First Result from Q_{weak}

Search for physics *Beyond the Standard Model*

- Received Wisdom: Standard Model is incomplete, and is low-energy effective theory of more fundamental physics
- Low energy (Q² << M²) precision tests: complementary to high energy measurements
- Neutrino mass and their role in the early universe
- Matter-antimatter asymmetry in the present universe
- Unseen Forces of the Early Universe

0vββ decay, $θ_{13}$, β decay,... EDM, DM, LFV, 0vββ, $θ_{13}$ Weak decays, **PVES**, g_{μ} -2,...

LHC new physics signals likely will need additional indirect evidence to pin down their nature

- **Neutrons:** Lifetime, P- & T-Violating Asymmetries (LANSCE, NIST, SNS...)
- **Muons:** Lifetime, Michel parameters, g-2, Mu2e (PSI, TRIUMF, FNAL, J-PARC...)
- **PVES:** Low-energy weak neutral current couplings, precision weak mixing angle (SLAC, Jefferson Lab, Mainz)
- Atoms: atomic parity violation

Ideal: select observables that are zero, or significantly suppressed, in Standard Model

10/1/2013

Qweak: Proton's weak charge

 ${\it Q}_W^p$ - Neutral current analog of electric charge

The Standard Model makes a firm prediction of Q_W^p

	EM Charge	Weak Charge	
u	2/3	$1-\frac{8}{3}sin^2(\theta_w)\approx 0.38$	"Accidental suppression" →sensitivity to new physics
d	-1/3	$-1 + \frac{4}{3}sin^2(\theta_w) \approx -0.69$	
P (uud)	+1	$1 - 4 \sin^2(\theta_w) \approx 0.07$	Note: $Q_W^n = -1$
N (udd)	0	-1	

Q-weak is particularly sensitive to the quark vector couplings (C_{1u} and C_{1d}).

 $Q_W^p = -2(2C_{1u} + C_{1d})$ $Q_W^n = -2(C_{1u} + 2C_{1d})$

MENU 2013

Parity-violating electron scattering

$$A_{PV} \propto \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \left(g_A^e g_V^T + \beta g_V^e g_A^T \right) \sim 10^{-4} Q^2 \left[GeV^2 \right]$$

Qweak: Proton's weak charge

For electron-quark scattering:

$$A_{PV} = \frac{G_F Q^2}{4\pi\alpha} (g_A^e g_V^i + \beta g_V^e g_A^i)$$
$$Q_W^p = -2(2C_{1u} + C_{1d})$$

Use four-fermion contact interaction to parameterize the effective PV electronquark couplings (mass scale and coupling)

New physics:

$$\sigma \propto |M_{\gamma} + M_{\rm Z} + M_{\rm new}|^2$$
$$\sim |M_{\gamma}|^2 + 2M_{\gamma}M_{\rm Z}^* + 2M_{\gamma}M_{\rm new}^*$$

new Z', leptoquarks, SUSY ...

A 4% measurement of the proton's weak charge would probe TeV scale new physics

$$\frac{\Lambda}{g} \sim \left(\sqrt{2}G_F \Delta Q_W^p\right)^{-\frac{1}{2}} \sim O(\text{TeV})$$

Erler, Kurylov, and Ramsey-Musolf, PRD 68, 016006 2003

Extracting the weak charge

Previous experiments (strange form factor program: SAMPLE, HAPPEX, G0, PVA4 experiments at MIT/Bates, JLab and MAMI) explored hadron structure more directly; allow us to subtract our hadronic contribution

PVES Challenges

Qweak's goal: most precise (relative and absolute) PVES result to date.

PVES challenges:

- Statistics
 - High rates required
 - High polarization, current
 - High powered targets with large acceptance
- Low noise
 - Electronics, target density fluctuations
 - Detector resolution
- Systematics
 - Helicity-correlated beam parameters
 - Backgrounds (target windows)
 - Polarimetry
 - Parity-conserving processes

Small absolute and relative uncertainty (5ppb on A_{PV})

PVeS Experiment Summary

Meeting PVES Challenges

- Rapid helicity reversal (960 Hz)
- 180 µA beam current (JLab record)
- Small scattering angle: toroidal magnet, large acceptance
- GHz detected rates: data taking in integrating mode
- High power cryogenic target
- Exquisite control of helicity-correlated beam parameters
- Two independent high-precision polarimeters
- Radiation hard detectors
- Low noise 18-bit ADCs
- High resolution Beam Current monitors

The Qweak Apparatus

Qweak Target

35 cm, 2.5 kW liquid hydrogen target World's highest powered cryotarget

- Temperature ~20 K
- Pressure: 30-35 psia
- Beam at 150 180uA 4

Target boiling might have been problematic!

MD LH2 Asymmetry

Qweak Target 35 cm, 2.5 kW liquid hydrogen target World's highest powered cryotarget Temperature ~20 K ۲ Target boiling might have Pressure: 30-35 psia ٠ been problematic! Beam at 150 – 180uA • LH2 statistical width (per quartet): • Counting statistics: 200 ppm 4000**E** • Main detector width: 92 ppm 3500 • BCM width: 50 ppm 3000 • Target noise/boiling: 37 ppm 2500 2000 228 ppm 1500 1000 500

-1000

-500

0

1000

500

MD LH2 Asymmetry

Main Detectors

• Main detectors

Toroidal magnet focuses elastically scattered electrons onto each bar

- 8 Quartz Cerenkov bars
- Azimuthal symmetry maximizes rates and reduces systematic uncertainties
- 2 cm lead pre-radiators reduce background

Simulation of scattering rate MD face

Measured

Constraints of the Constraints o

Close up of one detector in situ

10/1/2013

Kinematics (Q^2) determination

To determine Q^2 , we go to "tracking" mode: $A_{PV} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \{Q_w^p + B(\theta, Q^2)Q^2\}$

- Currents ~ 50 pA
- Use Vertical + Horizontal Drift Chambers
- Re-construct individual scattering events

Correct for radiative effects in target with Geant 4 simulations, benchmarked with gas-target & solid target studies

Beam Polarimetry

Polarization is our largest systematic uncertainty (goal: 1%) This is a challenging goal; so we built a *second*, independent measurement device.

Møller polarimeter

- Precise, but invasive
- Thin, pure iron target
- Brute force polarization
- Limited to low current

Compton polarimeter

- Installed for Q-weak
- Runs continuously at high currents

14

Statistical precision: 1% per hour

We detect *both* recoil electron and photon.

Beam Polarimetry

Note the good agreement between both polarimeters

Qweak has data (under analysis) on a variety of observables of potential interest for Hadron physics:

- Beam normal single-spin asymmetry* for elastic scattering on proton
- Beam normal single-spin asymmetry for elastic scattering on ²⁷Al
- PV asymmetry in the $N \rightarrow \Delta$ region.
- Beam normal single-spin asymmetry in the $N \rightarrow \Delta$ region.
- Beam normal single-spin asymmetry near W= 2.5 GeV
- Beam normal single-spin asymmetry in pion photoproduction
- PV asymmetry in inelastic region near W=2.5 GeV (related to γZ box diagrams)
- PV asymmetry for elastic/quasielastic from ²⁷Al
- PV asymmetry in pion photoproduction

*: *aka* vector analyzing power *aka* transverse asymmetry; generated by imaginary part of two-photon exchange amplitude (*pace* Wim van Oers)

First result

Q-weak ran from Fall 2010 – May 2012 : four distinct running periods

- Hardware checkout (Fall 2010-January 2011)
- Run 0 (Jan-Feb 2011)
- Run 1 (Feb May 2011)
- Run 2 (Nov 2011 May 2012)

We have completed and unblinded the analysis of "Run 0" (about 1/25th of our total dataset).

 $A_{PV}^{p} = -279 \pm 35(stat) \pm 29 (sys) \text{ ppb}$ $\langle Q^{2} \rangle = 0.0250 \pm 0.0006 \, GeV^{2}$

 $\langle E_{heam} \rangle = 1155 \, MeV$

 $\theta_{eff} = 7.90^{\circ}$

arXiv:1307:5275 accepted in PRL, to appear online Oct. 13

The C_{1q} & the neutron's weak charge

Combining this result with the most precise atomic parity violation experiment we can also extract, for the first time, the neutron's weak charge:

$$Q_W^n = -0.975 \pm 0.010$$

 $Q_W^n(SM) = -0.9890$

Weak mixing angle result

* Uses electroweak radiative corrections from Erler, Kurylov, Ramsey-Musolf, PRD 68, 016006 (2003)

4% of total data

"Teaser"

"Teaser"

Summary

First result (4% of data set):

 $A_{PV}^{p} = -279 \pm 35(stat) \pm 29 (sys) \text{ ppb}$ $\langle Q^{2} \rangle = 0.0250 \pm 0.0006 \, GeV^{2}$

The weak charges

 $Q_W^p(SM) = 0.0710$ $Q_W^p = 0.064 \pm 0.012$ $Q_{W}^{n}(SM) = -0.9890$ $Q_W^n = -0.975 \pm 0.010$

Lots of work to push down systematic errors, but no show-stoppers found....

Expect final result in 12-18 months time.

Grazie to MENU-2013 organizers for the chance to give this talk!

Thanks to my Qweak collaborators, from whom many slides borrowed...

10/1/2013

MENU 2013

pnysicsworia.com

Home

News Blog

Multimedia In de

In depth Events

Fi

News archive

-2013

- September 2013
- August 2013
- July 2013
- June 2013
- May 2013
- April 2013
- April 2013
- March 2013
- February 2013
- January 2013
- 2012
- 2011
- 2010
- 2009
- 2008
- 2007
- 2006
- > 2005
- > 2004
- > 2003
- 2002
- 2001
- 2000
- 1999

Experiment probes strength of the weak interaction

Sep 16, 2013 @6 comments

Q-weak at Jefferson Lab has measured the proton's weak charge

An international collaboration has made the first determination of the proton's "weak charge" – a quantity that is related to the strength of the weak interaction. The Q-weak experimental collaboration, working at Jefferson Lab in Newport News, Virginia, says that the small number of data analysed so far agree with predictions of the Standard Model of particle physics but that it believes a full analysis

26

Qweak Collaboration

D.S. Armstrong, A. Asaturyan, T. Averett, J. Balewski, J. Beaufait, R.S. Beminiwattha, J. Benesch, F. Benmokhtar, J. Birchall, R.D. Carlini¹, J.C. Cornejo, S. Covrig, M.M. Dalton, C.A. Davis, W. Deconinck, J. Diefenbach, K. Dow, J.F. Dowd, J.A. Dunne, D. Dutta, W.S. Duvall, M. Elaasar, W.R. Falk, J.M. Finn¹, T. Forest, D. Gaskell, M.T.W. Gericke, J. Grames, V.M. Gray, K. Grimm, F. Guo, J.R. Hoskins, K. Johnston, D. Jones, M. Jones, R. Jones, M. Kargiantoulakis, P.M. King, E. Korkmaz, S. Kowalski¹, J. Leacock, J. Leckey, A.R. Lee, J.H. Lee, L. Lee, S. MacEwan, D. Mack, J.A. Magee, R. Mahurin, J. Mammei, J. Martin, M.J. McHugh, D. Meekins, J. Mei, R. Michaels, A. Micherdzinska, K.E. Myers, A. Mkrtchyan, H. Mkrtchyan, A. Narayan, L.Z. Ndukum, V. Nelyubin, Nuruzzaman, W.T.H van Oers, A.K. Opper, S.A. Page¹, J. Pan, K. Paschke, S.K. Phillips, M.L. Pitt, M. Poelker, J.F. Rajotte, W.D. Ramsay, J. Roche, B. Sawatzky, T. Seva, M.H. Shabestari, R. Silwal, N. Simicevic, G.R. Smith², P. Solvignon, D.T. Spayde, A. Subedi, R. Subedi, R. Suleiman, V. Tadevosyan, W.A. Tobias, V. Tvaskis, B. Waidyawansa, P. Wang, S.P. Wells, S.A. Wood, S. Yang, R.D. Young, S. Zhamkochyan

¹Spokespersons ²Project Manager Grad Students