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Abstract  
  

We have adapted an off-the-shelf CMOS camera to image high 
speed laser-induced cavitation events. This requires hardware and 
software synchronization between the camera and the external 
lasers. In the current configuration this system can acquire 1 frame 
per second. The size of a frame is 640 by 480 pixels. Each pixel 
contains 1 byte of information for each of the three separate colors. 
The maximum frame rate for this camera is 60Hz. This paper 
discusses possible ways to improve the frame rate.  
  
1. Introduction  
  
  Cameras are frequently used to collect two dimensional spatial 
data. Scientific cameras can be expensive. However, one can convert 
an inexpensive CMOS camera into a scientific camera. Other 
advantages of using a CMOS camera are that they are designed to 
interface with a computer and many can take pictures in color. 
However, unlike may scientific cameras, CMOS cameras have low 
frame rates, less than 100 frames per second. There are two major 
problems encountered in converting the CMOS camera into a 
scientific camera. The first is synchronizing it with the experimental 
equipment. In our application the camera�s vertical synchronize signal 
runs the laser, i.e. they are synchronized. The other major problem is 
controlling the camera. The source of this problem is that there are 
many layers of software between the camera and the data file of the 
picture created in the computer. In our application, a 511+ chip is 
used to control the camera and allow the camera to be connected 
through a USB connection to a computer. C++ programs tell the 511+ 
to run the camera in single frame mode, which captures one frame 
per second, which is a small fraction of the maximum frame rate of 
the camera. Obviously the frame rate can be improved, but this 
requires changes in the software. This paper explains how the 
different parts of the camera work as well as how changes in each 
part affect the operation of the camera. This paper also details 
considerations in choosing the appropriate CMOS camera, converting 
it to a scientific camera and outlines some of the problems with 
synchronizing the camera.  
 



The first step in designing an experiment is to choose the 
appropriate equipment. One must examine the experiment to 
determine what features the camera will need to have. For a camera 
some of the more important features to consider are the frame rate, 
the minimum amount of illumination required to collect data, the 
resolution, and if a color camera is necessary. If the frame rate that 
you require for your experiment is below 60 frames per second, an 
inexpensive CMOS camera may be an excellent replacement for a 
standard scientific camera. Our experiment involves taking several 
time sequenced pictures of explosions in liquid caused by laser 
pulses from the second harmonic of a Nd:YAG. The lasers fire at a 
frequency of 10Hz; although, the laser can run a couple hertz faster 
or slower if needed. The laser pulse is about 2 ns in length. In order 
to try to optimize the amount of data collected one would want a 
camera that can take pictures at a frame rate of 10 frames per 
second. The camera that I chose has a maximum frame rate of 60 
frames per second. The second harmonic of a Nd:YAG laser is also 
used to pump one of two dye lasers, one producing red light and the 
other producing yellow light. There is a delay of 5 ns between the 
firing of the Nd:YAG laser and the red laser, which is followed by 
another 5 ns delay before the yellow laser fires. The experiment is 
also conducted in low light, the only source of light being the lasers. 
So the camera must be able to take pictures in low light. In order to 
take pictures in low light, the camera must have the ability to turn the 
auto exposure off. Also because the lasers are fired every 10 
seconds the camera must have spatial resolution of approximately  
30 µm. The size of each pixel on the image array for the camera I 
chose is 7.6 µm by 7.6 µm. In searching for an appropriate camera I 
found several CMOS cameras that fit the criteria each for less than 
$100. The CMOS cameras are inexpensive because they are 
normally used for video conferencing, which does not require the 
camera to be synchronized with any other piece of equipment. 
Therefore, because they are not designed for this purpose 
synchronization becomes a nontrivial problem. I decided to try two 
CMOS cameras, the ov7120, an omnivision 7000 series black and 
white camera, ($64.95) and the ov7620, an omnivision 7000 series 
color camera ($68.95) [1].  
  
 
 



2. Synchronizing with the Laser  
  

When the camera is used as a video camera it occasionally 
drops frames and has a maximum frame rate of about 30Hz. 
Therefore, for our laser application synchronization becomes a key 
issue. There are two ways to synchronize the camera. The first way is 
through the hardware; either a signal from the hardware of the 
camera triggers the laser or a signal from the laser triggers the 
camera. The second is to synchronize through the software; a 
command in a program triggers the camera and the laser. With 
hardware synchronization, the frequency of the pixel clock of the 
camera determines the frequency that the equipment is triggered. 
One must be able to operate the clock of the camera at a frequency 
that is in the range that the equipment can operate, in our case 
around 10 frames per second.  
 

Synchronizing through the hardware usually requires custom 
designing electrical circuitry. Depending on the experiment, this may 
require a complicated circuit connected to several pieces of 
equipment or a simple circuit connected to the camera and one other 
piece of equipment. In our experiment, the camera can be connected 
to the laser with a simple circuit. Synchronizing through the software 
does not require that one build any additional circuitry, but it requires 
modifying software that may be complicated. The advantage to this is 
that the camera can be triggered independently, regardless of the 
clock frequency of the camera. The disadvantage is that when the 
software asks the camera to take a picture it can be anywhere in its 
period. This period consist of capturing the picture and transferring 
the information to video processor and then to the computer. The 
image capture is a fast process; however, the transfer of this image is 
not. It is possible, for example, that the camera can be in the part of 
its period where it has only transferred half of the data from the image 
array to the analog processing block of the camera. So, the camera 
will just give the last picture taken, which was before the laser fired. 
The experiment is currently hardware synchronized with the camera 
triggering the laser. This choice was made because the layers of 
software are very complicated.  
  
 
 



3. Software Layout  
  

The layers of software can make it difficult to synchronize the 
camera with other equipment. The firmware, the software inside the 
camera, is well documented but very complicated. Despite this 
complexity it may be possible to program an EZUSB (a piece of 
hardware that can be used to connect the camera to the computer 
through a USB connection) to control the camera. The EZUSB could 
possibly be programmed to set the registers of the camera, receive 
the output information from the camera, and process this information 
into a format that can be displayed on a computer. The details in the 
camera section will outline the information that one must know to do 
this. This may allow the camera to reach it�s maximum frame rate. 
There is very little information about the software inside the  
511+ chip (another piece of hardware that can used to connect the 
camera to the computer through a USB connection). Because there is 
limited information about the 511+, it is difficult to use it to control the 
camera. There are several layers of software that the picture must go 
through before it can be displayed on a computer screen, which can 
be seen in figure 1.  
      

 
Figure 1: Above is a block diagram of the different levels of hardware.  
  

First, the picture must be captured and processed by the 
camera. A detailed description of the software in the camera can be 
found in the camera section.   



Second the output from the camera must pass to and 
commands must flow from the hardware interface to the computer. In 
our case this hardware is the 511+ chip, which comes on the same 
board as the camera. The camera is controlled and the information 
received through the I/O lines that are connected to a 511+ chip.  
The 38EV/48EV and EZUSB, other hardware that could be used 
instead of the 511+ chip, were considered but ultimately were not 
used. The software in the 511+ is undocumented. There has been 
some code written for Linux to control the chip; however, because of 
the complexity of the registers in the 511+ the code is incomplete.   
 

Finally the information is transferred from the external hardware 
to the computer where programs save and display the data. The 
computer programs also give commands to the external hardware. 
The 511+ is connected to a computer through a USB line and 
information is transferred through this line as well as commands from 
the computer program to the 511+. Once the information is 
transferred to the computer, it is sent to a computer program where it 
is written as a data file. At first, the computer programs that came 
with the 511+, WDM and VIDCAP, were used. It was soon 
discovered that when using one of these programs  
if a frames was dropped during the transmission to the PC, the 
software padded the file with a duplicate of the previous frame to 
keep the video in real time. The frame drop rate was erratic and 
depended on the history of what other device drivers had been 
loaded into the computer prior to taking data. So, we wrote a custom 
C++ program. This program runs the camera in single frame mode, 
capturing an image roughly once a second. The program does this by 
using a function call to video for windows (an old program found in 
most computers that is used to control the drivers of a camera) that 
captures a single frame. The pictures are saved under a file name 
that includes the date and frame number. One can know when the 
frame was taken (date in the file name) as well as what frame it is 
(the frame number in the file name).  
  

We use another custom C++ program to analysis the data. It 
can filter for red, blue or green light. This makes it possible to see the 
light emitted from the red and yellow lasers that illuminate the 
explosion. I later modified the program to save the filtered images. 
Brian and I also modified this program to display on a graph the 



intensities along a column or a row of pixels of each of the three 
filtered colors individually [5].  
  
3. The Camera  

 
Figure 2: Above is the block diagram of the camera.  
  

There are eight major parts of the camera, the image array, the 
video timing generator, the analog processor, the analog to digital 
converters, the output formatter, the digital video port, the SCCB bus, 
and the registers. The image array captures the image and sends it to 
the analog processor. The video timing generator controls the internal 
timing of the camera as well as the timing of the output. The analog 
processor performs all analog image functions. The analog to digital 
converters convert the analog output from the analog processor to a 
digital signal. The signal is sent to the output formatter where it is 
formatted and sent to the digital video port. The digital video port 



sends the signal output out of the camera. The SCCB bus provides 
input and output to control or read the registers, which control all 
camera functions.  
  
  In order to synchronize the camera with the lasers, insure the 
proper function of the camera, and improve the frame rate, one must 
understand how the camera works. To synchronize through the 
software, one must understand the period of the camera, as 
described in the synchronization section. In order to synchronize 
through the hardware, one must know which camera output or input 
to use and how it relates to the internal timing of the camera. One can 
have the camera fully synchronized and still not functioning properly! 
One problem that I encountered when I ran the camera was that 
frames would be randomly dropped an duplicated when using  
WDM or VIDCAP. One way to try to improve the frame rate would be 
to replace the 511+ chip with an EZUSB.   
  
4.1 Image Array  
  

The image array captures the initial image. The size of the 
array is 664 pixels by 486 pixels. With the default values of the 
registers the effective size of the array is only 640 pixels by 480 pixel. 
The output formatter section has more information about this. Each 
pixel is composed of a small lens (which focuses the light) and a color 
filter. There are three colors, red, green and blue that the color filters 
allow to pass. The light from each pixel then shines on a photo diode, 
which measures its intensity. Capturing an image involve measuring 
the intensity in each pixel and sending it to the analog processing 
block. The array is in a pattern called a Bayer-Pattern as shown in 
figure 3.  
  
  
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
Figure: 3 Above is the physical representation of image array of the 
camera. Where R, G, and B stand for pixels filtered for red, green, and blue 
light respectively.  
  
4.2 Timing Generator  
  

The timing generator controls all timing, including the pixel 
clock, the horizontal synchronize signal, the horizontal window 
reference output, and the vertical synchronize signal. The clock of the 
camera is provided by pin 27, Xclk1. The camera specifications 
recommend 27MHz as the camera frequency. The maximum 
frequency is 30MHz. The camera can be run at lower frequencies; 
however, this decreases the clock frequency, which is used to time 
everything. Practical concerns limit the clock frequency. The two 
major practical concerns are the maximum frame rate and the 
exposure time. The output can be formatted in several different ways; 
16 bits or 8 bits, which are timed differently. The output can be 
progressive or interlace. These different output formats are also timed 
differently, with frames divided differently in interlace and progressive 
modes.   
  

There are several timing output lines from the timing generator 
that relay information about which pixel is being sent from the digital 
video port. These outputs are the pixel clock (pin 33) the horizontal 
synchronize signal (pin 42) the horizontal window reference output 
(pin 18) and the vertical synchronize signal (pin 16). The polarity of 
these outputs can be changed by the registers. The pixel clock 
operates at the camera clock frequency in 16 bit mode and at twice 
the camera frequency in 8 bit mode. The pixel clock indicates when 
information about a pixel is being outputted on each period of the 
clock. In 16 bit format information about one pixel is sent in one clock 

R\C 1 2 3 4 641 642 643 644
1 B G B G B G B G
2 G R G R G R G R
3 B G B G B G B G
4 G R G R G R G R
5 B G B G B G B G

481 B G B G B G B G
482 G R G R G R G R
483 B G B G B G B G
484 G R G R G R G R
485 B G B G B G B G



period. In 8 bit format information about one pixel is sent in two clock 
periods. In the default setting, data is outputted at the falling edge 
and is stable at the rising edge. The data is outputted one row at a 
time. The horizontal synchronize signal indicates the start and the 
end of each row by allowing its output to go low. In the default setting, 
data starts to output when the horizontal synchronize signal is at the 
falling edge. The horizontal window reference indicates when a row is 
being outputted by allowing the output to go high. In the default 
setting, the data starts to output when the horizontal window 
reference is at the rising edge. The vertical synchronize signal 
indicates the start and end of a frame in progressive mode and the 
start and end of a field in interlace mode. Output is when it is low. In 
the default setting, the data starts output when the vertical 
synchronize signal is at the rising edge.  
  

During 16 bit format the output is at the clock speed on 16 lines. 
These lines are the Y lines (pins 34-41) and the UV lines (pins 19-
26). In the 8 bit format, the output is at twice the clock speed and on 8 
lines (the eight lines are the Y lines).   
      

In interlace mode (the default mode) the frame is divided in half. 
The two halves are called frames. There is an odd frame and an even 
frame. In interlace mode there is an additional output. This output is 
the odd field flag (pin 17). It is held high during the odd field and low 
during the even field. In progressive mode there is no division of the 
frame.  
  

The Frame division is controlled by register 16. The last 6 bits 
control the separation between the frame or field. The number in the 
last 6 bits is the number of empty frames or fields before the next 
one. In interlace the first 2 bits in register 16 indicate which field the 
horizontal window reference is asserted. If the first two bits are 01 
then the horizontal window reference is asserted in the odd field only. 
If they are 10 then the horizontal window reference is asserted in the 
even field only. If it is 11 the horizontal window reference is asserted 
in both fields and the first 6 bits are ignored. In progressive mode the 
if the first two bits are 10 or 01 the horizontal window reference is 
asserted in frames indicated by the last 6 bits. If it is 11 the horizontal 
window reference is asserted in all frames and the last 6 bits are 
ignored. In both modes if the first 2 bits are 00 then the horizontal 



window reference is not asserted at all, except in single frame 
transfer mode.  
 

Single frame transfer mode is initiated by register 13 the 
second bit. When this bit is high it initiates single frame transfer. The 
first two bits of register 16 must be 00 before single frame transfer 
can be initiated. The first two bits of register 16 and the second bit in 
register 13 are automatically cleared after one frame transfer.  
  
4.3 Analog Processor  
  

The analog processor performs the automatic gain control and 
automatic white balance, and controls the image quality. These 
controls include sharpness, hue, gain, gamma control, and anti-
blooming. Gain is discussed in the register section. The gamma 
control allows a non-linear relationship between the data and the 
output. The analog signals that are standard video signals come out 
of the analog processor are based on the following formulas:  
  
Y = 0.59G + 0.31R + 0.11B                                               (1)  
U = R - Y                                                                            (2)  
V = B - Y                                                                             (3)  
Cr = 0.713 x (R - Y)                                                            (4)  
Cb = 0.564 x (B - Y)                                                            (5)  
      
 Where R, G, and B stand for the red, green, and blue pixel colors 
respectively and where Y, U, V, Cr, and Cb are output signals from 
the analog processor.  
  
4.4 Analog to Digital Converters  
  

The analog to digital converters convert the analog signal to a 
digital one. There are two ten bit analog to digital converters. They 
both have a muliplexer before them to allow several lines of 
information from the analog processor to be outputted on one line 
from each muliplexer.  
  
 
 
 



4.5 Output Formatter  
  

This is where output is formatted. The format includes the 
number of bits per pixel, the number of pixels, the designation of the 
16 output lines, and interlacing. This camera can use a wide variety 
of standard video conventions. These conventions are summarized in 
figure 4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4 Above is a table of the types of video format. Y indicates that the 
format is supported by the camera.  
  
The size of the window is determined by registers 17-1A. The window 
size is the part of the array that is scanned into the analog processor 
and subsequently displayed on the screen. Register 17 determines 
which column to start where register 18 determines which one to end. 
Each value represents four pixels in full resolution and two pixels in 
QVGA resolution mode. Register 19 determines which row to start 
where register 1A determines which row to end. The default values of 
registers 17 through 1A set the window size to 640 by 480 pixels in 
VGA format and 320 by 240 pixels in QVGA format. Whether the 
window output format is 640 x 480 pixels, VGA format (the default), or 
320 x 240 pixels, QVGA format, is determined by the sixth bit of 
register 14.  
  
 
 
 
 
 

                                          Interlaced            Progressive
Resolution     640x480 320x240 640x480 320x240
YUV 4:2:2 16Bit Y Y Y Y

8Bit Y Y Y Y
CCIR656 Y Y Y Y

RGB 16Bit Y Y Y Y
8Bit Y Y Y Y
CCIR656 Y Y Y Y

Y/UV swap 16Bit  -  -  -  -
8Bit Y Y Y Y

U/V swap YUV Y Y Y Y
RGB Y Y Y Y

YG 16Bit Y Y Y Y
8Bit  -  -  -  -

One Line 16Bit  -  - Y  -
8Bit  -  -  -  -



4.6 Digital Video Port  
  

The digital output consist of 8 lines in 8 bit format or 16 lines in 
16 bit format. Currently each output line has a transfer rate around 
115 kilobytes per second. The maximum transfer rate for the output 
lines is almost 7 megabytes per second. The output currents are 
adjusted automatically as a function of loading.  
  
4.7 Serial Camera Control Bus (SCCB)  
  

The Serial Camera Control Bus, or SCCB, is used to set the 
registers in the camera. The only way to change from the default 
values in the registers is to communicate through the SCCB, which 
uses three wires to transfer information, read from and write to the 
camera. The three wires are the SBB (pin 12), SIO-1 (pin 45), and 
SIO-0 (pin 46). The SBB is held low when values are read from and 
written to the camera. At all other times, the SBB is held high. The 
SIO-1 is the serial clock. The SIO-0 is the wire were the data is 
transferred one byte at a time. The SCCB can support more than one 
camera. When there is more than one camera attached to the master 
the cameras simply have different ID addresses. In the SCCB the 
camera or cameras act as the slave device or devices and the master 
is the device to which the camera is connected. For example, if the 
camera is connected to a 511+ then the 511+ is the master.  
  

There are three types of transmission cycles. They are 3-phase 
write transmission cycle, 2-phase write transmission cycle, and a 2-
phase read transmission cycle. A phase contains 9 bits. The first 8 
bits are the data.   
      
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
Figure 5: Above is a diagram that shows the timing of the first phase of a 
transmission cycle.  
  

A 3-phase write transmission cycle is used to write one byte of 
data from the master to a register in a camera. The first phase of this 
cycle, and the other two as well, is the ID address of the camera. The 
second phase is the address of the register in the camera to which 
the data will be written. The third phase is the data that is being 
written to the camera�s register.  
  

The other two cycles are used to read data from a camera 
register to the master. Because the 2-phase read transmission cycle 
does not indicate the register that it is reading, it reads from the last 
register indicated in the previous write cycle. The 2-phase write 
transmission cycle is used to change registers before the 2-phase 
read transmission cycle. The 2-phase write transmission cycle 
consists of a camera ID address phase and a register address phase. 
The 2-phase read transmission cycle consists of a camera ID 
address phase and a phase that contains the data that is being read 
from the camera�s register.  
  

In the first phase, ID address phase, the ID address is the first 
seven bytes. The eighth byte selects whether this phase will be in a 
read or a write cycle. For a write cycle, the eighth bit is set low and for 
a read cycle, the eighth bit is set high. The first eight bits are asserted 
by the master. The ninth bit is an assertion from the camera. The 
camera asserts low if the data, the previous eight bits, has been 
written to it. It will assert high if it has not. The master does not check 
the value of the ninth bit. The master masks the input of the ninth bit 



to low. The default ID address for the camera, the first seven bits plus 
the eighth read/write bit, is 42 for write and 43 for read.   
  

In the second phase of the write statements, the address of the 
register phase, the first eight bits are use to identify the register and 
are asserted by the master. The ninth bit is asserted in the same way 
as in the first phase.  
  

In the second phase of 2-phase read transmission cycle, the 
first eight bits are the data that the register holds and is being read to 
the master, asserted by the camera. The ninth bit is asserted high by 
the master.  
  

In the third phase of the 3-phase write transmission cycle, the 
first eight bits are the data being written to the register and are 
asserted by the master. The ninth bit is asserted the in the same way 
as in the first phase.  
  

Whether the SIO-0 is sending input from the master to the clock 
or from the clock to the master is controlled by two internal lines, the 
SIO0_OE_M_ and the SIO_OE_S_. The SIO0_OE_M_ is inside the 
master. It can be thought of as being low when the master is writing 
and high when it is not. Since this is an internal line it can be the 
other way around as well depending on the design; however, it will 
still do the same job. The SIO_OE_S_ is inside the clock. It is low 
when the clock is writing to the master and high when it is not.  
  

To better understand the SCCB bus we need to look at the 
timing. The minimum frequency of the serial clock, SIO-1, is 10 ∝ s. 
When SIO-1 is low a byte of data is taken from the SIO-0. When SIO-
1 is high the bit of data is transmitted. Protocol dictates that SIO-0 
must be stable when SIO-1 is high. At the beginning and the end of 
the transmissions precautions must be made to insure that there is no 
propagation of an unknown bus state. The SIO-0 must be driven high 
for a period before and after the SBB goes from high to low at the 
start of a transmission. The SIO-1 must be high during this time. The 
minimum amount of time that SIO-0 is high before the SBB goes from 
high to low is 15 ns. The minimum period after SBB goes from high to 
low that SIO-0 must stay high before it may go low is 1.25 µs. The 
SIO-0 must also be driven high for a period before and after the SBB 



goes from low too high at the end of the transmission. Just as at the 
beginning of the transmission, the SIO-1 must be high during this 
time. The minimum amount of time that SIO-0 is high before the SBB 
goes from low to high is 15 ns. There is no minimum period after SBB 
goes from low too high that SIO-0 must stay high before it may go 
low. A 2-phase transmission cycle takes about 200 µs to transmit. A 
3-phase transmission cycle takes about 290 ∝ s to transmit.   
  
4.8 Registers  
  

The 125 registers control all the functions of the camera. 
Seventy of the registers are used exclusively for internal use. There 
are only a few of the other registers that are important to know.   
  

One of the most important registers is register 13. When bit 0 is 
low it enables manual control, which allows one to manually change 
the values in registers 00 - 02. When bit 0 is high it enables auto 
adjust mode. When bit 1 is high it initiates single frame transfer, as 
described by the timing generator section. Bit 5 allows one to select 8 
bit format when high and 16 bit format when low.  
  

Register 12 contains bits that can manipulate register 00 - 02 in 
auto control. Bit 2 when low holds register 01 - 02 at the last updated 
value. When it is high it is controlled by internal functions. Bit 5 when 
low sets register 00 to default value. When it is high it is controlled by 
internal functions. Bit 7 when high resets all registers to their default 
value.  

 
Registers 01 and 02 are blue gain control and red gain control 

respectively. The values of these registers may need to be changed if 
the colors have low intensities. Bit seven indicates the gain is 
increasing when high or decreasing when low. The other seven bits 
compute the gain by the following formula:  
  
Gain = 1 + ( <6:0> -80)/100                                                (6)               
 <6:0> is the value in bits six through zero.  
  

Register 10 controls the exposure timing of the clock. One must 
be in manual adjust mode in order to write values effectively. If the 



clock is not in manual adjust mode this register is updated by internal 
functions. Exposure timing is determined by the following formulas:  
  
For interlace:   
exposure time = line time x <7:0>                                           (7)  
  
For progressive:  
exposure time = line time x <7:0>                                            (8)  
  
Line time = frame time/525 if clock is 27 MHz line time = 63.5  (9)  
    
      

Register 14 bit 5 selects output format to be 320 x 240 when 
high and 640 x 480 when low.  
    

Register 28 bit 5 selects progressive scan when high and 
interlace scan when low.  
    

Register 61 bit 7 selects YUV output when high or raw data 
when low. YUV is the default value.  
  
5. Interface  
  

There are two ways to interface the camera with a computer 
that should be considered. The camera can interface with the 
computer through a parallel port or through a USB connection by 
going through other external hardware. A parallel port connection 
connects to a computer through a pin connection, where a USB 
connection connects through a USB connection. A parallel port 
connection is slower than a USB connection. A USB connection has 
a max rate of around 12 megabytes per second. One can use a 
buffer to hold data before it is transferred if one wants to take pictures 
at a faster rate. The EZUSB and 511+ interface with the computer 
through a USB connection where the 38EV/48EV interfaces through 
a parallel port connection.   
  
 
 
 
 



6. Additional Hardware and Their Drivers  
  

Drivers are used as a way to set the registers of the camera 
through software that can be used by a computer. There are three 
pieces of hardware that I have considered to run the camera. Each 
one has it�s own driver that it uses to run the camera.  
      

The first is the 38EV/48EV control board. The 38EV ($83.95) 
can be used with color camera modules. The 48EV ($78.95) cannot 
be used with color camera modules [1]. The 38EV/48EV has a 
parallel port interface and the software of the 38EV/48EV appears to 
be easy to use. The figure below is the control panel for the 
38EV/48EV.  

 
Figure 6: Above is the control panel for the 38EV/48EV.  
  

The second is the 511+ chip. When the 511+ chip is purchased 
with the camera module ($160.00) [2] it has a USB connection. The 
drivers that comes with the 511+ are difficult to use for the 
experiment. To set the frame rate using either one driver or the other 
is difficult. The 511+ also randomly drops frames and pads the frame 
rate with duplicate frame when it drops a frame while using one of 
these drivers. There are some Linux drivers that have been written for 
the 511+ [3], unfortunately, the registers of the 511+ are complex and 
not all of the code has been written.   
  



The third is to use a EZUSB chip to connect the camera module 
to the computer through a USB connection. This would require 
software code to be written. The problem with the approach is the 
question of how to set up the transfer protocol to and from the SCCB. 
The EZUSB controls its own protocol but it is not known if they are 
the same type as the camera�s protocols.  
  
7. Data  

Pictures were taken of the explosion, after the problems with 
synchronizing the camera were solved.   

  
Figure 7: Above is a picture of an explosion taken by the camera.  
 

After examining image array of the camera, figure 3, it was 
discovered that the pixels may be shifted. Figure 3 shows the Bayer 
Pattern which shows that the R (red),G (green), and B (blue) pixels 
are at different locations. Each pixel in the array is a single color but 
the format of a single pixel is determined by all three colors. The 
other two colors must come from the surrounding pixels. The 



unknown algorithm that combines the different colors into an 
individual pixel may shift the information of the individual color 
intensity that the pixel is filtered by the lens (as described in the 
image array section) to collect into one or more of the surrounding 
pixels.   

  
Figure 8 Above is the grid pattern that was imaged on the camera.  
  

We devised an experiment to test if there is a pixel shift. The 
first step of the experiment was to create a grid pattern. The printed 
grid had a cell size of 0.19 inches X 0.19 inches, and the line width 
was almost one hundredth of an inch. The grid was placed 
approximately 20 cm away from the camera lens and imaged on the 
camera. The cell size when imaged onto the camera was 
approximately 20 X 20 pixels and the line width was one pixel. The 
intensities of the three colors were examined near the grid lines.   
  

 
Figure 9: Above is graph of the intensities of the red and green colors 
down Column 130 in the bitmap of a picture taken of the grid. A black 
dividing line is at about every 20 rows, where the intensities drop.  
  
  
  
  
  



  
Figure 10: Above is a graph of the intensities of the red and green colors 
across row 108 in the bitmap of a picture taken of the grid. A black dividing 
line is at about every 20 columns, where the intensities drop.  
    

The intensities of both colors in figure 8 and figure 9 decrease 
dramatically at about every 20 pixels were the black dividing line is. 
The width of this sudden decrease is only a couple pixels which 
indicates that there are no significant pixel shifts.  
  
8. Conclusion   
  

One can use an inexpensive CMOS camera as a piece of 
scientific equipment. One can synchronize the camera with the other 
instruments through the hardware so that the pixel clock of the 
camera runs the laser. The 511+ is an effective interface between the 
camera and the USB connection to a computer. One can use custom  
C++ programs to capture the images at known time intervals. One 
can also use another custom C++ programs to filter for one of the 
three colors, Red, Blue, or Green. We have proved that there are no 
significant pixel shifts of the data collected in individual pixels. A 
CMOS camera can be a less expensive alternative to a scientific 
camera.  
  

Although the CMOS camera is synchronized with the 
equipment and takes pictures at known times, one can still improve 
the camera�s performance. The camera currently takes pictures at 
one frame per second. However, the maximum frame rate of the 
camera is 60 frames per second.   
  
One way one may attempt to improve the frame rate is to changing 
some of the software. The function call to video for windows that is 
currently being used in our custom C++ program 
(capGrabFrameNoStop(hWnd)) to capture a frame is the slowest of 



the three commands available (capGrabFrameNoStop(hWnd), 
capGrabFrame(hWnd), and capCaptureSingleFrame(hWnd)). When 
the fastest of the three function calls 
(capCaptureSingleFrame(hWnd)) was used with the camera only the 
frame rate was 5 frames per second. When the picture preview was 
disabled the frame rate was 15 frames per second with this new 
function call. One could try using this new function call instead of the 
old one while the camera is synchronized to the camera. One could 
also try to use a program similar to windows media player instead of 
capturing a bit map with a C++ program. This would allow software 
that is newer than video for windows to control the drivers.  
  

Another approach is to try using an EZUSB instead of a 511+. 
The advantage gained by this approach is the elimination of all of the 
software inside the 511+. The camera and the EZUSB are well 
documented. The disadvantage to this approach is that one must 
write the programs that allow the EZUSB to control the camera.  
However, one still maintains a USB connection with this approach.   
  

One may also try the 48EV. I have not tried using this yet. The 
major disadvantage with this approach is that the 48EV has a parallel 
port connection.   
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