Parity-Violating Electron Scattering on

 Hydrogen and Deuterium at Backward Angles: GO ExperimentDavid S. Armstrong
College of William \& Mary

For the GO Collaboration

WILLIAM © MARY

PAVI 09 Bar Harbor MA
June 22-26 2009
Jefferson Lab

Outline

- Parity violation in electron scattering
- Vector Strange Form Factors: G_{E}^{s} and G_{M}^{s}
- Experimental Effort
- Results from GO at backward angles:
- Separated form factors at $Q^{2}=0.23,0.63(\mathrm{GeV} / \mathrm{c})^{2}$
- Other physics results
- Implications \& Conclusions
"There is no excellent beauty that hath not some strangeness in the proportion" Francis Bacon 1561-1626

Strangeness in the nucleon

$$
\text { - } P=u u d+\underbrace{u \bar{u}+d \bar{d}+s \bar{s}+g+\ldots . .}_{<\text {sea» }}
$$

- s quark: clean candidate to study the sea
- How much do virtual $s \bar{S}$ pairs contribute to the structure of the nucleon?

Momentum : 4\% (DIS)
Spin : 0 to -10\% (polarized DIS)
Mass : 0 to 30% ($\pi \mathrm{N}$-sigma term)
(significant uncertainties on the latter two)
also: OZI violations in $p \bar{p} \rightarrow \frac{\phi \gamma}{\omega \gamma}$
Goal: Determine the contributions of the strange quark sea ($S \bar{S}$) to the charge and magnetization distributions in the nucleon:

Vector "strange form factors": $G^{s}{ }_{E}$ and $G^{s}{ }_{M}$

Parity Violating Electron Scattering \Rightarrow Weak NC Amplitudes

Interference: $\sigma \sim\left|M^{E M}\right|^{2}+\left|M^{N C}\right|^{2}+2 \operatorname{Re}\left(M^{E M^{*}}\right) M^{N C}$
$\left.\begin{array}{l}\text { Interference with EM } \\ \text { amplitude makes Neutral } \\ \text { Current (NC) amplitude }\end{array}\right) A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \sim \frac{\left|M_{P V}^{N C}\right|}{\left|M^{E M}\right|} \sim \frac{Q^{2}}{\left(M_{Z}\right)^{2}}$ accessible

Nucleon Form Factors

Adopt Sachs FF:

$$
G_{E}^{\gamma}=F_{1}^{\gamma}+\tau F_{2}^{\gamma}
$$

$$
G_{M}^{\gamma}=F_{1}^{\gamma}+F_{2}^{\gamma}
$$

(Roughly: Fourier transforms of charge and magnetization)
NC and EM probe same hadronic flavor structure, with different couplings:

$$
\begin{gathered}
G_{E / M}^{\gamma}=\frac{2}{3} G_{E / M}^{u}-\frac{1}{3} G_{E / M}^{d}-\frac{1}{3} G_{E / M}^{s} \\
G_{E / M}^{Z}=\left(1-\frac{8}{3} \sin ^{2} \theta_{W}\right) G_{E / M}^{u}-\left(1-\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E / M}^{d}-\left(1-\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E / M}^{s}
\end{gathered}
$$

$G_{E / M}$ provide an important benchmark for testing non-perturbative QCD structure of the nucleon

Charge Symmetry

One expects the neutron to be an isospin rotation of the proton*:

$$
G_{E / M}^{p, u}=G_{E / M}^{n, d}, \quad G_{E / M}^{p, d}=G_{E / M}^{n, u}, \quad G_{E / M}^{p, s}=G_{E / M}^{n, s}
$$

$$
\begin{aligned}
& G_{E / M}^{\gamma, P}=\frac{2}{3} G_{E / M}^{u}-\frac{1}{3} G_{E / M}^{d}-\frac{1}{3} G_{E / M}^{s} \longrightarrow G_{E / M}^{\gamma, n}=\frac{2}{3} G_{E / M}^{d}-\frac{1}{3} G_{E / M}^{u}-\frac{1}{3} G_{E / M}^{s}
\end{aligned}
$$

$$
A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \propto \frac{M_{Z} M_{\gamma}}{\left|M_{\gamma}\right|^{2}}=-\frac{G_{F} Q^{2}}{\sqrt{2} \pi \alpha} \mathrm{~F}\left(G_{E / M}^{p}, G_{E / M}^{n}, G_{E / M}^{s}, G_{A}\right)
$$

*recent work: B. Kubis \& R. Lewis Phys. Rev. C 74 (2006) 015204

Isolating individual form factors: vary kinematics or target
For a proton:

$$
A=\left[\frac{-G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}}\right] \frac{A_{E}+A_{M}+A_{A}}{\sigma_{p}} \quad \sim \text { few parts per million }
$$

$$
\begin{gathered}
A_{E}=\varepsilon G_{E}^{p} G_{E}^{Z}, \quad A_{M}=\tau G_{M}^{p} G_{M}^{Z}, \quad A_{A}=-\left(1-4 \sin ^{2} \theta_{W}\right) \varepsilon^{\prime} G_{M}^{p} G_{A}^{e} \\
\quad \text { Forward angle Backward angle } \\
G_{E, M}^{Z}=\left(1-4 \sin ^{2} \theta_{W}\right)\left(1+R_{V}^{p}\right) G_{E, M}^{p}-\left(1_{3}+R_{V}^{n}\right) G_{E, M}^{n}-G_{E, M}^{s} \\
G_{A}^{e}=-\tau_{3}\left(1+R_{A}^{T=1}\right) G_{A}+\sqrt{3} R_{A}^{T=0} G_{A}^{8}+\Delta s
\end{gathered}
$$

For ${ }^{4} \mathrm{He}: \mathrm{G}_{\mathrm{E}}{ }^{\text {s }}$ alone

$$
A_{P V}=\frac{G_{F} Q^{2}}{\pi \alpha \sqrt{2}}\left[\sin ^{2} \theta_{W}+\frac{G_{E}^{s}}{2\left(G_{E}^{p}+G_{E}^{n}\right)}\right]
$$

For deuteron:
enhanced $G_{A}{ }^{e}$ sensitivity

$$
A_{d}=\frac{\sigma_{p} A_{p}+\sigma_{n} A_{n}}{\sigma_{d}}
$$

Theoretical Approaches to Strange Form Factors

Models - a non-exhaustive list:

kaon loops, vector dominance, Skyrme model, chiral quark model, dispersion relations, NJL model, quark-meson coupling model, chiral bag model, HBChPT, chiral hyperbag, QCD equalities, ...

- no consensus on magnitudes or even signs of G_{E}^{s} and G_{M}^{s} !

Only model-independent statement: $\quad G_{E}^{s}\left(\mathrm{Q}^{2}=0\right)=0$
a challenging problem in non-perturbative QCD

What about QCD on the lattice?

- Dong, Liu, Williams PRD 58(1998)074504
- Lewis, Wilcox, Woloshyn PRD 67(2003)013003
- Leinweber, et al. PRL 94(2005) 212001; PRL 97 (2006) 022001
- Loi, et al. arXiv:0903:3232 [hep-ph]

Strangeness Models

The Axial Current Contribution

- Recall: $A^{P V} \propto \frac{A_{E}+A_{M}+A_{A}}{2 \sigma_{u n p}}$

$$
\begin{aligned}
& A_{E}=\varepsilon(\theta) G_{E}^{\gamma} G_{E}^{Z}, A_{M}=\tau G_{M}^{\gamma} G_{M}^{Z} \\
& A_{A}=-\left(1-4 \sin ^{2} \theta_{W}\right) \varepsilon^{\prime}(\theta) G_{M}^{\gamma} G_{A}^{e} \\
& \quad G_{A}^{e}=-\tau\left(1+R_{A}^{T=1}\right) G_{A}+\sqrt{3} R_{A}^{T=0} G_{A}^{8}+\Delta s
\end{aligned}
$$

- Effective axial form factor: $G_{A}{ }^{e}\left(Q^{2}\right)$
- related to form factor measured in neutrino scattering
- also contains "anapole"form factor
- determine isovector piece by combining proton and neutron (deuteron) measurements

"quark pair"

Parity-Violating Electron Scattering Program

Expt/Lab	Target/ Angle	$\begin{aligned} & Q^{2} \\ & \left(\mathrm{GeV}^{2}\right) \end{aligned}$	$A_{\text {phys }}$ (ppm)	Sensitivity	Status
SAMPLE/Bates					
SAMPLE I	$\mathrm{LH}_{2} / 145$	0.1	-6	$\mu_{\mathrm{s}}+0.4 \mathrm{G}_{\mathrm{A}}$	2000
SAMPLE II	$\mathrm{LD}_{2} / 145$	0.1	-8	$\mu_{\mathrm{s}}+2 \mathrm{G}_{\mathrm{A}}$	2004
SAMPLE III	$\mathrm{LD}_{2} / 145$	0.04	-4	$\mu_{s}+3 \mathrm{G}_{\mathrm{A}}$	2004
HAPPEx/JLab					
HAPPEx	$\mathrm{LH}_{2} / 12.5$	0.47	-15	$\mathrm{G}_{\mathrm{E}}+0.39 \mathrm{G}_{\mathrm{M}}$	2001
HAPPEx II, III	$\mathrm{LH}_{2} / 6$	0.11	-1.6	$\mathrm{G}_{\mathrm{E}}+0.1 \mathrm{G}_{\mathrm{M}}$	2006, 2007
HAPPEx He	${ }^{4} \mathrm{He} / 6$	0.11	+6	G_{E}	2006, 2007
HAPPEx	$\mathrm{LH}_{2} / 14$	0.63	-24	$\mathrm{G}_{\mathrm{E}}+0.5 \mathrm{G}_{\mathrm{M}}$	(2009)
A4/Mainz					
	$\mathrm{LH}_{2} / 35$	0.23	-5	$\mathrm{G}_{\mathrm{E}}+0.2 \mathrm{G}_{\mathrm{M}}$	2004
	$\mathrm{LH}_{2} / 35$	0.11	-1.4	$\mathrm{G}_{\mathrm{E}}+0.1 \mathrm{G}_{\mathrm{M}}$	2005
	$\mathrm{LH}_{2} / 145$	0.23	-17	$\mathrm{G}_{\mathrm{E}}+\eta \mathrm{G}_{\mathrm{M}}+\eta^{\prime} \mathrm{G}_{\mathrm{A}}$	2009
	$\mathrm{LH}_{2} / 35$	0.63	-28	$\mathrm{G}_{\mathrm{E}}+0.64 \mathrm{G}_{\mathrm{M}}$	(2009)
G0/JLab					
Forward	$\mathrm{LH}_{2} / 35$	0.1 to 1	-1 to -40	$\mathrm{G}_{\mathrm{E}}+\eta \mathrm{G}_{\mathrm{M}}$	2005
Backward	$\mathrm{LH}_{2} / \mathrm{LD}_{2} / 110$	0.23, 0.63	-12 to -45	$\mathrm{G}_{\mathrm{E}}+\eta \mathrm{G}_{\mathrm{M}}+\eta^{\prime} \mathrm{G}_{\mathrm{A}}$	2009

Summary of data at $Q^{2}=0.1 \mathrm{GeV}^{2}$

Solid ellipse:
K. Paschke, private comm, [same as J. Liu, et al PRC 76, 025202 (2007)], uses theoretical constraints on the axial form factor

Dashed ellipse:
R. Young, et al.

PRL 97 (2006) 102002, does not constrain G_{A} with theory
note: Placement of SAMPLE band on depends on choice for G_{A}
$\%$ contrib $=\frac{G_{E, M}^{s}}{G_{E, M}^{p}} \times\left(-\frac{1}{3}\right) \times 100$

(thanks to K. Paschke, R. Young)

GO Collaboration

California Institute of Technology, Carnegie Mellon University, College of William and Mary, Grinnell College, Institut de Physique Nucléaire d'Orsay,
Laboratoire de Physique Subatomique et de Cosmologie-Grenoble, Louisiana Tech University, New Mexico State University, Ohio University, Thomas Jefferson National Accelerator Facility, TRIUMF, University of Illinois,

University of Kentucky, University of Manitoba, University of Maryland, University of Winnipeg, University of Zagreb, Virginia Tech, Yerevan Physics Institute

Graduate Students:
C. Capuano (W\&M), A. Coppens (Manitoba), C. Ellis (Maryland), J. Mammei (VaTech), M. Muether (Illinois), J. Schaub (New Mexico State), M. Versteegen (Grenoble); S. Bailey (Ph.D. Jan. 07 W\&M)

Analysis Coordinator: Fatiha Benmokhtar (Maryland \& CMU) Spokesperson: Doug Beck (UIUC)

GO Collaboration

California Institute of Technology, Carnegie Mellon University, College of William and Mary, Grinnell College, Institut de Physique Nucléaire d'Orsay,
Laboratoire de Physique Subatomique et de Cosmologie-Grenoble, Louisiana Tech University, New Mexico State University, Ohio University, Thomas Jefferson National Accelerator Facility, TRIUMF, University of Illinois,

University of Kentucky, University of Manitoba, University of Maryland,
University of Winnipeg, University of Zagreb, Virginia Tech, Yerevan Physics Institute

Grad Students

G^{0}
 (JLab - Hall C)

- Superconducting toroidal magnetic spectrometer
- 16 "Rings" of detectors

Forward angle mode (completed):

- $\mathrm{LH}_{2}: E_{e}=3.0 \mathrm{GeV}$

Recoil proton detection ($52^{\circ}<\theta_{p}<76^{\circ}$) $\stackrel{4}{4} 0.12 \leq \mathrm{Q}^{2} \leq 1.0(\mathrm{GeV} / \mathrm{c})^{2}$

- Counting experiment - separate backgrounds via time-of-flight

GO: Forward-angle results

$G_{E}^{s}=G_{M}^{s}=0$ Hypothesis excluded at 89% C.L.
D.S. Armstrong et al., PRL 95, 092001 (2005)

GO Back Angle Apparatus: schematic

- Polarized electron beam at $362,687 \mathrm{MeV}, \mathrm{I} \sim 20-60 \mu \mathrm{~A}$
- Target: $20 \mathrm{~cm} \mathrm{LH} 2, \mathrm{LD}_{2}$
- Elastic, inelastic scattering at $\sim 108^{\circ}, \Delta \Omega \sim 0.5 \mathrm{sr}$
- Electron/pion separation using aerogel Cerenkov

Back Angle Apparatus

Electron Yields

(quasi) elastic electrons

LH2, 362 MeV

LD2, 687 MeV

LD2, 362MeV

Scaler Counting Problem

- Electronics sorts detector coincidences (CED $;$ and FPD $_{j}$) into separate scaler channels
- FPGA-based system in North American electronics (4 octants)
- Error in FPGA programming, two short ($\sim 3 \mathrm{~ns}$) pulses could be sent to scaler in < 7 ns
- ~ 1% of events have such pulse pairs (worst case)
- Such pulse pairs sometimes cause scaler to drop or add bits
- Detailed simulation of ASIC with propagation delays between (flip flop) elements
- Effect on asymmetry is $<0.01 \mathrm{~A}_{\text {phys }}$
- Test by cutting data
- compare with French octants, and with data after FPGA fixed

Polarized Beam Properties

- 85.8% Polarization*
*(see F. Benmokhtar's talk)
- Polarization reversal: 30 Hz , random quartets (+--+, -++-)
- Slow helicity reversal: $\lambda / 2$ wave plate IN and OUT
- Helicity-correlated properties:

Beam Parameter	Achieved $($ OUT-IN $/ 2$
charge asymmetry	$0.09+/-0.08 \mathrm{ppm}$
x position difference	$-19+/-3 \mathrm{~nm}$
y position difference	$-17+/-2 \mathrm{~nm}$
x angle difference	$-0.8+/-0.2 \mathrm{nrad}$
y angle difference	$0.0+/-0.1 \mathrm{nrad}$
energy difference	$2.5+/-0.5 \mathrm{eV}$
Beam halo (out 6 mm$)$	$<0.3 \times 10^{-6}$

Run Number

Correcting Beam Asymmetries

$$
\mathrm{A}_{\mathrm{raw}}=\mathrm{A}_{\mathrm{det}}-\mathrm{A}_{\mathrm{Q}}+\Sigma_{\mathrm{i}=1,5} \beta_{\mathrm{i}} \Delta \mathrm{x}_{\mathrm{i}}
$$

Determine Slopes from
-natural beam jitter (regression) -beam modulation (coil pulsing)

Independent methods provide a cross-check. Each subject to different systematic errors.

Regression:

- Natural beam motion, measure yield vs. beam parameter
- Simultaneous fit establishes independent sensitivities

Coil Pulsing:

- Induce non-HC beam motion with coils, measure $\mathrm{dS} / \mathrm{d} C_{i}, \mathrm{~d} x_{i} / \mathrm{d} C_{i}$
- Relate slopes to $\mathrm{dS} / \mathrm{d} x_{i}$

Sensitivities $\sim 5 x$ smaller than at forward angle

Correcting Beam Asymmetries

$$
A_{\text {raw }}=A_{\text {det }}-A_{Q}+\Sigma_{i=1,5} \beta_{i} \Delta x_{i}
$$

Determine Slopes from
-natural beam jitter (regression)
-beam modulation (coil pulsing)

Consistent sensitivities from regression and coil pulsing
Net false asymmetry ~ 0.1 ppm

Rate Corrections*

- Counting experiment: must correct yields for Random Coincidences \& Deadtime before calculating asymmetry
- Randoms: small except for 687 MeV LD2 (higher pion rate)
- Direct (out-of-time) measurement
- Deadtime corrections: Simulated complete electronics chain using measured singles rates, etc.

Data set	Correction to Yield (\%)	Asymmetry Correction (ppm)	systematic error (ppm)
H 362	6	0.3	0.06
H 687	7	1.4	0.17
D 362	13	0.7	0.2
D 687	9	6	1.8

*more details: see F. Benmokhtar's talk

Elastic Asymmetries

- Hydrogen, 687 MeV (similar for all target/energy combos)
- Effect of rate, helicity-correlated corrections:

Backgrounds

- Primary background from aluminum target windows
- about 12% of yield for all target/energy combinations
- carries same asymmetry as deuterium (within ~ 2%)
- π^{-}contamination in D at 687 MeV
- 5% contribution (measured), nearly zero asymmetry (measured)
- Hydrogen

$$
A_{e l}=\frac{A_{\text {meas }}-f_{A l} A_{A l}-f_{\text {other }} A_{\text {other }}}{1-f_{A l}-f_{\text {other }}}
$$

- Deuterium:

$$
\begin{gathered}
A_{\text {el }}=\frac{A_{\text {meas }}-f_{\text {pion }} A_{\text {pion }}-f_{\text {other }} A_{\text {other }}}{1-f_{\text {pion }}-f_{\text {other }}} \\
\text { with } \quad f_{\text {other }} \sim 2 \pm 2 \%, A_{\text {other }}=0
\end{gathered}
$$

Backgrounds: Magnetic Field Scans

- Use simulation shapes to help determine dilution factors

Other Corrections to Asymmetries

- Beam normal single-spin asymmetry (transverse asymmetry)
- Any small transverse component in beam polarization + imperfect detector azimuthal symmetry + beam-normal spin asymmetry = false asymmetry
- Measured asymmetry directly with transverse beam \rightarrow see J. Mammei's talk

Net correction < . 01 ppm

- EM radiative corrections [Tsai (1971)]

LH2 687 with Radiation

LH2 687 no Radiation

GEANT: Calculate asymmetry based on kinematics at vertex after radiation, compare to tree level; both calculated after $d E / d x$ in targe \dagger

Tgt/Energy			A_{0} rc	
$\mathrm{A}_{0 \text { tree }}$	$\mathrm{RC}_{\text {correction }}$			
LD2	687	-46.6	-48.43	3.7%
LD2	362	-13.64	-14.17	3.9%
LH2	687	-36.81	-38.22	3.8%
LH2	362	-10.1	-10.49	3.9%

Asymmetry Uncertainties (1)

- Hydrogen, 687 MeV

	Value (ppm)	Stat (ppm)	Sys Pt (ppm)	Sys GI (ppm)	Total (ppm)
Measured Asymmetry	-38.14	2.43			
Background Asymmetry	-38.27		0.40		
		0.47	0.52		
Dilution Correction				0.008	
Transverse Correction					
Rate Correction	-38.39		0.17		
Beam Polarization	-44.76		0.52	0.53	
EM Radiative Correction	-46.14		0.16		
Physics Asymmetry	-46.14	2.43	0.84	0.75	2.68

Asymmetry Uncertainties (2)

- Deuterium, 687 MeV

	Value (ppm)	$\begin{array}{\|c} \text { Stat } \\ \text { (ppm) } \\ \hline \end{array}$	Sys Pt (ppm)	Sys GI (ppm)	$\begin{aligned} & \text { Total } \\ & (\mathrm{ppm}) \end{aligned}$
Measured Asymmetry	-44.02	3.34			
Background Asymmetry	-46.05		0.050		
Dilution Correction			0.38		
Transverse Correction			0.009	0.008	
Rate Correction	-46.35		1.82		
Beam Polarization	-54.03		0.62	0.64	
EM Radiative Correction	-55.87		0.19		
Physics Asymmetry	-55.87	3.34	1.98	0.64	3.92

Asymmetry Uncertainties (3)

- Hydrogen, 362 MeV

	Value (ppm)	$\begin{gathered} \text { Stat } \\ \text { (ppm) } \end{gathered}$	Sys Pt (ppm)	Sys GI (ppm)	$\begin{aligned} & \text { Total } \\ & (\mathrm{ppm}) \end{aligned}$
Measured Asymmetry	-9.941	0.872			
Background Asymmetry	-9.441		0.034		
Dilution Correction			0.109	0.362	
Transverse Correction			0.025	0.008	
Rate Correction	-9.444		0.090		
Beam Polarization	-11.010		0.223	0.132	
EM Radiative Correction	-11.416		0.022	0.000	
Physics Asymmetry	-11.416	0.872	0.268	0.385	0.990

Asymmetry Uncertainties (4)

- Deuterium, 362 MeV

	Value (ppm)	$\begin{gathered} \text { Stat } \\ \text { (ppm) } \end{gathered}$	Sys Pt (ppm)	Sys GI (ppm)	Total (ppm)
Measured Asymmetry	-14.047	0.813			
Background Asymmetry	-14.114				
Dilution Correction			0.020		
Transverse Correction			0.038	0.008	
Rate Correction	-14.152		0.232		
Beam Polarization	-16.498		0.331	0.197	
EM Radiative Correction	-17.018		0.059		
Physics Asymmetry	-17.018	0.813	0.411	0.197	0.932

Determining Form Factors

- Starting from asymmetries, need
- Effective Q² determination* - simulation
- Deuteron model (Schiavilla, priv. comm.)
- Electromagnetic form factors* (Kelly PRC 70 (2004))
- Electroweak Radiative corrections
- check on 2-boson corrections*
(Arrington, Blunden, Melnitchouk, et al.; Zhou, Kao \& Yang, priv. comm.)
- Interpolation of GO forward angle data:
*see F. Benmokhtar's talk

Deuteron Model

- Calculation from R. Schiavilla $A_{p h y s}=a_{0}+a_{1} G_{E}^{s}+a_{2} G_{M}^{s}+a_{3} G_{A}^{e}$ - includes FSI and 2-body effects

Forward Angle Results - reminder

$G_{E}^{s}=G_{M}^{s}=0$ Hypothesis excluded at 89% C.L.
D.S. Armstrong et al., PRL 95, 092001 (2005)

Backward Angle Results: Preliminary

- Using interpolation of GO forward measurements

- Global uncertainties
assumes:

$$
\begin{aligned}
& G_{A, N S}^{T=0}\left(Q^{2}\right)=R_{A}^{T=0} \frac{3 F-D}{2} G_{A}^{\text {dipole }}\left(Q^{2}\right) \\
& G_{A, N S}^{T=0}\left(Q^{2}=0\right)=0.070
\end{aligned}
$$

Also assumes: no CSV

Contributions to Overall Form Factors

- NEXT STEP: fit 33 separate asymmetry measurements for H, D, He targets
- at this point, not all data at quite the same level... consistent EM form factors, radiative corrections, CSV...

Preliminary Inelastic Asymmetries

$G_{A}{ }^{N \Delta}\left(Q^{2}\right)$: Isovector ($\Delta I=1$), spin-flip form factor - encodes space/spin structure in transition to $I=3 / 2$ resonance, analogous to $G_{A}\left(Q^{2}\right)$

$[\mathrm{OUT}+\mathrm{IN}=0.07 \pm 5.1 \mathrm{ppm}]$
Raw data: Backgrounds, radiative corrections not yet included

[OUT + IN = -9.9 $\pm 10.5 \mathrm{ppm}]$
We seek theory guidance for the deuteron case

Preliminary Pion Asymmetries

- Measure inclusive π^{-}from D target, dominated by photoproduction
- Asymmetry at $Q^{2}=0$ not zero \rightarrow constrain small asymmetry " d_{Δ} "
- d_{Δ} related to the anomalous $\Delta S=1$ hyperon decays

working on systematic uncertainties ($\sim 0.5 \mathrm{ppm}$):

Summary

- Comparison of electromagnetic and weak neutral elastic form factors allows determination of strange quark contribution
- large distance scale dynamics of the sea
- Small positive G_{E}^{s} at higher $\mathrm{Q}^{2}, G_{M}^{s}$ consistent with zero, small quenching of G_{A}^{e}, consistent with theory
- next step: global fit to all 33 asymmetries
- First measurement of neutral current $\mathrm{N} \Delta$ transition around $\mathrm{Q}^{2}=0.3 \mathrm{GeV}^{2}$
- First measurement of PV asymmetry in inclusive π^{-}production at low Q^{2}
- see J. Mammei's talk: First measurements of transverse asymmetries in
- back angle elastic scattering from H, D targets
- Inclusive π^{-}production
"Do not infest your mind with beating on the strangeness of this business" - W. Shakespeare (The Tempest)

