New Measurement of the Proton's Weak Charge

David S. Armstrong William & Mary

è

G

11/01/2017

Paphos, Cyprus, Oct 31 – Nov 3

EINN 2017

1

Search for physics Beyond the Standard Model

- Received Wisdom: Standard Model is incomplete, and is low-energy effective theory of more fundamental physics
- Low energy (Q² << M²): Precision Frontier complementary to Energy Frontier measurements (LHC)
 - Neutrino masses and role in the early universe $0\nu\beta\beta$ decay, θ_{13} , β decay,...
 - Matter-antimatter asymmetry in the present universe EDM, DM, LFV, $0\nu\beta\beta$, θ_{13}
- Unseen Forces of the early Universe

Weak decays, **PVES**, g_{μ} -2,...

LHC new physics signals likely will need additional indirect evidence to pin down their nature

- **Neutrons:** Lifetime, P- & T-Violating Asymmetries (LANSCE, NIST, SNS...)
- **Muons:** Lifetime, Michel parameters, g-2, Mu2e (PSI, TRIUMF, FNAL, J-PARC...)
- **PVES:** Low-energy weak neutral current couplings, precision weak mixing angle (SLAC, Jefferson Lab, Mainz)
- Atoms: atomic parity violation

Idea - select observables that are:

- 1) zero, or significantly suppressed, in Standard Model
- 2) Robust predictions within Standard Model

Weak Charge

Electroweak Lagrangian → Parity-Violating electron-quark term:

$$\mathcal{L}_{PV}^{EW} = \frac{G_F}{\sqrt{2}} \left[g_A^e(\bar{e}\gamma_\mu\gamma_5 e) \cdot \sum_q g_V^q(\bar{q}\gamma^\mu q) + g_V^e(\bar{e}\gamma_\mu e) \cdot \sum_q g_A^q(\bar{q}\gamma^\mu\gamma_5 q) \right]$$

$$C_{1q} = 2g_A^e g_V^q$$

$$C_{1i} = 2g_A^e g_V^i$$

PVES: Parity-violating electron scattering

Scatter longitudinally-polarized electrons from unpolarized target Originally proposed by Ya. B. Zeldovich JETP 36 (1959)

Electroweak interference

$$A \equiv \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}} \rightarrow \frac{\left| \begin{array}{c} & & \\ & & \\ & & \\ e & & \end{array} \right|_{e} \\ & & \\ & & \\ & & \\ & & \\ e & & \\ e & & \\ & & \\ e & & \\ \end{array} \right|_{e} \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right|_{e} \\ & &$$

For e-p scattering:

$$A \equiv \frac{d\sigma_{+} - d\sigma_{-}}{d\sigma_{+} + d\sigma_{-}} \xrightarrow{\stackrel{Q^{2} \to 0}{\theta \to 0}} \left[\frac{-G_{F}}{4\pi\alpha\sqrt{2}} \right] \left[Q^{2} Q_{weak}^{p} + Q^{4} B(Q^{2}) \right]$$

For forward angle scattering at low Q^2 : A_{PV} accesses Q^p_W "Form factor" term due to finite proton size – hadronic structure (~ 30% for Qweak) – determined well by existing PVES high-Q² data

Meeting PVES Challenges

 $A_{ep} \approx 200 \ ppb$ want $\approx 5\%$ precision

- 180 µA beam current (JLab record)
- High power cryogenic target
- Rapid helicity reversal (960 Hz)
- Small scattering angle: toroidal magnet, large acceptance
- GHz detected rates: data-taking in integrating mode
- Radiation hard detectors
- Low noise 18-bit ADCs
- Exquisite control of helicity-correlated beam parameters
- Four different kinds of helicity reversal:
 - Rapid (Laser beam at source: Pockels cell)
 - Slow (insertable $\lambda/2$ plate in laser beam)
 - Ultra slow (Wien-reversal, g-2 spin flip)
- Two independent high-precision beam polarimeters
- High resolution Beam Current monitors
- Dedicated Tracking system for kinematics determination

The Q_{weak} Apparatus

The Q_{weak} Apparatus – during installation

Main Detectors

Main detectors

Toroidal magnet focuses elastic electrons onto each bar

- 8 fused-silica Cerenkov bars: 200 cm x 18 cm x 1.25 cm
- Rad-hard, low luminescence
- 900 MHz e⁻ per detector
- Azimuthal symmetry maximizes rates & reduces systematic uncertainties
- 2 cm lead pre-radiators: a) reduce soft backgrounds discovered in commissioning
 b) boost signal size (but cost to energy resolution)

Close up of one detector *in situ*

Simulation of scattering rate MD face

Contractor V-Milden

Measured

Hydrogen Target

Target boiling might have

been problematic!

35 cm, 2.5 kW liquid hydrogen target (world's highest power cryotarget) Designed using Computational Fluid Dynamics

- Temperature ~20 K
- Pressure: 220 kPa
- Beam: 150 180 μA
- 4% X₀

Rapid helicity-reversal: 960 Hz common-mode rejection of boiling noise

Achieved ~50 ppm noise (< 225 ppm counting statistics)

Beam Polarimetry

Møller polarimeter $(\vec{e} + \vec{e} \rightarrow e + e)$

- Precise, but invasive
- Thin, polarized Fe target
- Brute force polarization
- Limited to low current

Compton polarimeter $(\vec{e} + \gamma \rightarrow e + \gamma)$

- Installed for Q-weak
- Runs continuously at high currents
- Statistical precision: 1% per hour
 - Electron Detector: Diamond strips
 Detect *both* recoil electron and photon.

Helicity-Correlated Beam Parameter Sensitivities

 $A_{beam} = \sum_{i} \frac{\partial A}{\partial \chi_{i}} \Delta \chi_{i}$ where *i* runs over x,y,x'(angle),y'(angle), and energy.

Natural: Linear regression of natural beam motion Driven: Drive sinusoidal beam oscillations with large amplitude

Beam Parameter	Run 1 $\Delta \chi_i$	Run 2 $\Delta \chi_i$	Typical $\partial A/\partial \chi_i$
X	-3.5 ± 0.1 nm	-2.3 ± 0.1 nm	-2 ppb/nm
X'	-0.30 ± 0.01 nrad	-0.07 ± 0.01 nrad	50 ppb/nrad
Y	-7.5 ± 0.1 nm	$0.8\pm0.1\mathrm{nm}$	< 0.2 ppb/nm
Y'	-0.07 ± 0.01 nrad	-0.04 ± 0.01 nrad	< 3 ppb/nrad
Energy	$-1.69 \pm 0.01 \text{ ppb}$	-0.12 ± 0.01 ppb	-6 ppb/ppb

Run 1:
$$A_{\text{beam}} = 18.5 \pm 4.1 \text{ ppb}$$
 Run 2: $A_{\text{beam}} = 0.0 \pm 1.1 \text{ ppb}$

Target Windows

Background from detected electrons that scattered from thin Aluminum entrance and exit windows:

- 1. Measure \approx 1500 ppb asymmetry from thick dummy target (identical Al alloy).
- 2. Precisely measure the $(2.52 \pm 0.06)\%$ "dilution" from windows.
- Net correction is \approx 25% of hydrogen signal

Aluminum Parity-Violating Asymmetry

Three slow reversal types

IN/OUT: reversal of laser helicity (IWHP)

L/R: reversal of electron beam via Wien filter

g-2 flip: reversal of electron via spin precession in accelerator

Kinematics (Q^2) determination

To determine Q^2 , we go to "tracking" mode: $A_{PV} = -\frac{G_F Q^2}{4\pi\alpha\sqrt{2}} \{Q_w^p + B(\theta, Q^2)Q^2\}$

- Currents ~ 50 pA
- Use Vertical + Horizontal Drift Chambers
- Reconstruct individual scattering events

Correct for radiative effects in target with Geant 4 simulations, benchmarked with gas-target & solid target studies

Secondary Scattering

- Spin precession of scattered e^{-} in magnet: some transverse polarization P_{T}
- P_T analyzed by scattering in Pb pre-radiators \rightarrow transverse asymmetry in detectors: opposite sign in the two PMTs (R & L) in each detector $A_{diff} = A_R - A_L$ Parity Signal = $\frac{A_R + A_L}{2}$ \therefore Effect cancels to first order
- Analyzing power in Pb:
 - 1. Beam-normal single spin asymmetry (high energy): 2γ exchange
 - 2. Mott scattering (low energy in shower) \rightarrow dominant effect

 A_{diff} is of same scale (hundreds of ppb) as A_{PV}

Secondary Scattering

- This transverse asymmetry couples with position & angle dependence of optical response of detectors
- Any non-cancellation between R and L PMTs: detector imperfections & nonsymmetric flux distributions
- Optical properties and flux distributions measured with tracking system
- Quantified non-cancellation with detailed GEANT 4 simulation

Asymmetry: Dominant Systematic Uncertainties

Quantity	Run 1	Run 1	Run 2	Run 2
	error (ppb)	fractional	error (ppb)	fractional
BCM Normalization: A_{BCM}	5.1	25%	2.3	17%
Beamline Background: A_{BB}	5.1	25%	1.2	5%
Beam Asymmetries: A_{beam}	4.7	22%	1.2	5%
Rescattering bias: A_{bias}	3.4	11%	3.4	37%
Beam Polarization: P	2.2	5%	1.2	4%
Target windows: A_{b1}	1.9	4%	1.9	12%
Kinematics: R_{Q^2}	1.2	2%	1.3	5%
Total of others	2.5	6%	2.2	15%
Combined in quadrature	10.1		5.6	

$$A_{\rm msr} = A_{\rm raw} + A_T + A_L + A_{\rm BCM} + A_{\rm BB} + A_{\rm beam} + A_{\rm bias}$$

$$A_{ep} = R_{tot} \frac{A_{msr}/P - \sum_{i=1,3,4} f_i A_i}{1 - \sum_{i=1}^4 f_i}$$

$$R_{\rm tot} = R_{\rm RC} R_{\rm Det} R_{\rm Acc} R_{Q^2}$$

Blinded Analysis

Run 1 and 2 *each* had their own independent "blinding factor" (additive offset in range ± 60 ppb) to avoid analysis bias.

Un-Blinded Results

Marvelous agreement between the two Runs

(several systematic corrections rather different in the two Runs)

Period	Asymmetry (ppb)	Stat. Unc. (ppb)	Syst. Unc. (ppb)	Tot. Uncertainty (ppb)
Run 1	-223.5	15.0	10.1	18.0
Run 2	-227.2	8.3	5.6	10.0
Run 1 and 2 combined				
with correlations	-226.5	7.3	5.8	9.3

Behavior of Asymmetry under Slow Reversals

The data behaved as expected under all three types of slow helicity reversal.

Combining the data without sign corrections gives

NULL average = -1.75 ± 6.51 ppb

- consistent with zero, as expected

Armstrong EINN

Electroweak Radiative Corrections

 Q_W^p expt. precision : ± 0.0045

Armstrong EINN

Extracting Weak Charge from Asymmetry Result

$$A_{ep} = -226.5 \pm 7.3 (\text{stat}) \pm 5.8 (\text{syst}) \text{ ppb at } \langle Q^2 \rangle = 0.0249 (\text{GeV} / c)^2$$

Global fit of world PVES data up to $Q^2 = 0.63 \text{ GeV}^2$ to extract proton's weak charge:

Running of the Weak Mixing angle $\sin^2 \theta_W$

Note: interference effects of heavy new physics (*i.e.* Z', leptoquarks) suppressed at Z resonance \rightarrow LEP/SLC mass limits \leq TeV, while low energy observables probe few TeV scale

Sensitivity to New Physics at TeV scale

Parameterize generically by adding contact term to Lagrangian:

$$\mathcal{L}_{\rm NC}^{\rm eq} = -\frac{G_F}{\sqrt{2}} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q C_{1q} \bar{q} \gamma^{\mu} q.$$
 Standard Model term
$$\mathcal{L}_{\rm NP}^{\rm PV} = -\frac{g^2}{4\Lambda^2} \bar{e} \gamma_{\mu} \gamma_5 e \sum_q h_V^q \bar{q} \gamma^{\mu} q$$
 New Physics term
$$\underset{\substack{q = \text{coupling} \\ \Lambda = \text{mass scale}}$$

Limits on Semi-Leptonic PV Physics beyond the SM

APV: atomic parity violation ¹³³Cs C.S. Wood et al. Science **275**, 1759 (1997); Dzuba et al. PRL **109**, 203003 (2012)

11/01/2017

SM tests with Precision Low-Energy Parity Violation

Experiment	% Precision	$\Delta sin^2 \theta_w$	Λ /g [TeV] (mass reach)	
SLAC-E122	8.3	0.011	1.5	
SLAC-E122	110	0.44	0.25	
APV (²⁰⁵ TI)	3.2	0.011	3.8	
APV (¹³³ Cs)	0.58	0.0019	9.1	
SLAC-E158	14	0.0013	4.8	
Jlab-Hall A	4.1	0.0051	2.2	
Jlab-Hall A	61	0.051	0.82	
JLab-Qweak (p)	6.2	0.0011	7.5	
JLab-SoLID	0.6	0.00057	6.2	
JLab-MOLLER	2.3	0.00026	11.0	
Mainz-P2	2.0	0.00036	13.8	
APV (²²⁵ Ra+)	0.5	0.0018	9.6	
APV (²¹³ Ra ⁺ / ²²⁵ Ra ⁺)	0.1	0.0037	4.5	
PVES (¹² C)	0.3	0.0007	14	

Published

Planned

A suite of Auxiliary Measurements

Many ancillary measurements done to quantify various systematic effects:

Q_{weak} has data (under analysis) on a variety of observables of potential interest for Hadron physics:

Beam normal single-spin asymmetry* for elastic scattering on proton Beam normal single-spin asymmetry for elastic scattering on ²⁷Al PV asymmetry in the $N \rightarrow \Delta$ region. Beam normal single-spin asymmetry in the $N \rightarrow \Delta$ region. Beam normal single-spin asymmetry near W= 2.5 GeV Beam normal single-spin asymmetry in pion photoproduction PV asymmetry in inelastic region near W=2.5 GeV (related to γZ box diagrams) PV asymmetry for elastic/quasielastic from ²⁷Al PV asymmetry in pion photoproduction

*: *aka* vector analyzing power *aka* transverse asymmetry; generated by imaginary part of two-photon exchange amplitude

The Qweak Collaboration

101 collaborators 26 grad students 11 post docs 27 institutions

Institutions:

- ¹ University of Zagreb
- ² College of William and Mary
- ³ A. I. Alikhanyan National Science Laboratory
- ⁴ Massachusetts Institute of Technology
- ⁵ Thomas Jefferson National Accelerator Facility
- ⁶ Ohio University

¹⁰ TRIUMF

- ⁷ Christopher Newport University
- ⁸ University of Manitoba,
- ⁹ University of Virginia
- A SEARCH FOR **NEW PHYSICS**
- ¹¹ Hampton University
- weak ¹² Mississippi State University
- ¹³ Virginia Polytechnic Institute & State Univ
- ¹⁴ Southern University at New Orleans
- ¹⁵ Idaho State University
- ¹⁶ Louisiana Tech University
- ¹⁷ University of Connecticut
- ¹⁸ University of Northern British Columbia
- ¹⁹ University of Winnipeg
- ²⁰ George Washington University
- ²¹ University of New Hampshire
- ²² Hendrix College, Conway
- ²³ University of Adelaide
- ²⁴Syracuse University
- ²⁵ Duquesne University

D. Androic,¹ D.S. Armstrong,² A. Asaturyan,³ T. Averett,² J. Balewski,⁴ K. Bartlett,² J. Beaufait,⁵ R.S. Beminiwattha,⁶ J. Benesch,⁵ F. Benmokhtar,^{7,25} J. Birchall,⁸ R.D. Carlini,^{5, 2} G.D. Cates,⁹ J.C. Cornejo,² S. Covrig,⁵ M.M. Dalton,⁹ C.A. Davis,¹⁰ W. Deconinck,² J. Diefenbach,¹¹ J.F. Dowd,² J.A. Dunne,¹² D. Dutta,¹² W.S. Duvall,¹³ M. Elaasar,¹⁴ W.R. Falk^{*},⁸ J.M. Finn^{*},², T. Forest,^{15, 16}, C. Gal,⁹ D. Gaskell,⁵ M.T.W. Gericke,⁸ J. Grames,⁵ V.M. Gray,² K. Grimm,^{16, 2} F. Guo,⁴ J.R. Hoskins,² K. Johnston,¹⁶ D. Jones,⁹ M. Jones,⁵ R. Jones,¹⁷ M. Kargiantoulakis,⁹ P.M. King,⁶ E. Korkmaz,¹⁸ S. Kowalski,⁴ J. Leacock,¹³ J. Leckey,², A.R. Lee,¹³ J.H. Lee,^{6, 2}, L. Lee,¹⁰ S. MacEwan,⁸ D. Mack,⁵ J.A. Magee,² R. Mahurin,⁸ J. Mammei,^{13,} J.W. Martin,¹⁹ M.J. McHugh,²⁰ D. Meekins,⁵ J. Mei,⁵ R. Michaels,⁵ A. Micherdzinska,²⁰ A. Mkrtchyan,³ H. Mkrtchyan,³ N. Morgan,¹³ K.E. Myers,²⁰ A. Narayan,¹² L.Z. Ndukum,¹² V. Nelyubin,⁹ H. Nuhait,¹⁶ Nuruzzaman,^{11, 12} W.T.H van Oers,^{10, 8} A.K. Opper,²⁰ S.A. Page,⁸ J. Pan,⁸ K.D. Paschke,⁹ S.K. Phillips,²¹ M.L. Pitt,¹³ M. Poelker,⁵ J.F. Rajotte,⁴ W.D. Ramsay,^{10, 8} J. Roche,⁶ B. Sawatzky,⁵ T. Seva,¹ M.H. Shabestari,¹² R. Silwal,⁹ N. Simicevic,¹⁶ G.R. Smith,⁵ P. Solvignon^{*},⁵ D.T. Spayde,²² A. Subedi,¹² R. Subedi,²⁰ R. Suleiman,⁵ V. Tadevosyan,³ W.A. Tobias,⁹ V. Tvaskis,^{19, 8} B. Waidyawansa,⁶ P. Wang,⁸ S.P. Wells,¹⁶S.A. Wood,⁵ S. Yang,² R.D. Young,²³ P. Zang,²⁴ and S. Zhamkochyan ³

Summary

Precision measurement of proton's weak charge:

 $Q_W^p = 0.0719 \pm 0.0045$

Excellent agreement with Standard Model prediction = 0.0708

Constrains generic new parity-violating "Beyond the Standard Model" physics at TeV scale: $\Lambda/g > 3.6 \text{ TeV}$ (arbitrary u/d ratio of couplings)

Paper submitted for publication Oct 10.

Important addition to global electroweak fits to constrain many new physics scenarios