First measurements of parity-violating excitation of the Δ and pion photoproduction *New results from G*⁰

David S. Armstrong College of William & Mary

(for the G⁰ Collaboration)

PAVI 2011 Workshop Rome, Italy Sept 5 2011

Outline

- *G⁰* experiment
- Inelastic processes in parity-violating electron scattering
- Results from $N \to \Delta$
- Results from (γ, π^{-}) on deuteron
- Interpretation

Inelastic analysis: Carissa Capuano (W&M) Pion analysis: Alex Coppens (U.Manitoba)

Thanks to Carissa, Alex, Jeff Martin (U. Winnipeg) for figures...

Parity-Violating Electron Scattering Weak NC Amplitudes

scatter electrons of opposite helicities from unpolarized target

Interference: $\sigma \sim |M^{EM}|^2 + |M^{NC}|^2 + 2Re(M^{EM^*})M^{NC}$

Interference with EM
amplitude makes Neutral
$$\longrightarrow A_{PV} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L} \sim \frac{\left|M_{PV}^{NC}\right|}{\left|M^{EM}\right|} \sim \frac{Q^2}{(M_Z)^2}$$

current (NC) amplitude
accessible

Small (~10⁻⁶) cross section asymmetry isolates weak interaction

G^{θ} overview

Superconducting toroidal magnetic spectrometer – counting expt.

Forward angle mode:

 LH_2 : E = 3.0 GeV

Recoil proton detection 4 0.12 \leq Q² \leq 1.0 (GeV/c)²

Backward angle mode:

E = 362, 687 MeV

LH₂, LD₂ electron, pion detection (quasi)elastic at ~108°

 $Q^2 = 0.22 \text{ GeV}^2, 0.63 \text{ GeV}^2$

Main Goal: Strange Form Factors of Nucleon

PRL 95 (2005) 092001 PRL 104 (2010) 012001

NIM A 646 (2011) 59

G⁰: Ancillary measurements

• In the backward angle mode:

Also measured *(in parallel with elastic data)* asymmetry for inelastically scattered electrons in the $\Delta(1232)$ region (from hydrogen and deuterium targets)

as well as π^- produced from deuterium target.

- Backgrounds for main (elastic) measurement, but have physics interest in their own right...
- Experiment was not optimized for these processes!

$G^{\theta} N-\Delta$: Introduction

- First look at G^{A}_{NA} in neutral current process
 - $Q^2 = 0.34 \text{ GeV/c}^2$.
- What does **G⁴**_{N4} describe?
 - $G^{A}(Q^{2}) \rightarrow \text{Axial elastic form factor for } N$
 - How is the spin distributed?
 - $G^{A}_{NA}(Q^{2}) \rightarrow \text{Axial transition form factor for } N \rightarrow \Delta$
 - How is the spin redistributed during transition?
- Measure Parity-violating asymmetry A_{inel}
 - Allows a direct measure of the axial response during $N \rightarrow \Delta$
- Accessing G^{A}_{NA} :
 - Previous Measurements: Charged current process
 - Both quark flavor change and spin flip
 - $G^0 N-\Delta$ Measurement: Neutral current process
 - Quark spin flip only

PV $N \rightarrow \Delta$ first considered by Cahn & Gilman PRD 17(1978) 1313 ...proposed as a Standard Model test!

$G^{0} N-\Delta$: Theory

1000

G⁰ Backward angle: Detectors

Coincidences send to scalers, accumulated during helicity states

G⁰ Backward angle

Superconducting Magnet

FPD (1 octant)

Target system installation

Detector package

$G^{\theta}N-\Delta$: Data

G[∅]N-∆: Data

$G^{0}N-\Delta$: Corrections (all except backgrounds)

Ainel for H 687MeV

	A	σ_{stat}	σ_{sys}	σ_{cor}	dA
Pass 1: Raw	-20.23	2.00	0.00	—	_
Pass 2: Scalar Correction	-20.00	1.99	0.00	0.00	+0.23
Pass 3: Rate Corrections	-22.17	2.25	0.16	0.16	-2.17
Pass 4: Linear Regression	-22.33	2.24	0.23	0.16	-0.16
Beam Polarization	-26.27	2.64	0.43	0.36	-3.91
Transverse Polarization	-26.27	2.64	0.43	0.03	—

Ainel for D 687MeV

	A	σ_{stat}	σ_{sys}	σ_{cor}	dA
Pass 1: Raw	-14.11	2.62	0.00	_	—
Pass 2: Scaler Correction	-14.06	2.62	0.00	0.00	+0.05
Pass 3: Rate Corrections	-26.66	5.87	1.20	1.20	-12.6
Pass 4: Linear Regression	-26.41	5.88	1.23	0.25	+0.25
Beam Polarization	-31.07	6.92	1.30	0.43	-4.66
Transverse Polarization	-31.07	6.92	1.30	0.02	—

All values in ppm

Corrections well understood, statistical error dominates

$G^{\theta}N$ - Δ : Inelastic locus

H 687 Oct Avg Electron Yield (Hz/µA)

$G^{\theta}N$ - Δ : Pion locus

Misidentified pions a significant background

$G^{\theta}N-\Delta$: Background Correction

• Correcting the Asymmetry:

- Extract A_{inel} from A_{meas} by subtracting backgrounds:

$$A_{inel} = \frac{A_{meas} - \sum f_i^{bg} A_i^{bg}}{1 - \sum f_i^{bg}}$$

- Backgrounds:
 - Electrons scattered elastically from target
 - Electrons scattered from AI target walls
 - Electrons from π^0 decay
 - Misidentified π^-

• Background Asymmetries:

- Background from Al target walls: *Dominated by inelastics*
 - Inelastic Al asymmetry unmeasured -> use D asymmetry
- Pion contamination:
 - Negligible in H target, but significant for D; use direct pion measurement
- Elastic contribution:
 - Mostly comes from radiative tail: use elastic data & simulation to extrapolate

$G^{\theta}N-\Delta$: Background Dilutions

• Scale Yield vs. FPD for each CED

– Before fitting, subtract π^- contamination and AI target-wall yield

Target wall yield: use separate low-density Gas target measurement; scale to remove gas contribution & account for kinematic differences between liquid and gas target

- Scale the remaining contributions independently to fit the data
- Require scale factors to vary smoothly across CEDs
- Constrain scale factors same for all octants

$G^{0}N-\Delta$: Background Dilutions LH2

FPD + 14(OCT - 1)

$G^{\theta}N-\Delta$: Background Dilutions LH2

$G^{\theta}N-\Delta$: Background Dilutions LD2

$G^{\theta}N-\Delta$: Background Dilutions (by cell)

G⁰ N- Δ : **Background Dilutions** (by octant)

$G^{\theta}N-\Delta$: Elastic Radiative Tail

Asymmetry of elastic radiative tail varies strongly over inelastic region.

Use GEANT 3, scaled to our own *elastic* backward angle results, make cell-by-cell correction.

	A	σ_{stat}	σ_{sys}	σ_{cor}	dA
Beam & Instrumentation	-26.27	2.64	0.43	_	_
Backgrounds	-33.60	5.30	5.10	4.93	-7.33
EM Radiative Effects	-33.99	5.30	5.10	0.20	-0.39
Acceptance Averaging	-33.44	5.30	5.11	0.20	-0.55

 A_{inel} for H 687 MeV

Ainel for D 687 MeV

	A	σ_{stat}	σ_{sys}	σ_{cor}	dA
Beam & Instrumentation	-31.07	6.92	1.30	_	_
Backgrounds	-43.57	14.64	6.23	5.52	-12.5

All values in ppm

Acceptance Averaging: $\langle A(Q^2, W) \rangle \rightarrow A(\langle Q^2 \rangle, \langle W \rangle)$

G⁰: Axial radiative corrections

Axial radiative corrections can be large and uncertain...

S.L. Zhu, C.M. Maekawa, B.R. Holstein & M.J. Ramsey-Musolf PRL 87 (2001)20180,2 S.L. Zhu, *et al.* PRD 65 (2002) 033001

Found in particular: "many-quark" axial r.c. leads to new PV $\gamma N\Delta$ coupling d_{Δ}^{-}

$$A_{\gamma}^{-} \equiv \frac{d\sigma_{R} - d\sigma_{L}}{d\sigma_{R} + d\sigma_{L}} = -\frac{2d_{\Delta}^{-}}{C_{3}^{V}}\frac{M_{N}}{\Lambda_{\chi}}$$

Inelastic asymmetry does not vanish at Q²=0 !

"Natural" scale $~d^\pm_\Delta~\sim~g_\pi$

Enhancement mechanism proposed: $|d_{\Delta}^{\pm}| = 25g_{\pi}$ (or larger) would help solve puzzle of large asymmetries in Hyperon radiative decays

Enhanced values would lead to measurable (few ppm) asymmetries in (γ, π^{-})

Would confuse extraction of $G^{A}_{N\Delta}(Q^{2})$ from inelastic data

G^0 : Pion photoproduction

362 MeV LD2 data

Misidentified electrons a background: Use TOF spectra from pulsed-beam runs to determine Cerenkov detector inefficiency \rightarrow 2.6% background.

Target wall background: 2%

Corrections for:

- rate-effects
- polarization,
- helicity-correlated beam properties

G^0 : Pion photoproduction:

Correct for electroproduction (average $Q^2 = 0.0032 \text{ GeV}^2$) using GEANT 3 simulation

Result: $A_{\gamma}^{-} = -(0.36 \pm 1.1 \pm 0.4)$ ppm

Implies: $d_{\Delta}^{-} = (8.4 \pm 24 \pm 8.3) g_{\pi}$

Will neglect this contribution in the following...

$G^{0}N-\Delta$: Models ($\Delta_{(2)}$ and $\Delta_{(3)}$)

- 1) "Default" model:
 - MAID for $\Delta_{(2)}$
 - use dipole form for $G^{A}_{NA}(Q^{2})$ with $M_{A} = 1.03 \text{ GeV}$
 - *F(Q²)* from Adler parameterization (S.L. Adler PRD **12**(1975)2644) parameters from N. Mukhopadhyay et al. (Nucl. Phys. A **633**(1998) 481.)
- 3) Dynamical Model of electroweak pion production:

K. Matsui, T. Sato & T.S.H. Lee, Phys. Rev. C 72, 025204 (2005). and T.S.H. Lee (private communication)
- hadronic effective chiral Lagrangian; field operators: N,Δ,π,ω,ρ and effective Lagrangians for πNN,πNΔ,ωNN...

• $\Delta_{(3)}$ uses alternate form: $G^A_{N,\Delta}(Q^2) = (1 + aQ^2)\exp(-bQ^2)G_A(Q^2)$,

with $a = 0.154 \text{ GeV}^{-2}$ $b = 0.166 \text{ GeV}^2$ and $M_A = 1.02 \text{ GeV}$ (from fit to neutrino charged-current pion production data)

$G^{0}N-\Delta$: Result (default model)

$G^{0}N-\Delta$: Dynamical Model of Matsui, Sato and Lee

A vs. Q^2 , E = 0.680 GeV, W = 1.178 GeV, θ = 94.81°

*G*⁰*N*-Δ: extracting $\Delta^{\pi}_{(3)}$

 $\Delta^{\pi}_{(3)}$ consistent with theory, but data not precise enough to provide G^{A}_{NA}

$G^{0}N-\Delta$: Axial Mass ?

One would need a precision of about \pm 0.5 ppm to say anything significant about M_A ...

Summary

- First measurement of PV asymmetry in inelastic scattering to the Δ
- First measurement of PV asymmetry in (γ, π^-)

- (γ, π^-) consistent with theory; does not favor *very* enhanced d_{Δ}^- but still room for sizable values
- Qweak has data in-hand on asymmetry at very low Q²; analysis underway & more data likely will be taken... improve precision on d⁻_Δ?