

Redundant polarimetry

BCMs and BPMs for low current: tracking, dilution measurements

Detector Deadtime (dilution)

Target – great success (need rapid helicity reversal – Pockels cell settling time)

Error Summary

- Final result will be statistics-limited 25× as much data as Run 0 result
- One remaining systematic error to nail down: secondary scattering effect
- Other leading systematics (in order of decreasing size):
 - Q² calibration
 - Target Window (Aluminum) asymmetry
 - Beamline Background
 - Target Window (dilution)
 - Polarimetry

Anticipate unblinding the result in a few months.

Reduced Asymmetry

Reduced Asymmetry

4% of total data

The C_{1q} & the neutron's weak charge

Combining this result with the most precise atomic parity violation experiment we also extract, for the first time, the neutron's weak charge:

$$Q_W^n = -0.975 \pm 0.010$$

 $Q_W^n(SM) = -0.9890$

"Teaser"

"Teaser"

A suite of Auxiliary Measurements

Q_{weak} has data (under analysis) on a variety of observables of potential interest for Hadron physics:

- PV asymmetry for elastic/quasielastic from ²⁷Al
- Beam normal single-spin asymmetry* for elastic scattering on proton
- Beam normal single-spin asymmetry for elastic scattering on ²⁷Al & ¹²C
- PV asymmetry in the $N \rightarrow \Delta$ region.
- Beam normal single-spin asymmetry in the $N \rightarrow \Delta$ region.
- Beam normal single-spin asymmetry near W= 2.5 GeV
- Beam normal single-spin asymmetry in pion photoproduction
- PV asymmetry in inelastic region near W=2.5 GeV (related to γZ box diagram)
- PV asymmetry in pion photoproduction

*: *aka* vector analyzing power *aka* transverse asymmetry; generated by imaginary part of two-photon exchange amplitude

Q_{weak} Collaboration

97 collaborators23 grad students10 post docs23 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University
- ⁷ Christopher Newport University
- ⁸ University of Manitoba,
- ⁹ University of Virginia
- ¹⁰ TRIUMF
- ¹¹ Hampton University
- ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,⁷ J. Birchall,⁸ R.D. Carlini,^{5,2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk,⁸ J.M. Finn,² T. Forest,^{15, 16} D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,² A.R. Lee,¹³ J.H. Lee,^{6, 2} L. Lee,¹⁰ S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,¹³, J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵ P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19,8} B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ and S. Zhamkochyan³

Summary

First result (4% of data set):

 $A_{PV} = -279 \pm 35(stat) \pm 29(sys) \text{ ppb}$

The weak charges: $Q_W^p = 0.064 \pm 0.012$ $Q_W^p(SM) = 0.0710$ $Q_W^n = -0.975 \pm 0.010$ $Q_W^n(SM) = -0.9890$

Expect final result in a few months.

Will be statistics-dominated.