Parity-violating electron scattering and the neutron distribution in ²⁷Al

APS/DNP meeting October 11-14 2021

David S. Armstrong William & Mary

for the Qweak Collaboration

Parity Violating Electron Scattering (PVES)

Qweak experiment in Hall C at Jefferson Lab:

- Precision measurement of proton's weak charge as a Standard Model test
- Electroweak interference in parity-violating elastic electron scattering from proton
- Generic new-physics constraints with parity-violating couplings: $\Lambda/g > 3.6 \text{ TeV}$ Published: Nature 557, 207 (2018).

Additional result: PVES on aluminum target.

- Data taken to determine target-window background for weak charge measurement.
- Largest single correction to A_{PV} for weak charge measurement ($\approx 20\%$)

Elastic PVES on ²⁷Al

Context: only three previous elastic PVES measurements on complex nuclei*:

 1.
 ⁴He
 (HAPPEX)
 PRL 96, 022003 (2006)

 2.
 ¹²C
 (MIT/Bates)
 PRL 65, 694 (1990)

 3.
 ²⁰⁸Pb
 (PREX I & II)
 PRL 126, 172502 (2021)

*New result from CREx on ⁴⁸Ca reported by C. Palatchi yesterday!

Weak charge of neutron >> weak charge of proton:

≈ Model-independent probe of neutron distribution of heavy nucleus: access to "neutron skin"

$$A_{\rm PV} = \frac{\sigma_+(\theta) - \sigma_-(\theta)}{\sigma_+(\theta) + \sigma_-(\theta)} \approx \frac{G_F Q^2 Q_W}{4\pi \alpha Z \sqrt{2}} \frac{F_{\rm W}(Q^2)}{F_{\rm EM}(Q^2)}$$

- Test of approach used by PREx, CREx
- Sanity check on target window correction for Q_{weak}

Challenges

Two Primary Challenges in ²⁷Al elastic analysis:

- 1. Target not made of pure aluminum: alloy instead.
- 2. Spectrometer not designed with narrow energy acceptance to separate elastic state from excited states in nuclei.

Experimental Conditions

Target: 27 Al alloy 4.2% X₀ (3.7 mm thick)

Beam Conditions:

 $E_e = 1.16 \text{ GeV}$ I = 65 μ A Polarization = 88.8 \pm 0.6 % **Spectrometer:**

$$\begin{array}{l} \langle \theta \rangle = 7.6^{\circ} \quad 5.8^{\circ} \leq \theta \leq 11.6^{\circ} \\ \langle Q^2 \rangle = 0.0236 \ \mathrm{GeV^2} \end{array}$$

²⁷Al - asymmetries

- Asymmetry is well-behaved under three kinds of slow helicity reversal.
- Corrections for helicity-correlated beam properties at the few ppb scale: (0.4 ± 1.4) ppb

²⁷Al – alloy corrections

Correction method:

- Considered most abundant isotopes of Zn, Mg, Cu, Cr, Fe, and Si
- Dilution and asymmetry calculations using distortedwave cross sections from Horowitz & Lin for Zn, Mg, Cu, Cr, Fe, Si.

Q_{weak} acceptance $\langle \theta \rangle = 7.6^{\circ}$	$5.8^\circ \le \theta \le 11.6^\circ$
--	---------------------------------------

Element	Run 1	Run 2
AI	89.53	89.23
Zn	5.90	5.87
Mg	2.60	2.63
Cu	1.50	1.81
Cr	0.19	0.19
Fe	0.14	0.11
Si	0.08	0.09
Mn	0.04	0.04
Ti	0.02	0.03

Aluminum alloy elements [w%]

²⁷Al – non-elastic backgrounds

Quasielastic and inelastic ($N \rightarrow \Delta$) backgrounds (low-lying nuclear levels & GDR smaller)

Background fraction: f_i

- Use GEANT 4 simulation with cross-section parameterization from empirical fits to data

(Phys. Rev. C 104 (2021)014606 (Qweak); E. Christy)

Process	f_i	$\delta f_i/f_i$ (%))
QE	$21.2 \pm 2.9~\%$	14%	
Inelastic	$0.66 \pm 0.10~\%$	15%	
Our largest systematic uncertainty:			f_{QE}

Asymmetry: A_i

- Quasielastic: relativistic Fermi Gas model (Horowitz & Piekarewicz, Phys. Rev. C 47 (1993)2924)

 $A_{QE} = -0.34 \pm 0.17$ ppm

- Inelastic: made a low-statistics measurement: $A_{inel} = -0.56 \pm 5.8$ ppm

PVES on ²⁷Al - result

Theory for A_{elastic} using DWBA *C. J. Horowitz Phys. Rev. C* 89, 045503 (2014)


```
A<sub>elastic</sub> = 2.16 ± 0.19 ppm
[ ± 0.11(stat.) ± 0.15 (sys.) ppm]
```

Dominant systematics:

- *f_{QE}* 5.0%
- *A_{QE}* 2.4%
- A_{inel} 2.6%
- A_{nucl} 2.1%

• *A_{alloy}* 1.6%

Total systematic: 6.8% Statistics: 5.1%

 Q_{weak} acceptance $\langle \theta \rangle = 7.6^{\circ}$ 5.8° $\leq \theta \leq 11.6^{\circ}$

PhD Thesis - Kurtis Bartlett W&M 2018

PVES on ²⁷Al - result

Extraction of neutron distribution radius: RMF calculations C. Horowitz, F. Fattoyev & Z. Lin

RMF models tuned to reproduce nucleon binding energies, charge radii, and strengths of the isoscalar & isovector giant resonances in various nuclei

 A_{elastic} = 2.16 ± 0.19 ppm

 $R_n = (2.88 \pm 0.11)$ fm (preliminary)

Neutron skin thickness:

 $R_n - R_p = -0.04 \pm 0.11$ fm (preliminary)

10/13/2021

Summary

PVES on ²⁷AI: Only 4th elastic parity-violation result on complex nucleus* $A_{elastic} = 2.16 \pm 0.19 \text{ ppm}$

Neutron distribution radius in ²⁷Al: $R_n = (2.89 \pm 0.11)$ fm (preliminary)

Neutron skin thickness: $R_n - R_p = -0.04 \pm 0.11$ fm (preliminary)

Consistent with zero: makes intuitive sense: (Z=13, N=14)

Tests use of PVES to determine R_n

Thanks to all my Qweak collaborators & our theory colleagues

*CREx result presented yesterday by C. Palatchi will be the 5th

Backup Slides

²⁷Al - asymmetries

- Asymmetry is well-behaved under three kinds of slow helicity reversal.
- Corrections for helicity-correlated beam properties at the few ppb scale: (0.4 ± 1.4) ppb

0.225

0.073

0.082

1.26

1.62

1.39

²⁷Al – nuclear excited states

Low-lying levels:

- Use form factor data from Glasgow(1970s) and MIT/Bates (1980s) in our kinematic range.
- Fit FF data to Gaussians, input to GEANT 4
- All are dominantly isoscalar transitions, so $A_{Born} = A_{PV}^{eA} = A_0 Q_W = A_0 [ZQ_W^p + NQ_W^n]$
- Assume conservative 50% uncertainty on asymmetries due to isospin mixing.

Energy Level [MeV]	Background Fraction (f_i) [%]	Asymmetry (A_i) [ppm]
0.844	0.27 ± 0.04	2.619 ± 1.310
1.014	0.41 ± 0.10	2.563 ± 1.282
2.211	1.35 ± 0.16	2.543 ± 1.271
2.735	0.19 ± 0.02	2.590 ± 1.295
2.990	0.93 ± 0.07	2.617 ± 1.308
4.580	0.06 ± 0.01	2.783 ± 1.392
4.812	0.09 ± 0.02	2.379 ± 1.189
5.430	0.17 ± 0.03	2.490 ± 1.249
5.668	0.08 ± 0.02	2.542 ± 1.271
7.228	0.18 ± 0.06	2.706 ± 1.353
7.477	0.10 ± 0.07	2.753 ± 1.377

PhD Thesis - Kurtis Bartlett W&M 2018

²⁷Al – systematics

Quantity	Value	$\Delta A_{\rm PV}/A_{\rm PV}$ (%)
$A_{ m msr}$:	$1.436\pm0.014~\rm{ppm}$	1.0
P:	0.8880 ± 0.0055	0.7
$R_{ m tot}$:	0.9855 ± 0.0087	0.9
$f_{ m QE}$:	$21.2 \pm 2.9~\%$	5.0
A_{QE} :	$-0.34\pm0.17~\rm{ppm}$	2.4
$f_{ m inel}$:	$0.665 \pm 0.099~\%$	0.2
$A_{ ext{inel}}$:	$-0.58\pm5.83~\mathrm{ppm}$	2.6
$f_{ m pions}$:	$0.06 \pm 0.06~\%$	0.1
$A_{ m pions}$:	$0\pm20\mathrm{ppm}$	0.8
$f_{ m neutral}$:	$0\pm0.45~\%$	0.1
$A_{ ext{neutral}}$:	$1.7\pm0.2~\mathrm{ppm}$	0.0
$f_{ m beamline}$:	$0.69 \pm 0.06~\%$	0.1
$f_{ m alloy}$:	$5.41 \pm 0.34~\%$	0.1
$A_{ m alloy}$:	$1.90\pm0.58~\rm{ppm}$	1.6
$f_{ m GDR}$:	$0.045 \pm 0.023~\%$	0.1
$A_{ m GDR}$:	$-2.22\pm1.11~\rm{ppm}$	0.0
$f_{ m nucl}$:	$3.83 \pm 0.23~\%$	0.1
$A_{ m nucl}$:	$2.58\pm0.61~\rm{ppm}$	2.1
Total Systematic		6.8~%

²⁷Al – Proton Distribution Radius (preliminary)

$$R_p^2 = R_{ch}^2 - <\!r_p^2\!> - \frac{N}{Z} <\!r_n^2\!> - \frac{3}{4m_N^2} - <\!r_{so}^2\!>$$

 $R_{ch} = 3.035 \pm 0.002$ fmAt. Dat. Nucl. Dat. Tab. 87, 185 (2004) $r_p = 0.8751 \pm 0.0061$ fmPDG 2017 $r_n^2 = -0.1161 \pm 0.022$ fm²PDG 2020 $r_{so}^2 = -0.017$ fm²Ong, Berengut & Flambaum PRC 82, 014320 (2010)

 $R_p^2 = (2.295 \pm 0.018 \,\mathrm{fm})^2$

If we use newer values for r_p (PDG 2020) and R_{ch} (Heylen et al., PRC 103, 014318 (2021) would increase R_p by about 1% (≈ 0.02 fm), compared to our precision on R_n of 0.11 fm.