Parity-Violating Electron Scattering and Q_{weak}

David S. Armstrong College of William & Mary

Symmetry Tests in Nuclei and Atoms Kavli Institute for Theoretical Physics, UCSB Sept 19-23 2016

9/22/16

Outline

1) Intro to Parity-Violating Electron Scattering (PVES)

2) Qweak:

- first results on the proton's weak charge
- prospects for final result
- Sensitivity to new physics
- 3) Further Standard Model Tests with PVES: Plans at JLab-12 GeV

A brief history of parity violation

1930s – weak interaction needed to explain nuclear β decay

late 1970s – parity violation observed in electron scattering - SLAC E122

Parity-violating electron scattering

PARITY NON-CONSERVATION IN INELASTIC ELECTRON SCATTERING [☆]

C.Y. PRESCOTT, W.B. ATWOOD, R.L.A. COTTRELL, H. DeSTAEBLER, Edward L. GARWIN, A. GONIDEC¹, R.H. MILLER, L.S. ROCHESTER, T. SATO², D.J. SHERDEN, C.K. SINCLAIR, S. STEIN and R.E. TAYLOR

Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94305, USA

J.E. CLENDENIN, V.W. HUGHES, N. SASAO³ and K.P. SCHÜLER

Yale University, New Haven, CT 06520, USA

M.G. BORGHINI

Phys. Lett. 77B (1978)

CERN. Geneva, Switzerland

K. LÜBELSMEYER

Technische Hochschule Aachen, Aachen, West Germany

and

W. JENTSCHKE

II. Institut für Experimentalphysik, Universität Hamburg, Hamburg, West Germany

Received 14 July 1978

We have measured parity violating asymmetries in the inelastic scattering of longitudinally polarized electrons from detterium and hydrogen. For deuterium near $Q^2 = 1.6 (\text{GeV}/c)^2$ the asymmetry is $(-9.5 \times 10^{-5})Q^2$ with statistical and systematic uncertainties each about 10%.

Textbook Physics: High Energy Physics (D.H. Perkins)

Pioneering Experiment SLAC E122

Deep-inelastic scattering from isoscalar target

SLAC E122 cont'd

Also critical test of parton model

Pivotal to establishing Weinberg-Salam-Glashow $SU(2) \times U(1)$ gauge theory

Techniques

Optically pumped electron source: rapid helicity reversal,

integrate scattered flux

monitor & feedback to control electron beam fluctuations

Followed by:

⁹Be 1989: Mainz W. Heil et al.

12**C** 1990: MIT/Bates

P.A. Souder et al.

9/22/16

SLAC Experiments

SLAC E122 – crucial confirmation of WSG electroweak model

- Electron-deuteron deep inelastic scattering
- High luminosity: photoemission from NEA GaAs cathode
- Rapid helicity-flip (sign of e- polarization)
- Polarimetry to determine beam polarization
- Magnetic spectrometer: backgrounds and kinematic separation

 $A_{PV} \sim 100 \pm 10 \text{ ppm}$ $\sin^2 \theta_W = 0.20 \pm 0.03$

SLAC E158 – 1999

- electron-electron scattering purely leptonic interaction
- electron-electron weak attractive force had never before been measured!

 $A_{PV} \sim -131 \pm 14 \pm 10 \text{ ppb}$ $\sin^2 \theta_W = 0.2403 \pm 0.0013$

Weak Charges

Electroweak Lagrangian → Parity-Violating electron-quark term:

-Electroweak Charges-							
Particle	Electric Charge	Weak Vector Charge ($\sin^2 heta_W pprox$	$\neq \frac{1}{4}$)				
u	$+\frac{2}{3}$	$-2C_{1u}=+1-rac{8}{3}\sin^2 heta_Wpprox+$	$-\frac{1}{3}$				
d	$-\frac{1}{3}$	$ -2C_{1d} = -1 + rac{4}{3} \sin^2 heta_W pprox -$	$-\frac{2}{3}$				
p(uud)	+1	$Q_W^p = 1 - 4 \sin^2 \theta_W pprox 0$	← Proton's Weak Charge				
n(udd)	0	$Q_W^n = -1$	("accidental" suppression:				
			enhanced sensitivity to new physics)				

Qweak: Proton's weak charge

For forward angle scattering at low Q^2 : A_{PV} accesses Q^p_W

$$A_{\rm PV} \equiv \frac{\sigma_L - \sigma_R}{\sigma_L + \sigma_R} \to \frac{G_F Q^2}{4\pi\alpha\sqrt{2}} Q_W^p$$

Use four-fermion contact interaction to parameterize the effective PV electronquark couplings (mass scale and coupling)

New physics:

$$\sigma \propto |M_{\gamma} + M_{\rm Z} + M_{\rm new}|^2$$
$$\sim |M_{\gamma}|^2 + 2M_{\gamma}M_{\rm Z}^* + 2M_{\gamma}M_{\rm new}^*$$

Planned 4% measurement of proton's weak charge - probes TeV-scale new physics

$$\frac{\Lambda}{g} \sim \left(\sqrt{2}G_F \Delta Q_W^p\right)^{-\frac{1}{2}} \sim O(\text{TeV})$$

Erler, Kurylov, and Ramsey-Musolf, PRD 68, 016006 2003

Qweak: Proton's weak charge

Examples of TeV scale new physics that Q_{weak} would be sensitive to are:

 Q_{weak} is also sensitive to MeV-GeV scale mediators such as:

Dark Photon:

- Astrophysical motivation, observed in positron data
- Might be linked to muon g-2 anomaly

Dark Parity Violation: (Davoudiasl, Lee, Marciano, arXiv 1402.3620)

- New source of low energy PV via mass mixing between Z and Z_d with observable consequences
- Complementary to direct search for heavy dark photons

SUSY "phase space"

Kurylov, Ramsey-Musolf, Su (2003)

Extracting the weak charge

The previous strange form factor program (experiments at MIT/Bates, JLab and MAMI) allow us to subtract our hadronic contribution

Electroweak Radiative Corrections

Full expression for Q_W^p has energy dependent corrections – need precise calculations

The \Box_{WW} and \Box_{ZZ} are well determined from pQCD ($\propto \frac{1}{q^2 - M_{W(Z)}^2 + i\epsilon}$) The $\Box_{\gamma Z}$ isn't pQCD friendly due to the photon leg ($\propto \frac{1}{q^2 + i\epsilon}$)

Electroweak Radiative Corrections

In the Standard Model, the weak charge is *defined* at $Q^2 = 0$, E = 0.

$$Q_W^p = \left[\rho_{NC} + \Delta_e\right] \left[1 - 4\sin^2\hat{\theta}_W(0) + \Delta'_e\right] + \Box_{WW} + \Box_{ZZ} + \Box_{\gamma Z}$$

Uncertainty from these corrections on *current* results is irrelevant.

 $\square_{\gamma Z}$ contribution to Q_W^p (Qweak kinematics)

Calculations are primarily dispersion theory type error estimates can be firmed up with data! Qweak: inelastic asymmetry data taken at W ~ 2.3 GeV, Q² = 0.09 GeV²

Meeting PVES Challenges

- 180 μA beam current (JLab record)
- High power cryogenic target
- Rapid helicity reversal (960 Hz)
- Small scattering angle: toroidal magnet, large acceptance
- 6 GHz detected rates: data-taking in integrating mode
- Radiation hard detectors
- Low noise 18-bit ADCs
- Exquisite control of helicity-correlated beam parameters
- Four different kinds of helicity reversal:
 - Rapid (Pockels cell at source)
 - Slow (insertable $\lambda/2$ plate)
 - Ultra slow (Wien-reversal, g-2 spin flip)
- Two independent high-precision beam polarimeters
- High resolution Beam Current monitors
- Dedicated Tracking system for kinematics determination

The Q_{weak} Apparatus

The Q_{weak} Apparatus

First result

Q_{weak} ran from Fall 2010 – May 2012 (Hall C at JLab)

Four distinct running periods:

- Hardware checkout (Fall 2010-January 2011)
- Run 0 (Jan-Feb 2011)
- Run 1 (Feb May 2011)
- Run 2 (Nov 2011 May 2012)

We have completed and unblinded the analysis of "Run 0" (about 1/25th of our total dataset).

D. Androic et al. Phys. Rev. Lett. 111 (2013)141803.

$$A_{PV}^{p} = -279 \pm 35(stat) \pm 29(sys) \text{ ppb}$$

 $\langle E_{beam} \rangle = 1155 \text{ MeV}$

 $\langle Q^2 \rangle = 0.0250 \pm 0.0006 \text{ GeV}^2$

 $\theta_{eff} = 7.90$ °

Good agreement with Standard Model prediction

Reduced Asymmetry

The C_{1q} & the neutron's weak charge

The C_{1q} & the neutron's weak charge

Combining this result with the most precise atomic parity violation experiment we can also extract, for the first time, the neutron's weak charge:

$$Q_W^n = -0.975 \pm 0.010$$

 $Q_W^n(SM) = -0.9890$

Qweak Run 2 – Quality of Data

(statistics only - not corrected for beam polarization, AI target windows, ΔQ^2 , etc.)

PVDIS at 6 GeV

Symmetry Tests in Nuclei and Acons Inc.

ر ے

Qweak and PVDIS combined

Electron & quark compositeness or contact interaction limits*:

$$\Lambda^{\pm} = \mathbf{v} \left[\frac{8\sqrt{5}\pi}{\left| (2C_{2u} - C_{2d})_{Q^2} = 0 \right|^{\pm}} \right]^{1/2}$$

$$v = \sqrt{\sqrt{2}/(2G_{\rm F})} = 246.22 \,\,{\rm GeV}$$

>5.8 TeV & >4.6 TeV (constructive & destructive int. with SM)

c.f. HERA (ZEUS & H1) limits >3.2 & >3.8 TeV on $e_{V}q_{A}$ term

c.f. ATLAS, PRD **87** 015010(2013) >9.5 TeV & >12.1 TeV in left-left isoscalar model

(need to assume all other contact interactions are zero; PVES does not need this assumption)

*convention of Eichten, Lane & Peskin PRL **50**, 811 (1983)

Future: PVES at JLab in 12 GeV era

MOLLER - precision Standard Model test by measuring weak charge of electron in PV electron-electron scattering (revisit SLAC E158)

SOLID - precision Standard Model test by measuring PV DIS on deuteron: improved access to quark weak axial couplings C_{2q}

Large kinematic coverage: disentangle CSV and higher-twist effects

Elsewhere: P2 experiment at Mainz/MAMI (\rightarrow Kurt Aulenbacher's talk) improve Qweak by factor of 2-3 at lower Q²

MOLLER at 12 GeV

Parity-violating electron-electron scattering: weak charge of electron Update SLAC E158

 $A_{PV} = 35 \text{ ppb}$ Luminosity: $3x10^{39} \text{ cm}^2/\text{s}$ 75 μA 80% polarized beam

 $\delta(APV) = 0.73 \text{ ppb}$ $\delta(Q_e^W) = \pm 2.1 \% \text{ (stat.)} \pm 1.1 \% \text{ (syst.)}$

$$\mathcal{L}_{\mathbf{e}_{1}\mathbf{e}_{2}} = \sum_{\mathbf{i},\mathbf{j}=\mathbf{L},\mathbf{R}} rac{\mathbf{g}_{\mathbf{ij}}^{2}}{2\Lambda^{2}} ar{\mathbf{e}}_{\mathbf{i}} \gamma_{\mu} \mathbf{e}_{\mathbf{i}} ar{\mathbf{e}}_{\mathbf{j}} \gamma^{\mu} \mathbf{e}_{\mathbf{j}} \qquad \longrightarrow rac{\Lambda}{\sqrt{|\mathbf{g}_{\mathbf{RR}}^{2} - \mathbf{g}_{\mathbf{LL}}^{2}|}} = 7.5 \,\,\mathrm{TeV}$$

LEP2 (g_{LR} and sum) mass scale sensitivity: ~5.2 and 4.4 TeV

MOLLER: Lepton compositeness (strong coupling) – 47 TeV Sensitivity to: Doubly-charged scalar, heavy Z', SUSY, dark Z...

MOLLER and weak mixing angle

MOLLER apparatus

Cahn and Gilman, PRD 17 1313 (1978) polarized electrons on deuterium

$R_s(x$:) =	$= \overline{U}$	$\frac{2}{V(x)}$	$\frac{S(x)}{1+D}$	$\overline{P(x)}$	Larg	$\xrightarrow{\mathrm{e} x} 0$	
$R_v(x$;) =	$= \frac{u}{l}$	$\frac{1}{V(x)}$	$\frac{)+d}{)+L}$	$\frac{v(x)}{D(x)}$	Lar	$\xrightarrow{\text{ge } x}$	L
C_{1u}	=	$-\frac{1}{2}$	$+\frac{4}{3}$	\sin^2	$ heta_W$	\approx	-0.	19
C_{1d}	=	$\frac{1}{2}$	$-\frac{2}{3}$	\sin^2	$ heta_W$	\approx	0.	35
C_{2u}	=	$-\frac{1}{2}$	+2	\sin^2	$ heta_W$	\approx	-0.	04
C_{2d}	=	$\frac{1}{2}$	-2	\sin^2	$ heta_W$	\approx	0.	04

$$Y = \frac{1 - (1 - y)^2}{1 + (1 - y)^2 - y^2 \frac{R}{R + 1}} \quad \mathbf{x} \equiv \mathbf{x}_{Bjorken}$$
$$R(x, Q^2) = \sigma^l / \sigma^r \approx 0.2 \quad \mathbf{y} \equiv 1 - \mathbf{E'} / \mathbf{E}$$

$SOLID - accessing the C_{iq}'s$

Blue bands represent expected data: Qweak (left) and PVDIS-6GeV (right)

Green bands are proposed SOLID PVDIS

SOLID – Large Acceptance Device

- Moderate running times
- Large Acceptance
- High Luminosity on LH2 & LD2
- Better than 1% errors for small bins
- Kinematics:
- Large Q² coverage
- x-range 0.25-0.75
- $-W^2 > 4 \text{ GeV}^2$

- Requirements:
- Solenoid contains low energy backgrounds (Møller, pions, etc)
- Baffling to cut backgrounds
- Trajectories measured after baffles
- Fast tracking—GEM, particle ID, calorimetry, and pipeline electronics
- Precision polarimetry (0.4%) Compton and atomic hydrogen Moller

PVES Experiment Summary

Physics sensitivity from contact interaction (LEP2 convention, g²= 4pi)

	precision	$\Delta \sin^2 \overline{\theta}_{W}(0)$	Λ_{new} (expected)
APV Cs	0.58 %	0.0019	32.3 TeV
E158	14 %	0.0013	17.0 TeV
Qweak I	19 %	0.0030	17.0 TeV
Qweak final	4.5 %	0.0008	33 TeV
PVDIS	4.5 %	0.0050	7.6 TeV
SoLID	0.6 %	0.00057	22 TeV
MOLLER	2.3 %	0.00026	39 TeV
P2	2.0 %	0.00036	49 TeV
PVES ¹² C	0.3 %	0.0007	49 TeV

Jens Erler

Summary

- Qweak: First measurement of proton's weak charge, consistent with Standard Model, 25x more data soon to be released
- Qweak and PVDIS at 6 GeV: constraints on new physics
- MOLLER and SOLID: major programs after JLab upgrade two complementary Standard Model tests.

Thanks to the organizers for the kind invitation! And thanks to you who stayed for my talk rather than....

The Qweak Collaboration

97 collaborators23 grad students10 post docs23 institutions

Institutions:

¹ University of Zagreb ² College of William and Mary ³ A. I. Alikhanyan National Science Laboratory ⁴ Massachusetts Institute of Technology ⁵ Thomas Jefferson National Accelerator Facility ⁶ Ohio University ⁷ Christopher Newport University ⁸ University of Manitoba, ⁹ University of Virginia A SEARCH FOR ¹⁰ TRIUMF **NEW PHYSICS** ¹¹ Hampton University weak ¹² Mississippi State University ¹³ Virginia Polytechnic Institute & State Univ ¹⁴ Southern University at New Orleans ¹⁵ Idaho State University ¹⁶ Louisiana Tech University ¹⁷ University of Connecticut ¹⁸ University of Northern British Columbia ¹⁹ University of Winnipeg ²⁰ George Washington University ²¹ University of New Hampshire ²² Hendrix College, Conway ²³ University of Adelaide ²⁴Syracuse University

D. Androic,¹D.S. Armstrong,²A. Asaturyan,³T. Averett,²J. Balewski,⁴K. Bartlett,²J. Beaufait,⁵R.S. Beminiwattha,⁶J. Benesch,⁵ F. Benmokhtar,⁷J. Birchall,⁸R.D. Carlini,^{5,2} G.D. Cates,⁹J.C. Cornejo,²S. Covrig,⁵M.M. Dalton,⁹C.A. Davis,¹⁰W. Deconinck,² J. Diefenbach,¹¹J.F. Dowd,²J.A. Dunne,¹² D. Dutta,¹²W.S. Duvall,¹³ M. Elaasar,¹⁴W.R. Falk,⁸J.M. Finn,² T. Forest,^{15, 16} D. Gaskell,⁵ M.T.W. Gericke,⁸J. Grames,⁵V.M. Gray,²K. Grimm,^{16, 2} F. Guo,⁴J.R. Hoskins,²K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴J. Leacock,¹³ J. Leckey,² A.R. Lee,¹³ J.H. Lee,^{6, 2} L. Lee,¹⁰
S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,¹³, J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ H. Nuhait,¹⁶ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵ P. Solvignon,⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8} B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ P. Zang,²⁴ and S. Zhamkochyan³

MOLLER: if SUSY seen at LHC...

