Strangeness in the Nucleon

David S. Armstrong College of William & Mary GO and HAPPEx Collaborations

CAP 2012 Congress Calgary, Alberta June 15 2012

Outline

- Parity violation in electron scattering
- Vector Strange Form Factors: G_E^s and G_M^s
- World Experimental Effort
- Recent Results:
 - HAPPEx-III (forward angle):
 - Separated form factors at $Q^2 = 0.23$, 0.63 (GeV/c)²
- Implications for Standard Model Tests
- Conclusions

"There is no excellent beauty that hath not some strangeness in the proportion" Francis Bacon 1561-1626

Strangeness in the nucleon

Goal: Determine the contributions of the strange quark sea ($s\overline{s}$) to the charge and magnetization distributions in the nucleon : Vector "strange form factors": G_{E}^{s} and G_{M}^{s} The "Lamb Shift" of QCD

Strangeness contribution is a (QCD) vacuum polarization effect*

*Analogy borrowed from A.W. Thomas

Genesis of a Strange Idea

Puzzle: Initial DIS measurements of spin-structure of nucleon (EMC): valence quarks contribute unexpectedly low fraction to total spin - "Spin Crisis"

Possible reconciliation: large fraction of spin from SS? ? eg. D. B. Kaplan and A. Manohar, Nucl. Phys. B310, 527 (1988).

Theoretical realization: not only did available nucleon model calculations allow this, but they also allowed (and in some cases *favored*) large strange quark contributions to *other* properties of nucleon

Consternation and excitement: at the time, data gave no constraint on strange contributions to charge distribution and magnetic moment!

Challenge: how to isolate strange vector form factors?

Answer: exploit the weak neutral current as a probe

Parity-Violating Electron Scattering Weak NC Amplitudes

scatter electrons of opposite helicities from unpolarized target

Interference: $\sigma \sim |M^{EM}|^2 + |M^{NC}|^2 + 2Re(M^{EM^*})M^{NC}$

Interference with EM
amplitude makes Neutral
$$\longrightarrow A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{\left|M_{PV}^{NC}\right|}{\left|M^{EM}\right|} \sim \frac{Q^2}{(M_Z)^2}$$

current (NC) amplitude
accessible

Small (~10⁻⁶) cross section asymmetry isolates weak interaction

Nucleon Form Factors

Adopt Sachs FF: $G_E^{\gamma} = F_1^{\gamma} + \tau F_2^{\gamma}$ $G_M^{\gamma} = F_1^{\gamma} + F_2^{\gamma}$

Roughly: Fourier transforms of charge and magnetization

NC and EM probe same hadronic flavor structure, with different couplings:

$$G_{E/M}^{\gamma} = \frac{2}{3} G_{E/M}^{u} - \frac{1}{3} G_{E/M}^{d} - \frac{1}{3} G_{E/M}^{s}$$
$$G_{E/M}^{Z} = \left(1 - \frac{8}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{u} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d} - \left(1 - \frac{4}{3} \sin^{2} \theta_{W}\right) G_{E/M}^{d}$$

 $G^{Z}_{E/M}$ provide an important benchmark for testing non-perturbative QCD structure of the nucleon

Charge Symmetry

One expects the neutron is \approx an isospin rotation of the proton:

$$G_{E/M}^{p,u} = G_{E/M}^{n,d}, \quad G_{E/M}^{p,d} = G_{E/M}^{n,u}, \quad G_{E/M}^{p,s} = G_{E/M}^{n,s}$$

Isolating individual form factors: vary kinematics or target

For a proton:

$$A = \left[\frac{-G_F Q^2}{4\pi\alpha\sqrt{2}}\right] \frac{A_E + A_M + A_A}{\sigma_p} \quad \text{~few parts per million}$$

$$A_{E} = \varepsilon G_{E}^{p} G_{E}^{Z}, \quad A_{M} = \tau G_{M}^{p} G_{M}^{Z}, \quad A_{A} = -(1 - 4\sin^{2}\theta_{W})\varepsilon G_{M}^{p} G_{A}^{e}$$

Forward angle Backward angle

For ⁴He:
$$G_{E}^{s}$$
 alone

$$A_{PV} = \frac{G_{F}Q^{2}}{\pi\alpha\sqrt{2}} \left[\sin^{2}\theta_{W} + \frac{G_{E}^{s}}{2(G_{E}^{p} + G_{E}^{n})} \right]$$
For deuteron:
enhanced G_{A}^{e} sensitivity
 $A_{d} = \frac{\sigma_{p}A_{p} + \sigma_{n}A_{n}}{\sigma_{d}}$

Theoretical Approaches to Strange Form Factors

Models - a non-exhaustive list:

kaon loops, vector meson dominance, Skyrme model, chiral quark model, dispersion relations, NJL model, quark-meson coupling model, chiral bag model, HBChPT, chiral hyperbag, QCD equalities, ...

- no consensus on magnitudes or even signs of $\,G_{\!E}^s\,$ and $\,G_{\!M}^s\,$!

Only model-independent statement: $G_E^s(Q^2=0)=0$

a challenging problem in non-perturbative QCD

QCD on the lattice?

- Dong, Liu, Williams PRD 58(1998)074504
- Lewis, Wilcox, Woloshyn PRD 67(2003)013003
- Leinweber, et al. PRL 94(2005) 212001; PRL 97 (2006) 022001
- Doi, et al. PRD 80 (2009) 094503

Disconnected insertions - technically challenging

Strangeness Models

What would non-zero strange form factors imply?

 $G^{s}_{E} \neq 0 \implies s \text{ and } \overline{s} \text{ have different spatial}$ distributions in proton

G^s_M≠0 s and s have different magnetization distributions in proton -> contribute to magnetic moment, etc.

(naive model for illustration)

Measurement of P-V Asymmetries

$$A_{LR} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \approx 10^{-6}$$
 e.g. 5% Statistical Precision on 1 ppm
-> requires 4×10¹⁴ counts

Parity-Violating Electron Scattering Program

Expt/Lab	Target/Angle	Q ²	A _{pv}	Sensitivity	Complete
		(GeV ²)	(ppm)		
SAMPLE/Bates					
SAMPLE I	LH ₂ /145	0.1	-6	G _M + 0.4G _A	2000
SAMPLE II	LD ₂ /145	0.1	-8	$G_M + 2G_A$	2004
SAMPLE III	LD ₂ /145	0.04	-4	G _M + 3G _A	2004
HAPPEx/JLab					
HAPPEx	LH ₂ /12.5	0.47	-15	G _E + 0.39G _M	1999
HAPPEx II	LH ₂ /6	0.11	-1.6	G _E + 0.1G _M	2006, 2007
HAPPEx He	4He/6	0.11	+6	G _E	2006, 2007
HAPPEx III	LH ₂ /14	0.63	-24	G _E + 0.5G _M	2011
PV-A4/Mainz					
	LH ₂ /35	0.23	-5	G _E + 0.2G _M	2004
	LH ₂ /35	0.11	-1.4	G _E + 0.1G _M	2005
	LH ₂ /145	0.23	-17	$G_{E} + \eta G_{M} + \eta' G_{A}$	2009
	LH ₂ /35	0.63	-28	G _E + 0.64G _M	(2009)
G0/JLab					
Forward	LH ₂ /35	0.1 to 1	-1 to -40	G_E + η G_M	2005
Backward	LH ₂ /LD ₂ /110	0.23, 0.63	-12 to -45	$G_E + \eta G_M + \eta' G_A$	2009

HAPPEx-I JLab (Hall A)

Hydrogen Target: E= 3.3 GeV θ =12.5° Q²=0.48 (GeV/c)²

A^{PV} = -14.92 ppm ± 0.98 (stat) ppm ± 0.56 (syst) ppm

 $G_{E}^{s} + 0.39G_{M}^{s} = 0.014 \pm 0.020 \ (exp) \pm 0.010 \ (FF)$

Phys. Rev. Lett. 82,1096 (1999); Phys. Lett. B509, 211 (2001); Phys. Rev. C 69, 065501 (2004)

SAMPLE (MIT/Bates)

Backward angle (θ =150°), integrating

$Q^2({\rm GeV}^2)$	$A_{PV}\left(ppm ight)$	$A_0+lpha G^s_M+eta G^e_A(T=1)$
$0.1, LH_2$	$-5.61 \pm 0.67 \pm 0.88$	$-5.56 + 3.37 rac{G^s}{M} + 1.54 rac{G^e}{A}$
$0.1, LD_2$	$-7.06 \pm 0.73 \pm 0.72$	$-7.06 + 0.72 rac{G^s}{M} + 1.66 rac{G^e}{A}$
$0.03, LD_2$	$-3.51 \pm 0.57 \pm 0.58$	$\left -2.14+0.27 {G_M^s}+0.76 {G_A^e} ight $

$$G_{M}^{s} = 0.23 \pm 0.36 \pm 0.40$$

 $G_{A}^{e}(T=1) = -0.53 \pm 0.57 \pm 0.50$
E.J. Beise *et al.*, Prog Nuc Part Phys 54 (2005)

If theory [Zhu et al. Phys. Rev. D 62, 033008 (2000)] for $G_{A}^{(T=1)}$ used to constrain G_{M}^{S} :

$$G_{M}^{s} = 0.37 \pm 0.20_{Stat} \pm 0.36_{Syst} \pm 0.07_{FF}$$

HAPPEx-II

E=3 GeV $\theta = 6^{\circ}$ Q²= 0.1 (GeV/c)²

•Hydrogen : $G_E^s + \eta G_M^s$ •⁴He: Pure G_E^s : $A^{PV} = -\frac{A_0}{2} \left(2\sin^2\theta_W + \frac{G_E^s}{G_E^{p\gamma} + G_E^{n\gamma}} \right)$

A. Acha, et al. PRL 98(2007)032301

HAPPEx data at Q² ~0.1 GeV²

Summary of data at Q² =0.1 GeV²

Theoretical Refinements

1. Two Boson exchange: eg. H.Q. Zhou, C.W. Kao and S.N. Yang Phys.Rev.Lett.99:262001 (2007); Phys.Rev.C **79**:062501 (2009) γZ box dominates the two boson effects at HAPPex, PVA4 kinematics \rightarrow reduces extracted $G_E^s + \eta G_M^s$ (not yet put into global fits)

2. Charge-symmetry breaking effects:

Hydrogen: B. Kubis & R. Lewis Phys. Rev. C 74:015204 (2006) ⁴He: Viviani, Schiavilla, Kubis, Lewis, et al. Phys.Rev.Lett. 99:112002 (2007)

still only a (modest) fraction of smallest experimental statistical errors. (not yet put into global fits)

PV-A4: Forward angle (MAMI)

Q ² (GeV ²)	A _{PV} ± stat ± syst (ppm)	6_Es + ղ 6_Ms
0.230	$-5.44 \pm 0.54 \pm 0.26$	<mark>6</mark> _E ^s + 0.225 <mark>6</mark> _M ^s
		$= 0.039 \pm 0.034$
0.110	$-1.36 \pm 0.29 \pm 0.13$	G_E^s + 0.106 G_M^s
		$= 0.071 \pm 0.036$

Counting - fast energy histograms

"Evidence for Strange Quark Contributions to the Nucleon's Form Factors at $Q^2 = 0.1 \text{ GeV}^2$ " F. Maas et al. PRL 94, 152001 (2006)

S. Baunack et al., PRL 102 (2009) 151803

Deuterium results at same Q^2 - results expected soon....

G⁰ (JLab – Hall C)

 Superconducting toroidal magnetic spectrometer

Forward angle mode:

Backward angle mode: $E_e = 362, 687 \text{ MeV}$ LH_2, LD_2 electron detection (quasi)elastic at ~108° $Q^2 = 0.22 \text{ GeV}^2, 0.63 \text{ GeV}^2$

G⁰ (JLab – Hall C)

Major Canadian Content: U. Manitoba, U, Winnipeg, TRIUMF, UNBC

also several Canadians at U.S. institutions eg. D. Beck (spokesperson), B. Quinn, D. Armstrong

G0: Forward-angle results

D.S. Armstrong et al., PRL 95, 092001 (2005)

Forward Angle Results

G0 Backward Angle results

D. Androic *et al.* PRL **104**(2010)012001

GO, PVA4, world data at 0.1

Strange form factors contribute at most a few % to overall vector form factors... except maybe near Q² = 0.6...

HAPPEX-III

Data-taking 2009

- 100 µA beam current, 89.6% polarization, 25 cm IH2 target

(c.f. 35 μ A at 70% polarization, 15 cm target for HAPPEx-I)

- Precision (0.8%) beam polarimetry with Moller and Compton polarimeters

HAPPEX-III Results

preliminary $A_{PV} = -23.742 \pm 0.776$ (stat) ± 0.353 (syst) ppm

Z. Ahmed et al., PRL 108(2012)102001.

Separated Form Factors at Q²=0.63

Z. Ahmed et al., PRL 108(2012)102001

Interpretation...

Suggestions from PDF fits of strange asymmetry \square Small G_E^s indicates no corresponding *spatial* asymmetry - the s and s bar

are produced with very similar spatial distributions

Small G_M^s indicates either that s s are produced spinaligned, and/or that their magnetizations are not random with respect to nucleon spin orientation

ATLAS has new results that further constrain strange asymmetry

Beyond Strangeness:

Parity-Violating Electron Scattering as a Standard Model Test

revisit History: SLAC E122 (Prescott, et al). first PV electron scattering experiment - seminal test of electroweak Standard Model

at low Q² & forward angles:

$$A_{PV} \propto \underline{Q_w^P} = (1 - 4 \sin^2 \theta_w)$$

Qw^p: Weak charge of the proton – precise Standard Model prediction, poorly tested experimentally

Experiment at JLab; just completed datataking (May 2012)

Strange form factors crucial input (extrapolation to Q²=0)

Beyond Strangeness:

Parity-Violating Electron Scattering as a Standard Model Test

revisit History: SLAC E122 (Prescott, et al). first PV electron scattering experiment - seminal test of electroweak Standard Model

at low Q² & forward angles:

$$A_{PV} \propto \underline{Q_w^P} = (1 - 4 \sin^2 \theta_W)$$

Qw^p: Weak charge of the proton – precise Standard Model prediction, poorly tested experimentally

Major Canadian Content: U. Manitoba, U. Winnipeg, TRIUMF, UNBC

Talks yesterday: P. Wang, J. Pan, V. <u>Tvaskis</u>

Summary

- Comparison of electromagnetic and weak neutral elastic form factors allows determination of strange quark contribution
 - large distance dynamics of the sea
- Separated form factors at three different Q^2
- G_E^s , G_M^s small, consistent with zero
- Important input for Standard Model test (QWeak)
- Next steps:
 - Mainz PVA4 results at Q^2 =0.63 expected soon

(similar kinematics to HAPPEx-III)

- global fits to all 36 asymmetries, including 2-boson & CSV effects, consistent electromagnetic form factors
- no plans on pushing experimental effort further... lattice?

"Do not infest your mind with beating on the strangeness of this business" - W. Shakespeare (The Tempest)

Backup slides

At a resolution of 10^{-24} metres, isolated clumps of Strange Matter pop briefly out of the quantum foam \swarrow to debate the possible existence of Particle Physicists.

