Now we have
\[
\log 2 = \text{6-0 term + all others}
\]
\[
\frac{1}{1 - \beta} + \sum_{\text{not all zero}} \left[1 - \beta - \beta \left(\frac{E_{\infty}}{1 - \beta - \beta \left(\frac{E_{\infty}}{1 - \beta} \right)} \right) \right]^{-1}
\]
\[
\langle N \rangle = \frac{2}{1 - \beta} + \sum_{\text{not all zero}} \left(\frac{E_{\infty}}{1 - \beta} \right)
\]

Finally:
\[
E_n = \frac{\hbar^2 k^2}{2\mu} \quad \text{free particles}
\]
\[
E_n = t_0 (\omega x \cos \theta y + \text{tweeze}) \quad \text{particles in traps}
\]

Low density, \(\lambda T, \beta \to 0 \)

High density, \(\lambda T, \beta \to 1 \).

Up to here, everything is exact, for noninteracting particles.

Approx \(\frac{\hbar \omega}{\lambda T} \ll 1 \)

\[
\sum_{\text{not all zero}} F(\omega \lambda x, h\theta y) \to \int_0^\infty F(\omega \lambda x, h\theta y) \, dh \, d\theta \, dx
\]

It is not obvious that we get good results by taking this limit and including the second term separately.
Also not obvious: \(kTc \approx N^{4/3} \mu^2 \). \(\ldots \) We can easily have \(\mu^2/N^{1/3} \ll 1 \) in the range of interest.

\[
N - N_0 = \int_0^\infty \int_0^\infty \int_0^\infty \frac{d\xi d\eta d\kappa}{E + \frac{1}{2} (\xi^2 + \eta^2 + \kappa^2) - 1}
\]

Look near \(z \approx 1 \).

(To test approx., compare with numerical summation)

\[
\text{Change variables } \bar{\xi}_x = \frac{\xi}{\mu} \, \xi_x
\]

\[
\frac{\mu T}{\mu \omega} \bar{\xi}_x = d\xi
\]

\[
(N - N_0) = \left(\frac{kT}{\mu \omega} \right)^3 \int_0^\infty \frac{d\bar{\xi} d\bar{\eta} d\bar{\kappa}}{e + (\bar{\xi}^2 + \bar{\eta}^2 + \bar{\kappa}^2) - 1}
\]

\[
= \left(\frac{kT}{\mu \omega} \right)^3 \zeta(3)
\]

\[
\omega = \sqrt{w_x w_y w_z}
\]

\[
\omega = \left(w_x w_y w_z \right)^{1/3}
\]

\[
\zeta(3) = \frac{1}{\Gamma(3)} \int_0^\infty \frac{x^{5/3}}{e^x + 1} \, dx
\]

Q: At what \(T \) is \(N_0 \approx 0 \)?

\[
\frac{T \omega \mu}{\mu \zeta(3)} N^{4/3} = kT_c
\]

\[
1.94 \, \frac{T \omega \mu}{\mu \zeta(3)} N^{4/3} = kT_c
\]
As $T \to 0$, all particles are in state 0, $N - N_0 \to 0$. At what T is $N - N_0 \sim N$? We have $N \sim \left(\frac{kT}{\hbar \nu \omega m}\right)^3$.

"Thermodynamic Limit": $N \to \infty$ as $\nu m \to 0$. $N \omega g m^3 \approx \text{constant}$.

\[1 - \frac{N_0}{N} = \left(\frac{kT}{\hbar \nu \omega m}\right)^3 \leq \alpha \]

\[\frac{N_0}{N} = \left[1 - \left(\frac{kT}{\hbar \nu \omega m}\right)^3 \right] \leq \frac{N_0}{N} \]

[?? \& does not exist??]
It is striking that we get the condensate temp without doing all that -- it comes out trivially, (and the behavior of \(N \) near it does not exist)

Thus we have two important energy scales:

\[
t_i w_{qm} \quad \text{and} \quad k_T / \sim N^{1/3} \quad t_i w_{qm} \times 694.7
\]

See scale:

\[
\alpha_q = (\frac{t_i}{m w})^{1/2}
\]

\[
\alpha_{qm} = (\frac{t_i}{m w_{qm}})^{1/2}
\]

\[
\frac{1}{2} k_T = \frac{1}{2} m w^2 b^2
\]

\[
\frac{N^{1/3} t_i}{m w} = b^2
\]

\[
\left(\frac{N^{1/3} t_i}{m w} \right)^{1/2} = b
\]

The Bose condensate is smaller than the thermal gas by a factor of \(N^{1/6} \).
Effects of finite \(N \).

Methods: Evaluate \(\langle N \chi_3, T \rangle \) numerically or fix \(N \) and go to \(Q_N(T) \).

Then derive all thermal properties.

Result:

1. For finite \(N \) there are no phase transitions. (Yang & Lee)
2. Since the universe appears to be finite, there are no phase transitions in the universe.
3. However, as \(N \) gets large, function can approach discontinuities.
4. Numerical result (Ketchen, 1996) \(\nabla \)

Effects of Dimension

2D: \[kT = \frac{\hbar}{\omega_m} N^{\frac{3}{2}} / \sqrt{5(2)} \]

1D: \[kT = \frac{\hbar}{\omega} \frac{N}{\Lambda(N)} \]

"Thermodynamic limit" \(N \omega \sim \text{constant} \)

Then \(kT \to 0 \)