

Adapting a CMOS Camera
For High Speed Spatial Measurements

A thesis submitted in partial fulfillment of the requirement
For the degree of Bachelor of Science in Chemistry and
Physics from the College of William and Mary in Virginia,

by

Timothy Ray Leftwich

Williamsburg, Virginia
April 17, 2003

Abstract

We have adapted an off-the-shelf CMOS camera to image high
speed laser-induced cavitation events. This requires hardware and
software synchronization between the camera and the external
lasers. In the current configuration this system can acquire 1 frame
per second. The size of a frame is 640 by 480 pixels. Each pixel
contains 1 byte of information for each of the three separate colors.
The maximum frame rate for this camera is 60Hz. This paper
discusses possible ways to improve the frame rate.

1. Introduction

 Cameras are frequently used to collect two dimensional spatial
data. Scientific cameras can be expensive. However, one can convert
an inexpensive CMOS camera into a scientific camera. Other
advantages of using a CMOS camera are that they are designed to
interface with a computer and many can take pictures in color.
However, unlike may scientific cameras, CMOS cameras have low
frame rates, less than 100 frames per second. There are two major
problems encountered in converting the CMOS camera into a
scientific camera. The first is synchronizing it with the experimental
equipment. In our application the camera�s vertical synchronize signal
runs the laser, i.e. they are synchronized. The other major problem is
controlling the camera. The source of this problem is that there are
many layers of software between the camera and the data file of the
picture created in the computer. In our application, a 511+ chip is
used to control the camera and allow the camera to be connected
through a USB connection to a computer. C++ programs tell the 511+
to run the camera in single frame mode, which captures one frame
per second, which is a small fraction of the maximum frame rate of
the camera. Obviously the frame rate can be improved, but this
requires changes in the software. This paper explains how the
different parts of the camera work as well as how changes in each
part affect the operation of the camera. This paper also details
considerations in choosing the appropriate CMOS camera, converting
it to a scientific camera and outlines some of the problems with
synchronizing the camera.

The first step in designing an experiment is to choose the
appropriate equipment. One must examine the experiment to
determine what features the camera will need to have. For a camera
some of the more important features to consider are the frame rate,
the minimum amount of illumination required to collect data, the
resolution, and if a color camera is necessary. If the frame rate that
you require for your experiment is below 60 frames per second, an
inexpensive CMOS camera may be an excellent replacement for a
standard scientific camera. Our experiment involves taking several
time sequenced pictures of explosions in liquid caused by laser
pulses from the second harmonic of a Nd:YAG. The lasers fire at a
frequency of 10Hz; although, the laser can run a couple hertz faster
or slower if needed. The laser pulse is about 2 ns in length. In order
to try to optimize the amount of data collected one would want a
camera that can take pictures at a frame rate of 10 frames per
second. The camera that I chose has a maximum frame rate of 60
frames per second. The second harmonic of a Nd:YAG laser is also
used to pump one of two dye lasers, one producing red light and the
other producing yellow light. There is a delay of 5 ns between the
firing of the Nd:YAG laser and the red laser, which is followed by
another 5 ns delay before the yellow laser fires. The experiment is
also conducted in low light, the only source of light being the lasers.
So the camera must be able to take pictures in low light. In order to
take pictures in low light, the camera must have the ability to turn the
auto exposure off. Also because the lasers are fired every 10
seconds the camera must have spatial resolution of approximately
30 µm. The size of each pixel on the image array for the camera I
chose is 7.6 µm by 7.6 µm. In searching for an appropriate camera I
found several CMOS cameras that fit the criteria each for less than
$100. The CMOS cameras are inexpensive because they are
normally used for video conferencing, which does not require the
camera to be synchronized with any other piece of equipment.
Therefore, because they are not designed for this purpose
synchronization becomes a nontrivial problem. I decided to try two
CMOS cameras, the ov7120, an omnivision 7000 series black and
white camera, ($64.95) and the ov7620, an omnivision 7000 series
color camera ($68.95) [1].

2. Synchronizing with the Laser

When the camera is used as a video camera it occasionally
drops frames and has a maximum frame rate of about 30Hz.
Therefore, for our laser application synchronization becomes a key
issue. There are two ways to synchronize the camera. The first way is
through the hardware; either a signal from the hardware of the
camera triggers the laser or a signal from the laser triggers the
camera. The second is to synchronize through the software; a
command in a program triggers the camera and the laser. With
hardware synchronization, the frequency of the pixel clock of the
camera determines the frequency that the equipment is triggered.
One must be able to operate the clock of the camera at a frequency
that is in the range that the equipment can operate, in our case
around 10 frames per second.

Synchronizing through the hardware usually requires custom
designing electrical circuitry. Depending on the experiment, this may
require a complicated circuit connected to several pieces of
equipment or a simple circuit connected to the camera and one other
piece of equipment. In our experiment, the camera can be connected
to the laser with a simple circuit. Synchronizing through the software
does not require that one build any additional circuitry, but it requires
modifying software that may be complicated. The advantage to this is
that the camera can be triggered independently, regardless of the
clock frequency of the camera. The disadvantage is that when the
software asks the camera to take a picture it can be anywhere in its
period. This period consist of capturing the picture and transferring
the information to video processor and then to the computer. The
image capture is a fast process; however, the transfer of this image is
not. It is possible, for example, that the camera can be in the part of
its period where it has only transferred half of the data from the image
array to the analog processing block of the camera. So, the camera
will just give the last picture taken, which was before the laser fired.
The experiment is currently hardware synchronized with the camera
triggering the laser. This choice was made because the layers of
software are very complicated.

3. Software Layout

The layers of software can make it difficult to synchronize the
camera with other equipment. The firmware, the software inside the
camera, is well documented but very complicated. Despite this
complexity it may be possible to program an EZUSB (a piece of
hardware that can be used to connect the camera to the computer
through a USB connection) to control the camera. The EZUSB could
possibly be programmed to set the registers of the camera, receive
the output information from the camera, and process this information
into a format that can be displayed on a computer. The details in the
camera section will outline the information that one must know to do
this. This may allow the camera to reach it�s maximum frame rate.
There is very little information about the software inside the
511+ chip (another piece of hardware that can used to connect the
camera to the computer through a USB connection). Because there is
limited information about the 511+, it is difficult to use it to control the
camera. There are several layers of software that the picture must go
through before it can be displayed on a computer screen, which can
be seen in figure 1.

Figure 1: Above is a block diagram of the different levels of hardware.

First, the picture must be captured and processed by the
camera. A detailed description of the software in the camera can be
found in the camera section.

Second the output from the camera must pass to and
commands must flow from the hardware interface to the computer. In
our case this hardware is the 511+ chip, which comes on the same
board as the camera. The camera is controlled and the information
received through the I/O lines that are connected to a 511+ chip.
The 38EV/48EV and EZUSB, other hardware that could be used
instead of the 511+ chip, were considered but ultimately were not
used. The software in the 511+ is undocumented. There has been
some code written for Linux to control the chip; however, because of
the complexity of the registers in the 511+ the code is incomplete.

Finally the information is transferred from the external hardware
to the computer where programs save and display the data. The
computer programs also give commands to the external hardware.
The 511+ is connected to a computer through a USB line and
information is transferred through this line as well as commands from
the computer program to the 511+. Once the information is
transferred to the computer, it is sent to a computer program where it
is written as a data file. At first, the computer programs that came
with the 511+, WDM and VIDCAP, were used. It was soon
discovered that when using one of these programs
if a frames was dropped during the transmission to the PC, the
software padded the file with a duplicate of the previous frame to
keep the video in real time. The frame drop rate was erratic and
depended on the history of what other device drivers had been
loaded into the computer prior to taking data. So, we wrote a custom
C++ program. This program runs the camera in single frame mode,
capturing an image roughly once a second. The program does this by
using a function call to video for windows (an old program found in
most computers that is used to control the drivers of a camera) that
captures a single frame. The pictures are saved under a file name
that includes the date and frame number. One can know when the
frame was taken (date in the file name) as well as what frame it is
(the frame number in the file name).

We use another custom C++ program to analysis the data. It
can filter for red, blue or green light. This makes it possible to see the
light emitted from the red and yellow lasers that illuminate the
explosion. I later modified the program to save the filtered images.
Brian and I also modified this program to display on a graph the

intensities along a column or a row of pixels of each of the three
filtered colors individually [5].

3. The Camera

Figure 2: Above is the block diagram of the camera.

There are eight major parts of the camera, the image array, the
video timing generator, the analog processor, the analog to digital
converters, the output formatter, the digital video port, the SCCB bus,
and the registers. The image array captures the image and sends it to
the analog processor. The video timing generator controls the internal
timing of the camera as well as the timing of the output. The analog
processor performs all analog image functions. The analog to digital
converters convert the analog output from the analog processor to a
digital signal. The signal is sent to the output formatter where it is
formatted and sent to the digital video port. The digital video port

sends the signal output out of the camera. The SCCB bus provides
input and output to control or read the registers, which control all
camera functions.

 In order to synchronize the camera with the lasers, insure the
proper function of the camera, and improve the frame rate, one must
understand how the camera works. To synchronize through the
software, one must understand the period of the camera, as
described in the synchronization section. In order to synchronize
through the hardware, one must know which camera output or input
to use and how it relates to the internal timing of the camera. One can
have the camera fully synchronized and still not functioning properly!
One problem that I encountered when I ran the camera was that
frames would be randomly dropped an duplicated when using
WDM or VIDCAP. One way to try to improve the frame rate would be
to replace the 511+ chip with an EZUSB.

4.1 Image Array

The image array captures the initial image. The size of the
array is 664 pixels by 486 pixels. With the default values of the
registers the effective size of the array is only 640 pixels by 480 pixel.
The output formatter section has more information about this. Each
pixel is composed of a small lens (which focuses the light) and a color
filter. There are three colors, red, green and blue that the color filters
allow to pass. The light from each pixel then shines on a photo diode,
which measures its intensity. Capturing an image involve measuring
the intensity in each pixel and sending it to the analog processing
block. The array is in a pattern called a Bayer-Pattern as shown in
figure 3.

Figure: 3 Above is the physical representation of image array of the
camera. Where R, G, and B stand for pixels filtered for red, green, and blue
light respectively.

4.2 Timing Generator

The timing generator controls all timing, including the pixel
clock, the horizontal synchronize signal, the horizontal window
reference output, and the vertical synchronize signal. The clock of the
camera is provided by pin 27, Xclk1. The camera specifications
recommend 27MHz as the camera frequency. The maximum
frequency is 30MHz. The camera can be run at lower frequencies;
however, this decreases the clock frequency, which is used to time
everything. Practical concerns limit the clock frequency. The two
major practical concerns are the maximum frame rate and the
exposure time. The output can be formatted in several different ways;
16 bits or 8 bits, which are timed differently. The output can be
progressive or interlace. These different output formats are also timed
differently, with frames divided differently in interlace and progressive
modes.

There are several timing output lines from the timing generator
that relay information about which pixel is being sent from the digital
video port. These outputs are the pixel clock (pin 33) the horizontal
synchronize signal (pin 42) the horizontal window reference output
(pin 18) and the vertical synchronize signal (pin 16). The polarity of
these outputs can be changed by the registers. The pixel clock
operates at the camera clock frequency in 16 bit mode and at twice
the camera frequency in 8 bit mode. The pixel clock indicates when
information about a pixel is being outputted on each period of the
clock. In 16 bit format information about one pixel is sent in one clock

R\C 1 2 3 4 641 642 643 644
1 B G B G B G B G
2 G R G R G R G R
3 B G B G B G B G
4 G R G R G R G R
5 B G B G B G B G

481 B G B G B G B G
482 G R G R G R G R
483 B G B G B G B G
484 G R G R G R G R
485 B G B G B G B G

period. In 8 bit format information about one pixel is sent in two clock
periods. In the default setting, data is outputted at the falling edge
and is stable at the rising edge. The data is outputted one row at a
time. The horizontal synchronize signal indicates the start and the
end of each row by allowing its output to go low. In the default setting,
data starts to output when the horizontal synchronize signal is at the
falling edge. The horizontal window reference indicates when a row is
being outputted by allowing the output to go high. In the default
setting, the data starts to output when the horizontal window
reference is at the rising edge. The vertical synchronize signal
indicates the start and end of a frame in progressive mode and the
start and end of a field in interlace mode. Output is when it is low. In
the default setting, the data starts output when the vertical
synchronize signal is at the rising edge.

During 16 bit format the output is at the clock speed on 16 lines.
These lines are the Y lines (pins 34-41) and the UV lines (pins 19-
26). In the 8 bit format, the output is at twice the clock speed and on 8
lines (the eight lines are the Y lines).

In interlace mode (the default mode) the frame is divided in half.
The two halves are called frames. There is an odd frame and an even
frame. In interlace mode there is an additional output. This output is
the odd field flag (pin 17). It is held high during the odd field and low
during the even field. In progressive mode there is no division of the
frame.

The Frame division is controlled by register 16. The last 6 bits
control the separation between the frame or field. The number in the
last 6 bits is the number of empty frames or fields before the next
one. In interlace the first 2 bits in register 16 indicate which field the
horizontal window reference is asserted. If the first two bits are 01
then the horizontal window reference is asserted in the odd field only.
If they are 10 then the horizontal window reference is asserted in the
even field only. If it is 11 the horizontal window reference is asserted
in both fields and the first 6 bits are ignored. In progressive mode the
if the first two bits are 10 or 01 the horizontal window reference is
asserted in frames indicated by the last 6 bits. If it is 11 the horizontal
window reference is asserted in all frames and the last 6 bits are
ignored. In both modes if the first 2 bits are 00 then the horizontal

window reference is not asserted at all, except in single frame
transfer mode.

Single frame transfer mode is initiated by register 13 the
second bit. When this bit is high it initiates single frame transfer. The
first two bits of register 16 must be 00 before single frame transfer
can be initiated. The first two bits of register 16 and the second bit in
register 13 are automatically cleared after one frame transfer.

4.3 Analog Processor

The analog processor performs the automatic gain control and
automatic white balance, and controls the image quality. These
controls include sharpness, hue, gain, gamma control, and anti-
blooming. Gain is discussed in the register section. The gamma
control allows a non-linear relationship between the data and the
output. The analog signals that are standard video signals come out
of the analog processor are based on the following formulas:

Y = 0.59G + 0.31R + 0.11B (1)
U = R - Y (2)
V = B - Y (3)
Cr = 0.713 x (R - Y) (4)
Cb = 0.564 x (B - Y) (5)

 Where R, G, and B stand for the red, green, and blue pixel colors
respectively and where Y, U, V, Cr, and Cb are output signals from
the analog processor.

4.4 Analog to Digital Converters

The analog to digital converters convert the analog signal to a
digital one. There are two ten bit analog to digital converters. They
both have a muliplexer before them to allow several lines of
information from the analog processor to be outputted on one line
from each muliplexer.

4.5 Output Formatter

This is where output is formatted. The format includes the
number of bits per pixel, the number of pixels, the designation of the
16 output lines, and interlacing. This camera can use a wide variety
of standard video conventions. These conventions are summarized in
figure 4.

Figure 4 Above is a table of the types of video format. Y indicates that the
format is supported by the camera.

The size of the window is determined by registers 17-1A. The window
size is the part of the array that is scanned into the analog processor
and subsequently displayed on the screen. Register 17 determines
which column to start where register 18 determines which one to end.
Each value represents four pixels in full resolution and two pixels in
QVGA resolution mode. Register 19 determines which row to start
where register 1A determines which row to end. The default values of
registers 17 through 1A set the window size to 640 by 480 pixels in
VGA format and 320 by 240 pixels in QVGA format. Whether the
window output format is 640 x 480 pixels, VGA format (the default), or
320 x 240 pixels, QVGA format, is determined by the sixth bit of
register 14.

 Interlaced Progressive
Resolution 640x480 320x240 640x480 320x240
YUV 4:2:2 16Bit Y Y Y Y

8Bit Y Y Y Y
CCIR656 Y Y Y Y

RGB 16Bit Y Y Y Y
8Bit Y Y Y Y
CCIR656 Y Y Y Y

Y/UV swap 16Bit - - - -
8Bit Y Y Y Y

U/V swap YUV Y Y Y Y
RGB Y Y Y Y

YG 16Bit Y Y Y Y
8Bit - - - -

One Line 16Bit - - Y -
8Bit - - - -

4.6 Digital Video Port

The digital output consist of 8 lines in 8 bit format or 16 lines in
16 bit format. Currently each output line has a transfer rate around
115 kilobytes per second. The maximum transfer rate for the output
lines is almost 7 megabytes per second. The output currents are
adjusted automatically as a function of loading.

4.7 Serial Camera Control Bus (SCCB)

The Serial Camera Control Bus, or SCCB, is used to set the
registers in the camera. The only way to change from the default
values in the registers is to communicate through the SCCB, which
uses three wires to transfer information, read from and write to the
camera. The three wires are the SBB (pin 12), SIO-1 (pin 45), and
SIO-0 (pin 46). The SBB is held low when values are read from and
written to the camera. At all other times, the SBB is held high. The
SIO-1 is the serial clock. The SIO-0 is the wire were the data is
transferred one byte at a time. The SCCB can support more than one
camera. When there is more than one camera attached to the master
the cameras simply have different ID addresses. In the SCCB the
camera or cameras act as the slave device or devices and the master
is the device to which the camera is connected. For example, if the
camera is connected to a 511+ then the 511+ is the master.

There are three types of transmission cycles. They are 3-phase
write transmission cycle, 2-phase write transmission cycle, and a 2-
phase read transmission cycle. A phase contains 9 bits. The first 8
bits are the data.

Figure 5: Above is a diagram that shows the timing of the first phase of a
transmission cycle.

A 3-phase write transmission cycle is used to write one byte of
data from the master to a register in a camera. The first phase of this
cycle, and the other two as well, is the ID address of the camera. The
second phase is the address of the register in the camera to which
the data will be written. The third phase is the data that is being
written to the camera�s register.

The other two cycles are used to read data from a camera
register to the master. Because the 2-phase read transmission cycle
does not indicate the register that it is reading, it reads from the last
register indicated in the previous write cycle. The 2-phase write
transmission cycle is used to change registers before the 2-phase
read transmission cycle. The 2-phase write transmission cycle
consists of a camera ID address phase and a register address phase.
The 2-phase read transmission cycle consists of a camera ID
address phase and a phase that contains the data that is being read
from the camera�s register.

In the first phase, ID address phase, the ID address is the first
seven bytes. The eighth byte selects whether this phase will be in a
read or a write cycle. For a write cycle, the eighth bit is set low and for
a read cycle, the eighth bit is set high. The first eight bits are asserted
by the master. The ninth bit is an assertion from the camera. The
camera asserts low if the data, the previous eight bits, has been
written to it. It will assert high if it has not. The master does not check
the value of the ninth bit. The master masks the input of the ninth bit

to low. The default ID address for the camera, the first seven bits plus
the eighth read/write bit, is 42 for write and 43 for read.

In the second phase of the write statements, the address of the
register phase, the first eight bits are use to identify the register and
are asserted by the master. The ninth bit is asserted in the same way
as in the first phase.

In the second phase of 2-phase read transmission cycle, the
first eight bits are the data that the register holds and is being read to
the master, asserted by the camera. The ninth bit is asserted high by
the master.

In the third phase of the 3-phase write transmission cycle, the
first eight bits are the data being written to the register and are
asserted by the master. The ninth bit is asserted the in the same way
as in the first phase.

Whether the SIO-0 is sending input from the master to the clock
or from the clock to the master is controlled by two internal lines, the
SIO0_OE_M_ and the SIO_OE_S_. The SIO0_OE_M_ is inside the
master. It can be thought of as being low when the master is writing
and high when it is not. Since this is an internal line it can be the
other way around as well depending on the design; however, it will
still do the same job. The SIO_OE_S_ is inside the clock. It is low
when the clock is writing to the master and high when it is not.

To better understand the SCCB bus we need to look at the
timing. The minimum frequency of the serial clock, SIO-1, is 10 ∝ s.
When SIO-1 is low a byte of data is taken from the SIO-0. When SIO-
1 is high the bit of data is transmitted. Protocol dictates that SIO-0
must be stable when SIO-1 is high. At the beginning and the end of
the transmissions precautions must be made to insure that there is no
propagation of an unknown bus state. The SIO-0 must be driven high
for a period before and after the SBB goes from high to low at the
start of a transmission. The SIO-1 must be high during this time. The
minimum amount of time that SIO-0 is high before the SBB goes from
high to low is 15 ns. The minimum period after SBB goes from high to
low that SIO-0 must stay high before it may go low is 1.25 µs. The
SIO-0 must also be driven high for a period before and after the SBB

goes from low too high at the end of the transmission. Just as at the
beginning of the transmission, the SIO-1 must be high during this
time. The minimum amount of time that SIO-0 is high before the SBB
goes from low to high is 15 ns. There is no minimum period after SBB
goes from low too high that SIO-0 must stay high before it may go
low. A 2-phase transmission cycle takes about 200 µs to transmit. A
3-phase transmission cycle takes about 290 ∝ s to transmit.

4.8 Registers

The 125 registers control all the functions of the camera.
Seventy of the registers are used exclusively for internal use. There
are only a few of the other registers that are important to know.

One of the most important registers is register 13. When bit 0 is
low it enables manual control, which allows one to manually change
the values in registers 00 - 02. When bit 0 is high it enables auto
adjust mode. When bit 1 is high it initiates single frame transfer, as
described by the timing generator section. Bit 5 allows one to select 8
bit format when high and 16 bit format when low.

Register 12 contains bits that can manipulate register 00 - 02 in
auto control. Bit 2 when low holds register 01 - 02 at the last updated
value. When it is high it is controlled by internal functions. Bit 5 when
low sets register 00 to default value. When it is high it is controlled by
internal functions. Bit 7 when high resets all registers to their default
value.

Registers 01 and 02 are blue gain control and red gain control

respectively. The values of these registers may need to be changed if
the colors have low intensities. Bit seven indicates the gain is
increasing when high or decreasing when low. The other seven bits
compute the gain by the following formula:

Gain = 1 + (<6:0> -80)/100 (6)
 <6:0> is the value in bits six through zero.

Register 10 controls the exposure timing of the clock. One must
be in manual adjust mode in order to write values effectively. If the

clock is not in manual adjust mode this register is updated by internal
functions. Exposure timing is determined by the following formulas:

For interlace:
exposure time = line time x <7:0> (7)

For progressive:
exposure time = line time x <7:0> (8)

Line time = frame time/525 if clock is 27 MHz line time = 63.5 (9)

Register 14 bit 5 selects output format to be 320 x 240 when
high and 640 x 480 when low.

Register 28 bit 5 selects progressive scan when high and
interlace scan when low.

Register 61 bit 7 selects YUV output when high or raw data
when low. YUV is the default value.

5. Interface

There are two ways to interface the camera with a computer
that should be considered. The camera can interface with the
computer through a parallel port or through a USB connection by
going through other external hardware. A parallel port connection
connects to a computer through a pin connection, where a USB
connection connects through a USB connection. A parallel port
connection is slower than a USB connection. A USB connection has
a max rate of around 12 megabytes per second. One can use a
buffer to hold data before it is transferred if one wants to take pictures
at a faster rate. The EZUSB and 511+ interface with the computer
through a USB connection where the 38EV/48EV interfaces through
a parallel port connection.

6. Additional Hardware and Their Drivers

Drivers are used as a way to set the registers of the camera
through software that can be used by a computer. There are three
pieces of hardware that I have considered to run the camera. Each
one has it�s own driver that it uses to run the camera.

The first is the 38EV/48EV control board. The 38EV ($83.95)
can be used with color camera modules. The 48EV ($78.95) cannot
be used with color camera modules [1]. The 38EV/48EV has a
parallel port interface and the software of the 38EV/48EV appears to
be easy to use. The figure below is the control panel for the
38EV/48EV.

Figure 6: Above is the control panel for the 38EV/48EV.

The second is the 511+ chip. When the 511+ chip is purchased
with the camera module ($160.00) [2] it has a USB connection. The
drivers that comes with the 511+ are difficult to use for the
experiment. To set the frame rate using either one driver or the other
is difficult. The 511+ also randomly drops frames and pads the frame
rate with duplicate frame when it drops a frame while using one of
these drivers. There are some Linux drivers that have been written for
the 511+ [3], unfortunately, the registers of the 511+ are complex and
not all of the code has been written.

The third is to use a EZUSB chip to connect the camera module
to the computer through a USB connection. This would require
software code to be written. The problem with the approach is the
question of how to set up the transfer protocol to and from the SCCB.
The EZUSB controls its own protocol but it is not known if they are
the same type as the camera�s protocols.

7. Data

Pictures were taken of the explosion, after the problems with
synchronizing the camera were solved.

Figure 7: Above is a picture of an explosion taken by the camera.

After examining image array of the camera, figure 3, it was
discovered that the pixels may be shifted. Figure 3 shows the Bayer
Pattern which shows that the R (red),G (green), and B (blue) pixels
are at different locations. Each pixel in the array is a single color but
the format of a single pixel is determined by all three colors. The
other two colors must come from the surrounding pixels. The

unknown algorithm that combines the different colors into an
individual pixel may shift the information of the individual color
intensity that the pixel is filtered by the lens (as described in the
image array section) to collect into one or more of the surrounding
pixels.

Figure 8 Above is the grid pattern that was imaged on the camera.

We devised an experiment to test if there is a pixel shift. The
first step of the experiment was to create a grid pattern. The printed
grid had a cell size of 0.19 inches X 0.19 inches, and the line width
was almost one hundredth of an inch. The grid was placed
approximately 20 cm away from the camera lens and imaged on the
camera. The cell size when imaged onto the camera was
approximately 20 X 20 pixels and the line width was one pixel. The
intensities of the three colors were examined near the grid lines.

Figure 9: Above is graph of the intensities of the red and green colors
down Column 130 in the bitmap of a picture taken of the grid. A black
dividing line is at about every 20 rows, where the intensities drop.

Figure 10: Above is a graph of the intensities of the red and green colors
across row 108 in the bitmap of a picture taken of the grid. A black dividing
line is at about every 20 columns, where the intensities drop.

The intensities of both colors in figure 8 and figure 9 decrease
dramatically at about every 20 pixels were the black dividing line is.
The width of this sudden decrease is only a couple pixels which
indicates that there are no significant pixel shifts.

8. Conclusion

One can use an inexpensive CMOS camera as a piece of
scientific equipment. One can synchronize the camera with the other
instruments through the hardware so that the pixel clock of the
camera runs the laser. The 511+ is an effective interface between the
camera and the USB connection to a computer. One can use custom
C++ programs to capture the images at known time intervals. One
can also use another custom C++ programs to filter for one of the
three colors, Red, Blue, or Green. We have proved that there are no
significant pixel shifts of the data collected in individual pixels. A
CMOS camera can be a less expensive alternative to a scientific
camera.

Although the CMOS camera is synchronized with the
equipment and takes pictures at known times, one can still improve
the camera�s performance. The camera currently takes pictures at
one frame per second. However, the maximum frame rate of the
camera is 60 frames per second.

One way one may attempt to improve the frame rate is to changing
some of the software. The function call to video for windows that is
currently being used in our custom C++ program
(capGrabFrameNoStop(hWnd)) to capture a frame is the slowest of

the three commands available (capGrabFrameNoStop(hWnd),
capGrabFrame(hWnd), and capCaptureSingleFrame(hWnd)). When
the fastest of the three function calls
(capCaptureSingleFrame(hWnd)) was used with the camera only the
frame rate was 5 frames per second. When the picture preview was
disabled the frame rate was 15 frames per second with this new
function call. One could try using this new function call instead of the
old one while the camera is synchronized to the camera. One could
also try to use a program similar to windows media player instead of
capturing a bit map with a C++ program. This would allow software
that is newer than video for windows to control the drivers.

Another approach is to try using an EZUSB instead of a 511+.
The advantage gained by this approach is the elimination of all of the
software inside the 511+. The camera and the EZUSB are well
documented. The disadvantage to this approach is that one must
write the programs that allow the EZUSB to control the camera.
However, one still maintains a USB connection with this approach.

One may also try the 48EV. I have not tried using this yet. The
major disadvantage with this approach is that the 48EV has a parallel
port connection.

References

[1] Electronics 123, RADIO, TV AND VIDEO,
http://www.electronics123.com/amazon/catalogue/c3-1-5.htm,
November 2002

[2] AllAmerican Direct,
http://www.allamerican.com/direct/Results.asp?id=&WHAT=NUM&W
TYPE=S&
W1=&W2JOIN=OR&W2=&MFG=_OVT%2C&show=10&search+now.
x=64&se
arch+now.y=7, December 2002

[3] Mark McClelland, Linux OvCam Drivers,
http://alpha.dyndns.org/ov511/,
November 2002

[4] Omnivision technologies inc., advanced information preliminary
OV7620/OV7120, http://www.ovt.com/pdfs/ds_7620.pdf, December
2002

[5] Koch Brian, Undergraduate Physics Honors Thesis, College of
William and
Mary, 2003

Figure 2. OV7620 block diagram is from,
http://www.ovt.com/pdfs/ds_7620.pdf

Figure 5. The timing diagram for the first phase of a transmission
 cycle is from,
http://www.ovt.com/pdfs/ds_note.pdf

Figure 6. Control panel for an OV7620 camera using a 38EV driver is
fromHttp://www.electronics123.com/amazon/datasheet/Cev38.pdf

