Strangeness in the Proportion:

Nucleon Structure probed using Parity Violation

David S. Armstrong
College of William \& Mary GO and HAPPEx Collaborations

CNS Nuclear Physics Seminar George Washington U.

October 192010

WILLIAM \mathcal{E} MARY

Outline

- Parity violation in electron scattering
- Vector Strange Form Factors: G_{E}^{s} and G_{M}^{s}
- World Experimental Effort
- Recent Results from PV-A4, GO at backward angles:
- Separated form factors at $Q^{2}=0.23,0.63(\mathrm{GeV} / \mathrm{c})^{2}$
- Implications for Standard Model Tests
- Conclusions
"There is no excellent beauty that hath not some strangeness in the proportion"

Francis Bacon 1561-1626

Strangeness in the nucleon

$$
\text { - } P=u u d+\underbrace{u \bar{u}+d \bar{d}+s \bar{s}+g+\ldots .}_{« \text { sea } »}
$$

- s quark: clean candidate to study the sea
- How much do virtual $S \bar{s}$ pairs contribute to the structure of the nucleon?

Momentum : 4\% (DIS)
Spin : 0 to -10\% (polarized DIS)
Mass : 0 to 30% (mN -sigma term)
(the latter two are far from settled)
also: OZI violations in $p \bar{p} \rightarrow \frac{\phi \gamma}{\omega \gamma}$

Goal: Determine the contributions of the strange quark sea ($s \bar{S}$) to the charge and magnetization distributions in the nucleon :

Vector "strange form factors": $G^{s}{ }_{E}$ and $G^{s}{ }_{M}$

Parity

$$
P:\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \mapsto\left(\begin{array}{l}
-x \\
-y \\
-z
\end{array}\right)
$$

Parity operation inverts sign of all spatial coordinates

Parity and the Mirror World

Since: $\mathbf{L}=\mathbf{r} \times \mathbf{p}$
r, p change sign under parity (vectors)
L does not (axial vector)

MIRROR IMAGE

Mirror image of right-handed screw looks like a left-handed screw
($x \rightarrow-x$ and $y \rightarrow-y$ is same as a 180° rotation around z axis)

Thus: if parity symmetry is obeyed, reaction rate can't depend on $\sigma \cdot p$
Right and left handed electrons should scatter the same

Parity Violation in the Weak Interaction

T.D. Lee and C.N. Yang suggested parity violation in the weak interaction (1956)

C.S. Wu and collaborators observed effect in nuclear beta decay later that year

Hmmm....

PARITY NON-CONSERVATION IN INELASTIC ELECTRON SCATTERING ${ }^{\text { }}$
C.Y. PRESCOTT, W.B. ATWOOD, R.L.A. COTTRELL, H. DeSTAEBLER, Edward L. GARWIN, A. GONIDEC ${ }^{1}$, R.H. MILLER, L.S. ROCHESTER, T. SATO ${ }^{2}$, D.J. SHERDEN, C.K. SINCLAIR, S. STEIN and R.E. TAYLOR

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA
J.E. CLENDENIN, V.W. HUGHES, N. SASAO ${ }^{3}$ and K.P. SCHÜLER

Yale University, New Haven, CT 06520, USA
M.G. BORGHINI

CERN, Geneva, Switzerland
Phys. Lett. 77B (1978)
K. LÜBELSMEYER

Technische Hochschule Aachen, Aachen, West Germany
and
W. JENTSCHKE
II. Institut für Experimentalphysik, Universitàt Hamburg. Hamburg, West|Germany

$$
\text { Received } 14 \text { July } 1978
$$

We have measured parity violating asymmetries in the inelastic scattering of longitudinally polarized electrons from deuterium and hydrogen. For deuterium near $Q^{2}=1.6(\mathrm{GeV} / c)^{2}$ the asymmetry is $\left(-9.5 \times 10^{-5}\right) Q^{2}$ with statistical and systematic uncertainties each about 10%.

Received 14 July 1978

Pioneering Experiment

SLAC E122

Deep-inelastic electron scattering from isoscalar target

Observation of parity-violation in electron scattering: weak neutral current $\left(Z^{0}\right)$ in weak interaction

Crucial test of electroweak Standard Model

Textbook Physics: High Energy Physics (D.H. Perkins)

Parity-Violating Electron Scattering \Rightarrow Weak NC Amplitudes

scatter electrons of opposite helicities from unpolarized target
Interference: $\sigma \sim\left|M^{E M}\right|^{2}+\left|M^{N C}\right|^{2}+2 \operatorname{Re}\left(M^{E M^{*}}\right) M^{N C}$

Interference with EM amplitude makes Neutral Current (NC) amplitude

$$
A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \sim \frac{\left|M_{P V}^{N C}\right|}{\left|M^{E M}\right|} \sim \frac{Q^{2}}{\left(M_{Z}\right)^{2}}
$$ accessible

Nucleon Form Factors

Nucleon charge and magnetization distributions:

$$
\begin{array}{cll}
G_{E}\left(Q^{2}\right), G_{M}\left(Q^{2}\right) & G_{E}^{p}(0)=1 & G_{M}^{p}(0)=+2.79 \mu_{N} \\
\text { electric and magnetic form factors } & G_{E}^{n}(0)=0 & G_{M}^{n}(0)=-1.91 \mu_{N}
\end{array}
$$

Nucleon Form Factors

$$
\text { Adopt Sachs FF: } \quad G_{E}^{\gamma}=F_{1}^{\gamma}+\tau F_{2}^{\gamma} \quad G_{M}^{\gamma}=F_{1}^{\gamma}+F_{2}^{\gamma}
$$

Roughly: Fourier transforms of charge and magnetization
NC and EM probe same hadronic flavor structure, with different couplings:

$$
\begin{gathered}
G_{E / M}^{\gamma}=\frac{2}{3} G_{E / M}^{u}-\frac{1}{3} G_{E / M}^{d}-\frac{1}{3} G_{E / M}^{s} \\
G_{E / M}^{z}=\left(1-\frac{8}{3} \sin ^{2} \theta_{W}\right) G_{E / M}^{u}-\left(1-\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E / M}^{d}-\left(1-\frac{4}{3} \sin ^{2} \theta_{W}\right) G_{E / M}^{s}
\end{gathered}
$$

$G^{Z_{E / M}}$ provide an important benchmark for testing non-perturbative QCD structure of the nucleon

Charge Symmetry

One expects the neutron is \approx an isospin rotation of the proton*:

$$
G_{E / M}^{p, u}=G_{E / M}^{n, d}, \quad G_{E / M}^{p, d}=G_{E / M}^{n, u}, \quad G_{E / M}^{p, s}=G_{E / M}^{n, s}
$$

$$
\begin{aligned}
& G_{E / M}^{\gamma, P}=\frac{2}{3} G_{E / M}^{u}-\frac{1}{3} G_{E / M}^{d}-\frac{1}{3} G_{E / M}^{s} \longrightarrow G_{E / M}^{\gamma, n}=\frac{2}{3} G_{E / M}^{d}-\frac{1}{3} G_{E / M}^{u}-\frac{1}{3} G_{E / M}^{s}
\end{aligned}
$$

$$
A_{P V}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \propto \frac{M_{Z} M_{\gamma}}{\left|M_{\gamma}\right|^{2}}=-\frac{G_{F} Q^{2}}{\sqrt{2} \pi \alpha} \mathrm{~F}\left(G_{E / M}^{p}, G_{E / M}^{n}, G_{E / M}^{s}, G_{A}\right)
$$

[^0]Isolating individual form factors: vary kinematics or target
For a proton:

$$
A=\left[\frac{-G_{F} Q^{2}}{4 \pi \alpha \sqrt{2}}\right] \frac{A_{E}+A_{M}+A_{A}}{\sigma_{p}} \quad \sim \text { few parts per million }
$$

$$
\begin{gathered}
A_{E}=\varepsilon G_{E}^{p} G_{E}^{Z}, \quad A_{M}=\tau G_{M}^{p} G_{M}^{Z}, \quad A_{A}=-\left(1-4 \sin ^{2} \theta_{W}\right) \varepsilon^{\prime} G_{M}^{p} G_{A}^{e} \\
\\
\text { Forward angle Backward angle } \\
G_{E, M}^{Z}=\left(1-4 \sin ^{2} \theta_{W}\right)\left(1+R_{V}^{p}\right) G_{E, M}^{p}-\left(1_{3}+R_{V}^{n}\right) G_{E, M}^{n}-G_{E, M}^{s} \\
G_{A}^{e}=-\tau_{3}\left(1+R_{A}^{T=1}\right) G_{A}+\sqrt{3} R_{A}^{T=0} G_{A}^{8}+\Delta s
\end{gathered}
$$

For ${ }^{4} \mathrm{He}: \mathrm{G}_{\mathrm{E}}{ }^{\text {s }}$ alone

$$
A_{P V}=\frac{G_{F} Q^{2}}{\pi \alpha \sqrt{2}}\left[\sin ^{2} \theta_{W}+\frac{G_{E}^{s}}{2\left(G_{E}^{p}+G_{E}^{n}\right)}\right]
$$

For deuteron:
enhanced $G_{A}{ }^{e}$ sensitivity

$$
A_{d}=\frac{\sigma_{p} A_{p}+\sigma_{n} A_{n}}{\sigma_{d}}
$$

Theoretical Approaches to Strange Form Factors

Models - a non-exhaustive list:

kaon loops, vector meson dominance, Skyrme model, chiral quark model, dispersion relations, NJL model, quark-meson coupling model, chiral bag model, HBChPT, chiral hyperbag, QCD equalities, ...

- no consensus on magnitudes or even signs of G_{E}^{s} and G_{M}^{s} !

Only model-independent statement: $\quad G_{E}^{s}\left(\mathrm{Q}^{2}=0\right)=0$ a challenging problem in non-perturbative QCD

What about QCD on the lattice?

- Dong, Liu, Williams PRD 58(1998)074504
- Lewis, Wilcox, Woloshyn PRD 67(2003)013003
- Leinweber, et al. PRL 94(2005) 212001; PRL 97 (2006) 022001
- Doi, et al. PRD 80, 094503 (2009)

Disconnected insertions - technically challenging

Strangeness Models

What would non-zero G_{E}^{s} and G^{s} M imply?

$$
G^{s_{E}} \neq 0 \longmapsto \begin{aligned}
& s \text { and } \bar{s} \text { have different spatial } \\
& \text { distributions in proton }
\end{aligned}
$$

$G^{s}{ }_{M} \neq 0 \longmapsto s$ and \bar{s} have different magnetization distributions in proton -> contribute to magnetic moment, etc.

Hyperon = uds
(naive model for illustration)

The Axial Current Contribution

- Recall: $A^{P V} \propto \frac{A_{E}+A_{M}+A_{A}}{2 \sigma_{u n p}}$

$$
\begin{aligned}
& \mathrm{A}_{\mathrm{E}}=\varepsilon(\theta) \mathrm{G}_{\mathrm{E}}^{\gamma} \mathrm{G}_{\mathrm{E}}^{\mathrm{Z}}, \quad \mathrm{~A}_{\mathrm{M}}=\tau \mathrm{G}_{\mathrm{M}}^{\gamma} \mathrm{G}_{\mathrm{M}}^{\mathrm{Z}} \\
& \mathrm{~A}_{\mathrm{A}}=-\left(1-4 \sin ^{2} \theta_{\mathrm{W}}\right) \varepsilon^{\prime}(\theta) \mathrm{G}_{\mathrm{M}}^{\gamma} \mathrm{G}_{\mathrm{A}}^{\mathrm{e}} \\
& \quad G_{A}^{e}=-\tau_{3}\left(1+R_{A}^{T=1}\right) G_{A}+\sqrt{3} R_{A}^{T=0} G_{A}^{8}+\Delta s
\end{aligned}
$$

- Effective axial form factor: $G_{A}{ }^{e}\left(Q^{2}\right)$
- related to form factor measured in v scattering
- also contains "anapole" form factor
- determine isovector piece by combining proton and neutron (deuteron) measurements

Measurement of P-V Asymmetries

$$
A_{L R}=\frac{\sigma_{R}-\sigma_{L}}{\sigma_{R}+\sigma_{L}} \approx 10^{-6}
$$

e.g. 5\% Statistical Precision on 1 ppm \rightarrow requires 4×10^{14} counts

Rapid Helicity Flip: Measure the asymmetry at 10^{-4} level, 10 million times

Statistics: high rate, low noise
Systematics: beam asymmetries, backgrounds, helicity-correlated pickup Normalization: Polarization, linearity, dilution

Parity-Violating Electron Scattering Program

Expt/Lab	Target/Angle	$\begin{gathered} \mathrm{Q}^{2} \\ \left(\mathrm{GeV}^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{A}_{\mathrm{pv}} \\ (\mathrm{ppm}) \end{gathered}$	Sensitivity	Status
SAMPLE/Bates					
SAMPLE I	$\mathrm{LH}_{2} / 145$	0.1	-6	$\mathrm{G}_{\mathrm{M}}+0.4 \mathrm{G}_{\mathrm{A}}$	2000
SAMPLE II	$\mathrm{LD}_{2} / 145$	0.1	-8	$\mathrm{G}_{\mathrm{M}}+2 \mathrm{G}_{\mathrm{A}}$	2004
SAMPLE III	$\mathrm{LD}_{2} / 145$	0.04	-4	$\mathrm{G}_{\mathrm{M}}+3 \mathrm{G}_{\mathrm{A}}$	2004
HAPPEx/JLab					
HAPPEx	$\mathrm{LH}_{2} / 12.5$	0.47	-15	$\mathrm{G}_{\mathrm{E}}+0.39 \mathrm{G}_{\mathrm{M}}$	1999
HAPPEx II	$\mathrm{LH}_{2} / 6$	0.11	-1.6	$\mathrm{G}_{\mathrm{E}}+0.1 \mathrm{G}_{\mathrm{M}}$	2006, 2007
HAPPEx He	${ }^{4} \mathrm{He} / 6$	0.11	+6	G_{E}	2006, 2007
HAPPEx III	$\mathrm{LH}_{2} / 14$	0.63	-24	$\mathrm{G}_{\mathrm{E}}+0.5 \mathrm{G}_{\mathrm{M}}$	(2009)
PV-A4/Mainz					
	$\mathrm{LH}_{2} / 35$	0.23	-5	$\mathrm{G}_{\mathrm{E}}+0.2 \mathrm{G}_{\mathrm{M}}$	2004
	$\mathrm{LH}_{2} / 35$	0.11	-1.4	$\mathrm{G}_{\mathrm{E}}+0.1 \mathrm{G}_{\mathrm{M}}$	2005
	$\mathrm{LH}_{2} / 145$	0.23	-17	$\mathrm{G}_{\mathrm{E}}+\eta \mathrm{G}_{\mathrm{M}}+\eta^{\prime} \mathrm{G}_{\mathrm{A}}$	2009
	$\mathrm{LH}_{2} / 35$	0.63	-28	$\mathrm{G}_{\mathrm{E}}+0.64 \mathrm{G}_{\mathrm{M}}$	(2009)
G0/JLab					
Forward	$\mathrm{LH}_{2} / 35$	0.1 to 1	-1 to -40	$G_{E}+\eta G_{M}$	2005
Backward	$\mathrm{LH}_{2} / \mathrm{LD}_{2} / 110$	0.23, 0.63	-12 to -45	$G_{E}+\eta G_{M}+\eta^{\prime} G_{A}$	2009

SAMPLE

HAPPEX-I Jlab/Hall-A

Hydrogen Target: $\mathrm{E}=3.3 \mathrm{GeV} \quad \theta=12.5^{\circ} \quad \mathrm{Q}^{2}=0.48(\mathrm{GeV} / \mathrm{c})^{2}$

$$
\begin{aligned}
& A^{P V}=-14.92 \mathrm{ppm} \pm 0.98 \text { (stat) ppm } \pm 0.56 \text { (syst) ppm } \\
& G_{E}^{s}+0.39 G_{M}^{s}=0.014 \pm 0.020(\exp) \pm 0.010(F F)
\end{aligned}
$$

Phys. Rev. Lett. 82, 1096 (1999);
Phys. Lett. B509, 211 (2001);
Phys. Rev. C 69, 065501 (2004)

SAMPLE (MIT/Bates)

Backward angle $\left(\theta=150^{\circ}\right)$, integrating

$Q^{2}\left(\mathrm{GeV}^{2}\right)$	$A_{P V}(\mathrm{ppm})$	$A_{0}+\alpha G_{M}^{s}+\beta G_{A}^{e}(T=1)$
$0.1, L H_{2}$	$-5.61 \pm 0.67 \pm 0.88$	$-5.56+3.37 G_{M}^{s}+1.54 G_{A}^{e}$
$0.1, L D_{2}$	$-7.06 \pm 0.73 \pm 0.72$	$-7.06+0.72 G_{M}^{s}+1.66 G_{A}^{e}$
$0.03, L D_{2}$	$-3.51 \pm 0.57 \pm 0.58$	$-2.14+0.27 G_{M}^{s}+0.76 G_{A}^{e}$

Results of Zhu et al. commonly used to constrain G^{S} M result:

$$
G_{M}^{s}=0.37 \pm 0.20_{\text {stat }} \pm 0.36_{\text {syst }} \pm 0.07_{\text {rF }}
$$

HAPPEX-II

$\mathrm{E}=3 \mathrm{GeV} \quad \theta=6^{\circ} \quad \mathrm{Q}^{2}=0.1(\mathrm{GeV} / \mathrm{c})^{2}$

-Hydrogen: $G_{E}^{s}+\eta G_{M}^{s}$
. ${ }^{4} \mathrm{He}:$ Pure $G_{E}^{s}: A^{P V}=-\frac{A_{0}}{2}\left(2 \sin ^{2} \theta_{W}+\frac{G_{E}^{s}}{G_{E}^{p \gamma}+G_{E}^{n \gamma}}\right)$

2 runs: 2004 \& 2005

A. Acha, et al. PRL 98(2007)032301

HAPPEx data at $Q^{2} \sim 0.1 \mathrm{GeV}^{2}$

Summary of data at $Q^{2}=0.1 \mathrm{GeV}^{2}$

Solid ellipse:
K. Paschke, priv. comm.
[$\approx \mathrm{J}$. Liu et al.
PRC 76, 025202 (2007)] uses theoretical constraints on the axial form factor

(figure: thanks to K. Paschke, R. Young)

Theoretical Refinements

1. Two Boson exchange: H.Q. Zhou, C.W. Kao and S.N. Yang Phys.Rev.Lett.99:262001 (2007); Phys.Rev.C 79:062501 (2009)
$\gamma \mathrm{Z}$ box dominates the two boson effects at HAPPex, PVA4 kinematics \longrightarrow reduces extracted $\boldsymbol{G}_{\boldsymbol{E}}+\eta \boldsymbol{G}_{\boldsymbol{M}}{ }_{\boldsymbol{M}}$ (not yet put into global fits)
2. Charge-symmetry breaking effects:

Hydrogen: B. Kubis \& R. Lewis Phys. Rev. C 74:015204 (2006) ${ }^{4} \mathrm{He}:$ Viviani, Schiavilla, Kubis, Lewis, et al.

Phys.Rev.Lett. 99:112002 (2007)
still only a (modest) fraction of smallest experimental statistical errors.

> (not yet put into global fits)

PV-A4
 (MAMI/Mainz)

$\mathbf{Q}^{2}\left(\mathrm{GeV}^{2}\right)$	$A_{\text {PV }} \pm$ stat \pm syst (ppm)	$G_{E}^{s}+\eta G_{M}^{s}$
0.230	$-5.44 \pm 0.54 \pm 0.26$	$G_{E}^{s}+0.225 G_{M}^{s}$
0.110	$-1.36 \pm 0.29 \pm 0.13$	$G_{E}^{s}+0.106 G_{M}^{s}$

Counting - fast energy histograms

"Evidence for Strange Quark Contributions to the Nucleon's Form Factors at $Q^{2}=0.1 \mathrm{GeV}^{2 \prime}$ F. Maas et al. PRL 94, 152001 (2006)

New results from PV-A4

$\theta=145^{\circ}$
$Q^{2}=0.22(\mathrm{GeV} / \mathrm{c})^{2}$
$A_{\text {meas }}=-17.23 \pm 0.82 \pm 0.89 \mathrm{ppm}$

$$
\begin{array}{ccc}
G^{\mathrm{s}}= & 0.050 \pm 0.038 \pm 0.019 \\
G^{s_{M}}=-0.14 & \pm 0.11 & \pm 0.11
\end{array}
$$

(use theoretical constraint of Zhu et al., for the axial FF)
\% contribution to proton: electric: $3.0 \pm 2.5 \%$ magnetic:

$$
2.9 \pm 3.2 \%
$$

S. Baunack et al., PRL 102 (2009) 151803

Deuterium results at same Q2 - still being analyzed....

G^{0}
 (JLab - Hall C)

- Superconducting toroidal magnetic spectrometer

Forward angle mode

- $\mathrm{LH}_{2}: \mathrm{E}_{\mathrm{e}}=3.0 \mathrm{GeV}$

Recoil proton detection
¢ $0.12 \leq Q^{2} \leq 1.0(\mathrm{GeV} / \mathrm{c})^{2}$
-Counting experiment - separate backgrounds via time-of-flight

GO: Forward-angle results

$G_{E}^{s}=G_{M}^{s}=0$ Hypothesis excluded at 89% C.L.
D.S. Armstrong et al., PRL 95, 092001 (2005)

GO Back Angle Apparatus: schematic

- Polarized electron beam at $362,687 \mathrm{MeV}$
- Target: $20 \mathrm{~cm} \mathrm{LH} 2, \mathrm{LD}_{2}$
- (quasi)elastic, inelastic scattering at $\sim 108^{\circ}$
- e/ π separation using aerogel Cerenkov

GO Asymmetries
 (backward angle measurements)

Set	Asymmetries (ppm)	Stat (ppm)	Sys pt (ppm)	Sys Global (ppm)	Total (ppm)
H 362	-11.416	0.872	0.268	0.385	0.990
D 362	-17.018	0.813	0.411	0.197	0.932
H 687	-46.14	2.43	0.84	0.75	2.68
D 687	-55.87	3.34	1.98	0.64	3.92
$Q^{2}=0.22 \mathrm{GeV}^{2}$ and $Q^{2}=0.63 \mathrm{GeV}^{2}$					

Forward Angle Results - reminder

GO Backward Angle Results

Combined with interpolation of GO forward measurements
assumes:

$$
\begin{aligned}
& G_{A, N S}^{T=0}\left(Q^{2}\right)=R_{A}^{T=0} \frac{3 F-D}{2} G_{A}^{\text {dipole }}\left(Q^{2}\right) \\
& G_{A, N S}^{T=0}\left(Q^{2}=0\right)=0.070
\end{aligned}
$$

= Global systematic

Also assumes: no CSV
D. Androic et al. PRL 104(2010)012001

Contributions to Overall Form Factors

Advertisement: other physics from GO

- First measurement of neutral current $N \rightarrow \Delta$ transition ($Q^{2} \approx 0.3 \mathrm{GeV}^{2}$) (analysis: Carissa Capuano, William \& Mary)
- First measurement of PV asymmetry in inclusive π^{-}production at low Q^{2} (analysis: Alexandre Coppens, U. Manitoba)
- Two-photon exchange seen via beam-normal single spin asymmetries (analysis: Juliette Mammei, Virginia Tech)

HAPPEX-III Spokepersons: K. Paschke \& P. Souder

Data-taking completed Oct 2009

Result soon...

A higher precision repeat of HAPPEx-I, at slightly higher Q^{2}
($0.63 \mathrm{GeV}^{2}$ - matches higher $G 0$ backward data point)

- $100 \mu \mathrm{~A}$ beam current, 89% polarization (c.f. $35 \mu \mathrm{~A}$ at 70% polarization for HAPPEx-I)
- If central value from $G O$ holds, could see $\approx 5 \sigma$ non-zero strange quark signal.

PV-A4 also has taken data at \approx same Q^{2}

Parity-Violating Asymmetry Extrapolated to $\mathbf{Q}^{2}=0$ (R.D. Young et al. PRL 99, 122003 (2007))

Beyond Strangeness:
 Parity-Violating Electron Scattering as a Standard Model Test

Recall: Prescott et al. (first PV electron scattering experiment)crucial test of electroweak Standard Model

At low $Q^{2} \&$ forward angles: $\quad A_{P V} \propto Q_{w}{ }^{p}=\left(1-4 \sin ^{2} \theta_{W}\right)$
$Q_{w}{ }^{p}$: Weak charge of the proton precise Standard Model prediction, poorly
tested experimentally
Experiment underway at JLab-complete data-taking May 2012

GWU collaborators:
A.K. Opper
A. Micherdzinska
B. Stokes (former postdoc)
R. Subedi (present postdoc)
K. Myers (PhD student)
D. Jones (undergrad)

Young, Carlini, Thomas \& Roche, PRL
$C_{1 u}-C_{1 d}$ Isovector weak charge

Summary

- Comparison of electromagnetic and weak neutral elastic form factors allows determination of strange quark contribution
- large distance scale dynamics of the sea
- Separated form factors at three Q^{2}
- Small positive G_{E}^{s} at highest Q^{2}, G_{M}^{s} consistent with zero, small quenching of G_{A}^{e}, consistent with theory
- Next steps:
- newer data very soon at $Q^{2}=0.63$ (HAPPEx-III, PV-A4)
- global fits to all 36 asymmetries, including 2-boson \& CSV effects, consistent electromagnetic form factors
- no plans on pushing experimental effort further... lattice?

> "Do not infest your mind with Geating on the strangeness of this Gusiness" - W. Shakespeare (The Tempest)

[^0]: * Effect of charge symmetry violations: B. Kubis \& R. Lewis Phys. Rev. C 74 (2006) 015204

