Strangeness in the Proportion: Strangeness in the Nucleon probed via Parity-Violating Electron Scattering

Joint Meeting of the DNP & JPS Waikoloa Hawaii, October 13-17, 2009

David S. Armstrong College of William & Mary

GO and HAPPEx Collaborations

Outline

- Parity violation in electron scattering
- Vector Strange Form Factors: G_E^s and G_M^s
- World Experimental Effort
- Recent Results from PV-A4, GO at backward angles:
 - Separated form factors at $Q^2 = 0.23$, 0.63 (GeV/c)²
- Implications & Conclusions

"There is no excellent beauty that hath not some strangeness in the proportion" Francis Bacon 1561-1626

Strangeness in the nucleon

Vector "strange form factors": G^s_E and G^s_M

P(k,s)

Interference: $\sigma \sim |M^{EM}|^2 + |M^{NC}|^2 + 2Re(M^{EM^*})M^{NC}$

Interference with EM
amplitude makes Neutral
$$\longrightarrow A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{\left|M_{PV}^{NC}\right|}{\left|M^{EM}\right|} \sim \frac{Q^2}{\left(M_Z\right)^2}$$

Current (NC) amplitude

Small (~10⁻⁶) cross section asymmetry isolates weak interaction

Nucleon Form Factors

Adopt Sachs FF:
$$G_E^{\gamma} = F_1^{\gamma} + \tau F_2^{\gamma}$$
 $G_M^{\gamma} = F_1^{\gamma} + F_2^{\gamma}$

(Roughly: Fourier transforms of charge and magnetization)

NC and EM probe same hadronic flavor structure, with different couplings:

$$G_{E/M}^{\gamma} = \frac{2}{3} G_{E/M}^{u} - \frac{1}{3} G_{E/M}^{d} - \frac{1}{3} G_{E/M}^{s}$$
$$G_{E/M}^{Z} = \left(1 - \frac{8}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{u} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d}$$

 $G^{Z}_{E/M}$ provide an important benchmark for testing non-perturbative QCD structure of the nucleon

Charge Symmetry

One expects the neutron is \approx an isospin rotation of the proton*:

$$G_{E/M}^{p,u} = G_{E/M}^{n,d}, \quad G_{E/M}^{p,d} = G_{E/M}^{n,u}, \quad G_{E/M}^{p,s} = G_{E/M}^{n,s}$$

* Effect of charge symmetry violations: B. Kubis & R. Lewis Phys. Rev. C 74 (2006) 015204

Isolating individual form factors: vary *kinematics* or *target*

For a proton:

$$A = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{\sigma_p} \quad \text{~few parts per million}$$

$$A_{E} = \varepsilon \ G_{E}^{p} G_{E}^{Z}, \qquad A_{M} = \tau \ G_{M}^{p} G_{M}^{Z}, \qquad A_{A} = -\left(1 - 4\sin^{2}\theta_{W}\right)\varepsilon \ G_{M}^{p} G_{A}^{e}$$
Forward angle
$$G_{E,M}^{Z} = (1 - 4\sin^{2}\theta_{W})(1 + R_{V}^{p})G_{E,M}^{p} - (1_{3} + R_{V}^{n})G_{E,M}^{n} - G_{E,M}^{s}$$

$$G_{A}^{e} = -\tau_{3}(1 + R_{A}^{T-1})G_{A} + \sqrt{3}R_{A}^{T-0}G_{A}^{s} + \Delta s$$

For ⁴He: G_F^s alone

$$A_{PV} = \frac{G_F Q^2}{\pi \alpha \sqrt{2}} \left[\sin^2 \theta_W + \frac{G_E^s}{2(G_E^p + G_E^n)} \right]$$

For deuteron:

enhanced G_A^e sensitivity

$$A_d = \frac{\sigma_p A_p + \sigma_n A_n}{\sigma_d}$$

Theoretical Approaches to Strange Form Factors

Models - a non-exhaustive list:

kaon loops, vector dominance, Skyrme model, chiral quark model, dispersion relations, NJL model, quark-meson coupling model, chiral bag model, HBChPT, chiral hyperbag, QCD equalities, ...

- no consensus on magnitudes or even signs of $\,G_{\!E}^s\,$ and $\,G_{\!M}^s\,$!

Only model-independent statement: $G_E^s(Q^2=0)=0$

a challenging problem in non-perturbative QCD

What about QCD on the lattice?

- Dong, Liu, Williams PRD 58(1998)074504
- Lewis, Wilcox, Woloshyn PRD 67(2003)013003
- Leinweber, et al. PRL 94(2005) 212001; PRL 97 (2006) 022001
- Doi, et al. (2009) arXiv:0903.3232 and see talk CF-3...

Strangeness Models

What would non-zero G^{s}_{E} and G^{s}_{M} imply?

 $G^{s}_{E} \neq 0 \implies s \text{ and } \overline{s} \text{ have different spatial}$ distributions in proton

G^s_M ≠ 0 s and s have different magnetization distributions in proton -> contribute to magnetic moment, etc.

(naive model for illustration)

The Axial Current Contribution

• Recall:
$$A^{PV} \propto \frac{A_E + A_M + A_A}{2\sigma_{unp}}$$

$$A_{E} = \varepsilon(\theta) G_{E}^{\gamma} G_{E}^{Z}, \qquad A_{M} = \tau G_{M}^{\gamma} G_{M}^{Z}$$
$$A_{A} = -\left(1 - 4\sin^{2}\theta_{W}\right) \varepsilon'(\theta) G_{M}^{\gamma} G_{A}^{e}$$
$$G_{A}^{e} = -\tau_{3}(1 + R_{A}^{T=1})G_{A} + \sqrt{3}R_{A}^{T=0}G_{A}^{8} + \Delta s$$

- Effective axial form factor: $G_A^e(Q^2)$
- related to form factor measured in v scattering
- also contains "anapole" form factor
- determine isovector piece by combining proton and neutron (deuteron) measurements

Measurement of P-V Asymmetries

$$A_{LR} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \approx 10^{-6} \qquad \text{e.g. 5\% Statistical Precision on 1 ppm} \\ -> \text{ requires } 4 \times 10^{14} \text{ counts}$$

Statistics: high rate, low noise Systematics: beam asymmetries, backgrounds, helicity-correlated pickup Normalization: Polarization, linearity, dilution

Parity-Violating Electron Scattering Program

Expt/Lab	Target/	Q ²	A _{phys}	Sensitivity	Status
	Angle	(GeV ²)	(ppm)		
SAMPLE/Bates	-				
SAMPLE I	LH ₂ /145	0.1	-6	G _M + 0.4G _A	2000
SAMPLE II	LD ₂ /145	0.1	-8	$G_M + 2G_A$	2004
SAMPLE III	LD ₂ /145	0.04	-4	G _M + 3G _A	2004
HAPPEx/JLab					
HAPPEx	LH ₂ /12.5	0.47	-15	G _E + 0.39G _M	1999
HAPPEx II	LH ₂ /6	0.11	-1.6	G _E + 0.1G _M	2006, 2007
HAPPEx He	⁴ He/6	0.11	+6	G _E	2006, 2007
HAPPEx III	LH ₂ /14	0.63	-24	G _E + 0.5G _M	(2009)
PV-A4/Mainz					
	LH ₂ /35	0.23	-5	$G_{E} + 0.2G_{M}$	2004
	LH ₂ /35	0.11	-1.4	G _E + 0.1G _M	2005
	LH ₂ /145	0.23	-17	G_{E} + ηG_{M} + ηG_{A}	2009
	LH ₂ /35	0.63	-28	G _E + 0.64G _M	(2009)
G0/JLab					
Forward	LH ₂ /35	0.1 to 1	-1 to -40	G_{E} + ηG_{M}	2005
Backward	LH ₂ /LD ₂ /110	0.23, 0.63	-12 to -45	G_{E} + ηG_{M} + ηG_{A}	2009

HAPPEX-I Jlab/Hall-A

Hydrogen Target: E= 3.3 GeV θ =12.5° Q²=0.48 (GeV/c)²

A^{PV} = -14.92 ppm ± 0.98 (stat) ppm ± 0.56 (syst) ppm

 $G_{E}^{s} + 0.39G_{M}^{s} = 0.014 \pm 0.020 \ (exp) \pm 0.010 \ (FF)$

Phys. Rev. Lett. 82,1096 (1999); Phys. Lett. B509, 211 (2001); Phys. Rev. C 69, 065501 (2004)

SAMPLE (MIT/Bates)

Backward angle (θ =150°), integrating

$Q^2({\rm GeV}^2)$	$A_{PV}\left(ppm ight)$	$A_0+lpha G^s_M+eta G^e_A(T=1)$
$0.1, LH_2$	$-5.61 \pm 0.67 \pm 0.88$	$-5.56 + 3.37 rac{G^s}{M} + 1.54 rac{G^e}{A}$
$0.1, LD_2$	$-7.06 \pm 0.73 \pm 0.72$	$-7.06 + 0.72 rac{G^s}{M} + 1.66 rac{G^e}{A}$
$0.03, LD_2$	$-3.51 \pm 0.57 \pm 0.58$	$-2.14 + 0.27 rac{G_M^s}{M} + 0.76 rac{G_A^e}{M}$

$$G_{M}^{s} = 0.23 \pm 0.36 \pm 0.40$$

 $G_{A}^{e}(T=1) = -0.53 \pm 0.57 \pm 0.50$
E.J. Beise *et al.*, Prog Nuc Part Phys 54 (2005)

Results of Zhu *et al.* commonly used to constrain G_{M}^{s} result: $G_{M}^{s} = 0.37 \pm 0.20_{Stat} \pm 0.36_{Syst} \pm 0.07_{FF}$

HAPPEX-II

E=3 GeV $\theta=6^{\circ}$ Q²= 0.1 (GeV/c)²

•Hydrogen : $G_E^s + \eta G_M^s$ •⁴He: Pure G_E^s : $A^{PV} = -\frac{A_0}{2} \left(2\sin^2\theta_W + \frac{G_E^s}{G_E^{p\gamma} + G_E^{n\gamma}} \right)$

A. Acha, et al. PRL 98(2007)032301

World Data near Q² ~0.1 GeV²

Summary of data at $Q^2 = 0.1 \text{ GeV}^2$

Theoretical Refinements

- 1. Two Boson exchange: H.Q. Zhou, C.W. Kao and S.N. Yang Phys.Rev.Lett.99:262001 (2007); Phys.Rev.C79:062501 (2009) γZ box dominates the two boson effects at HAPPex, PVA4 kinematics \rightarrow reduces extracted $G_E^s + \beta G_M^s$ (not yet put into global fits)
- 2. Charge-symmetry breaking effects:

Hydrogen: B. Kubis & R. Lewis Phys. Rev. C 74 (2006) 015204 ⁴He: Viviani, Schiavilla, Kubis, Lewis, et al. Phys.Rev.Lett.99:112002,2007

still only a (modest) fraction of smallest experimental statistical errors. (not yet put into global fits)

PV-A4 (MAMI/Mainz)

Q ² (GeV ²)	A ± stat ± syst (ppm)	<mark>6</mark> բ ^s + ղ6 _M s
0.230	-5.44 ± 0.54 ± 0.26	<mark>G_Es</mark> + 0.225 <mark>G_Ms</mark> = 0.039 ± 0.034
0.110	-1.36 ± 0.29 ± 0.13	G _E ^s + 0.106 G _M ^s = 0.071 ± 0.036

Counting - fast energy histograms

"Evidence for Strange Quark Contributions to the Nucleon's Form Factors at $Q^2 = 0.1 \text{ GeV}^2$ " F. Maas et al. PRL 94, 152001 (2006)

S. Baunack et al., PRL 102 (2009) 151803

Deuterium results at same Q2 - still being analyzed....

G⁰ (JLab - Hall C)

 Superconducting toroidal magnetic spectrometer

Forward angle mode

• LH_2 : $E_e = 3.0 \text{ GeV}$

Recoil proton detection $\bigcirc 0.12 \le Q^2 \le 1.0 \ (GeV/c)^2$

Counting experiment – separate
 backgrounds via time-of-flight

GO: Forward-angle results

EM form factors: J.J.Kelly, PRC **70**, 068202 (2004)

D.S. Armstrong et al., PRL 95, 092001 (2005)

- Polarized electron beam at 362, 687 MeV
- Target: 20 cm LH_2 , LD_2
- (quasi)elastic, inelastic scattering at ~108°
- Electron/pion separation using aerogel Cerenkov

GO Asymmetries (backward angle measurements)

Set	Asymmetries (ppm)	Stat (ppm)	Sys pt (ppm)	Sys Global (ppm)	Total (ppm)
H 362	-11.416	0.872	0.268	0.385	0.990
D 362	-17.018	0.813	0.411	0.197	0.932
H 687	-46.14	2.43	0.84	0.75	2.68
D 687	-55.87	3.34	1.98	0.64	3.92

See Fatiha Benmokhtar's talk: CF-4

Forward Angle Results - reminder

GO Backward Angle Results

Combined with interpolation of GO forward measurements

assumes:

$$G_{A,NS}^{T=0}(Q^{2}) = R_{A}^{T=0} \frac{3F - D}{2} G_{A}^{dipole}(Q^{2})$$
$$G_{A,NS}^{T=0}(Q^{2} = 0) = 0.070$$

Also assumes: no CSV

= Global systematic

D. Androic et al. arXiv:0909.5107

Contributions to Overall Form Factors

Advertisement: other physics from GO

- First measurement of neutral current N Δ transition around Q² = 0.3 GeV² (See Carissa Capuano's talk BD-9, Wed. evening)
- First measurement of PV asymmetry in inclusive π^2 production at low Q² (related to anomalous $\Delta S = 1$ hyperon decays)
- Two-photon exchange seen via beam-normal single spin asymmetries (See Juliette Mammei's talk BF-6, Wed. evening)

A higher precision repeat of HAPPEx-I, at slightly higher Q² (0.63 GeV² - matches G0 backward data point)

- 100 µA beam current, 89% polarization (c.f. 35 µA at 70% polarization for HAPPEx-I)

- If central value from GO holds, could see $\approx 5\sigma$ non-zero strange quark signal.

PV-A4 also now taking data at \approx same Q²

Summary

- Comparison of electromagnetic and weak neutral elastic form factors allows determination of strange quark contribution
 - large distance scale dynamics of the sea
- Separated form factors at three Q^2
- Small positive G_E^s at highest Q², G_M^s consistent with zero, small quenching of G_A^e , consistent with theory
- Next steps:
 - newer data very soon at $Q^2 = 0.63$ (HAPPEx-III, PV-A4)
 - global fits to all 36 asymmetries, including 2-boson & CSV effects, consistent electromagnetic form factors
 - no plans on pushing experimental effort further... lattice?

"Do not infest your mind with beating on the strangeness of this business" - W. Shakespeare (The Tempest)