
Temperature and Species Density Measurements

Using Fourier Transform Infrared Spectroscopy

A thesis submitted in partial fulfillment of the requirement
for the degree of Bachelor of Science with Honors in

Physics from the College of William and Mary in Virginia,

by

Jason D. Hoffman

Accepted for

Advisor: Dr. Manos

Advisor: Dr. Danehy

Dr. Bynum

Dr. Hoatson

Williamsburg, Virginia
May 2003

Abstract

We developed a routine to model absorption spectra measured with a Fourier transform
infrared spectrometer based on spectroscopic parameters from the HiTran database and local
temperature and pressure information. This model was then validated using an air-filled gas cell
at room temperaturewith path length 15 cm. Quantitative measurements of the temperature
and pressure within the cell reveal a that pressure measurements are accurate to within 15
Torr (0.3 PSI), while the temperature is systematically over-predicted by 20 K. The standard
deviation in the pressure measurements was found to be 9.3 Torr (0.18 PSI) at 770 Torr (14.9
PSI), while for the temperature measurements it was 1.2 K at 298 K.

i

Acknowledgements

I would like to thank Dennis Manos for the constant encouragement and for introducing me to ”real”

physics. I would also like to thank Paul Danehy for a wonderful opportunity to do research. Without

their support none of this would have been possible.

ii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 2

2 Theory 3

2.1 Fourier Transform Spectrometers . 3

2.2 Spectroscopy . 6

2.2.1 Overview . 6

2.2.2 Natural Line Broadening . 9

2.2.3 Collisional Line Broadening . 12

2.2.4 Doppler Line Broadening . 15

2.2.5 Combined Effects . 16

2.2.6 Instrumental Line Broadening . 18

2.2.7 Quantitative Spectroscopy . 22

2.3 Fluid Dynamics . 22

3 Software 23

3.1 HiTran . 23

3.2 specgen . 24

4 Experimental Setup 25

5 Results 28

5.1 Accuracy . 28

5.2 Precision . 37

6 Future Work and Conclusion 39

A HiTran Output 41

iii

B specgen.cpp 42

iv

1 Introduction

1.1 Motivation

Testing in wind tunnels, such as those at NASA Langley Research Center (LaRC),

is the primary method for evaluating new aerospace vehicle concepts. Model perfor-

mance is judged by measuring the aerodynamic forces such as lift, drag, and wing

deformation acting on or within the model. To fully understand these measurements,

knowledge of the temperature, pressure, velocity, and composition of the gas flowing

in the tunnel is necessary.

Optical measurement techniques are preferred, especially in supersonic facilities,

because they are non-perturbative, unlike probe-based techniques in use today. While

many optical measurement options exist, we are examining Fourier transform infrared

(FT-IR) spectroscopy because it is a relatively low-cost, easy-to-use, and well under-

stood technique, that uses commerically available hardware. However, we believe that

our application to studying temperature and species densities in wind tunnel flows is

novel.

In our work we hope to measure both rotational and vibrational temperature, as

well as species density, from which pressure may be inferred. The measurements will

be path-averaged across the tunnel, though tomography could be used on axisymmet-

ric flows to generate two-dimensional temperature and pressure profiles. Furthermore,

FT-IR data are time averaged over several seconds, making this technique unsuitable

for the study of unsteady flows. Another important aspect of FT-IR spectroscopy is

that only a fraction of molecules are infrared active. These include many species of

practical interest (CO2, H2O, etc. . .) but excludes O2, H2O, Ar, etc. . ..

FT-IR spectroscopy data may also be used to validate or refine the input pa-

rameters currently used in Computational Fluid Dynamics (CFD) calculations. At

1

present, these conditions are obtained from probe-based instruments. Furthermore,

the data may be used diagnostically to determine if the tunnel is operating at desired

conditions. If possible, near real-time analysis would display freestream conditions

while the tunnel was operating.

Numerous experimental opportunities for this method have been investigated at

LaRC. Combustion facilities such as the 8-ft High Temperature Test Facility and

the Direct Connect Supersonic Test Facility produce both carbon dioxide and water

vapor while running. The National Transonic Facility has contaminant oils and water

vapor, whose concentration could be quantified. The Unitary Plan Wind Tunnel, the

15-inch Mach 6, 20-inch Mach 6, and 31-inch Mach 10 tunnels all run with air, which

contains trace quantities of carbon dioxide. Seeding of an external gas is not necessary

because FT-IR is sensitive to a wide-range of species already present in the facilities.

Additionally, FT-IR could be extended to study the water vapor and carbon dioxide

in scramjet engines.

1.2 Overview

A brief outline of the experimental setup and data analysis methodology are construc-

tive prior to presenting a theoretical basis for the work. As we show in subsequent

sections, sample pressure and temperature are important parameters governing the

appearance of an absorption spectrum. However, because these variables (along with

others) influence the spectrum in a complex manner they may not be obtained directly

from experiment. Rather, an experimental spectrum is compared, via least-squares

fitting, to a library of theoretical spectra. The library is generated using our program

specgen (see §3 and appendix B), which relies on environmental (e.g. tempera-
ture and pressure) and experimental (e.g. instrument resolution and absorption path

length) conditions designated by the user, in addition to spectroscopic parameters

2

from the HiTran database [1]. The temperature and pressure used to produce the

theoretical spectrum that best approximates the experimental spectrum are presumed

to be the conditions at which the experiment was conducted.

The work completed to date has centered on developing and validating the spec-

gen software. While both the development and validation processes will be elaborated

later, we provide a brief description of the experimental setup used to validate the

algorithm, so that the reader may better conceptualize the experiment, and thereby

connect the theoretical development to something concrete.

Broadband radiation is passed through a Michelson interferometer, the output of

which passes through the gas sample, downstream of which detection occurs. The

gas sample, air for the validation tests, is contained in a custom-made metal cell,

measuring one inch in diameter and seven inches in length, with one inch diameter

potassium chloride windows on either end. The cell is connected to a vacuum pump

that allows us to evacuate the cell to 0.75 Torr for background scans, or to partially

evacuate the cell to validate the model from 0.75 Torr to one atmosphere. The ratio of

the background and experimental spectra gives the absorption spectrum for the gas in

the cell. If this technique were to be extended to studying pressure and temperature

in a wind tunnel, the gas cell would be replaced by the free stream flow. Additionally,

fiber optics would be necessary to carry the radiation from the interferometer to the

sample, and from the sample to the detector.

2 Theory

2.1 Fourier Transform Spectrometers

The Fourier transform infrared spectrometer consists of two plane mirrors, M1 and

M2 in figure 1, oriented perpendicularly and forming a right angle. At the vertex of

3

the right angle is a 50-50 beamsplitter, rotated 45◦ relative to the mirrors. Incident

radiation, B0, from a broadband source, impinges on the beamsplitter such that

equally intense beams B1 and B2 propagate to M1 and M2 respectively. The two

beams recombine at the beamsplitter, to form two new beams B4 and B5. Beam

B4 is directed back at the source and not of interest; B5 is received by the detector.

Translation of mirror M1 along the axis of the corresponding arm causes interference

in beam B5. This modulation is slow relative to the frequency of the radiation in

B0 and is detected as an interferogram, that is a series of peaks and valleys as a

function of time (or mirror displacement if the mirror has a constant velocity). The

interferogram is written I0(t) � I0(δ), where t is time and δ is the mirror displacement

(usually in centimeters).

B 2

M2

B 4

Detector

Computer

3B

0B B 1
M1

Source

Beamsplitter

Figure 1: Schematic of the components of a Fourier transform infrared spectrometer.

Considering two interfering waves of intensities Ba and Bb, the resulting wave has

4

intensity I, such that

I = Ba +Bb + 2
√
BaBb cos d, (1)

where d is the phase difference between the two waves. In the case Ba = Bb = B�,

the intensity of the interfered wave is,

I = 2B�(1 + cos d). (2)

Returning to the Michelson interferometer depicted in figure 1, and assuming a hy-

pothetical, monochromatic source emitting at wavenumber ω0, which corresponds to

wavelength λ0, the phase difference between B1(ω0) and B2(ω0) when they recombine

is,

d =
4πδ

λ0
= 4πδω0. (3)

Furthermore, if the beamsplitter divides B0(ω0) equally, such that B1(ω0) = B2(ω0) =

B0(ω0)/2, then (2) predicts that I0(δ) = B0(ω0)(1 + cos d). Substitution of (3) into

this expression gives,

I0(δ) = B0(ω0)[1 + cos (4πδω0)]. (4)

However, as we stated previously, the source used for FT-IR is broadband, with

spectral intensity distribution B0(ω). Therefore, the interferogram recorded by the

detector is a superposition of cosines,

I0(δ) =

∫ ∞

0

B0(ω)[1+cos (4πδω)]dω =

∫ ∞

0

B0(ω)dω+

∫ ∞

0

B0(ω) cos (4πδω)dω. (5)

Evaluating (5) at δ = 0, we find that,

I0(0) = 2

∫ ∞

0

B0(ω)dω. (6)

Using the two previous equations to remove the constant term,

I(δ) = I0(δ)− 1
2
I0(0) =

∫ ∞

0

B0(ω) cos (4πδω)dω, (7)

5

where the right hand side contains all the spectral information, and is the well-known

cosine Fourier integral for the distribution B0(ω). The inverse Fourier transform may

be used to recover B0(ω), with the result

B0(ω) =

∫ ∞

0

I(δ) cos (4πδω)dδ. (8)

There is a hidden subtlety in (8), as pointed-out by Davis, et al., whose treatment

we have been following to this point [2]. Fourier analysis produces an unphysical

mirror-image of B0(ω) at negative frequencies, that is B0(−ω). Because cosine is an

even function, both B0(ω) and B0(−ω) map to identical interferograms. We may

eliminate this inconsistency with our physical intuition by constructing distribution

B(ω) = 1
2
[B0(ω) +B0(−ω)]. Changing our definitions to incorporate all frequencies,

I(δ) =

∫ ∞

−∞
B(ω) cos (4πδω)dω, (9)

and,

B(ω) =

∫ ∞

−∞
I(δ) cos (4πδω)dδ. (10)

2.2 Spectroscopy

2.2.1 Overview

Spectroscopy is a powerful tool for the study of molecular structure. Analysis of a

molecular spectrum yields information on discrete energy level values, from which the

molecule’s electron configuration, in addition to molecule’s rotation and vibration can

be deduced. Furthermore, it is possible to make quantitative determinations of the

molecule’s environment, including temperature and pressure. This is done by studying

the strength of each spectral line, and through detailed analysis of the environmental

perturbations to the ideal spectrum. These perturbations manifest themselves as

broadening of the spectral lines.

6

The spectroscopy of a polyatomic molecule may be arbitrarily complex, due to

transitions between electronic, vibrational, and rotational levels. Because our work

involves the exclusive study of carbon dioxide, we may simplify the problem by con-

sidering only the spectroscopy of linear, triatomic molecules (e.g. CO2). Transitions

between electronic states result, for the most part, in absorption lines in the visible or

ultraviolet region, and consequently may be ignored for our work, which is limited to

the infrared. According to Herzberg, in the ground electronic state the angular mo-

mentum about the internuclear axis of a linear polyatomic molecule is exactly zero

[3]. In this approximation, the rotational energy levels as a function of rotational

quantum number, J , is given by

F (J) =
Er

hc
= BJ(J + 1)−DJ2(J + 1)2 + · · · , (11)

where B is the rotational constant,

B =
h

8π2cIB
. (12)

In (12), IB is the moment of inertia about an axis perpendicular to the internuclear

axis and going through the molecule’s center of mass. For a symmetric, linear molu-

cule, such as Y-X-Y, IB is given by 2mr2, where m is the mass of atom Y and r is the

X-Y bond length. The second term in (11) arises due to molecular stretching induced

by the centrifugal force exerted on a rotating molecule. In the harmonic oscillator

approximation, D may be related to B and to the vibrational frequency by,

D =
4B3

ω2
. (13)

Higher order terms exist in (11), though they are exceedingly small, and may be

neglected for CO2. By enforcing the selection rule for rotational transitions, ∆J = ±1,
we are able to derive the infrared spectrum for a non-rigid rotator,

ν = F (J − 1)− F (J) = 2B(J + 1)− 4D(J + 1)2. (14)

7

As we have alluded to, by inclusion of the constant D in the preceding work,

molecules undergo periodic vibrations while rotating. Considering only symmetric,

linear molecules, three fundamental frequencies are observed, corresponding to the

ν1 symmetric stretch, ν2 perpendicular, and ν3 asymmetric stretch. These three

vibrational modes are shown in figure 2.2.1.

Perpendicular Symmetric Strech Asymmetric Stretch

Figure 2: Vibrational modes of CO2. From left to right, the ν2, ν1, and ν3 modes at 667.3 cm−1,

1388.3 cm−1, and 2349.3 cm−1 respectively. Only the ν2 and ν3 modes are infrared active.

In addition to the three fundamental frequencies, overtone, difference, and combi-

nation bands also exist. For our work, we are interested in the ν3 band, centered at

2349.3 cm−1. This band is very stong, resulting in measurable absorption even with

8

low CO2 concentrations.

2.2.2 Natural Line Broadening

Natural line broadening results from the inevitable decay of electrons from an excited

state to a lower one. Our discussion of this process at a basic level follows that of

Silfvast [9]. In a simple two-level model, for isolated (non-interacting) atoms, with

upper state u, and energy εu, and lower state l with energy εl (εl < εu) this process

may be expressed mathematically as,

dNu

dt
= −AulNu (15)

where Nu is the number of electrons in the upper state
1, Aul is the radiative transition

rate from state u to l 2. The solution to equation (15) is found to be,

Nu(t) = Nu(0)e
−Ault = Nu(0)e

− t

τrad
u . (16)

The radiative lifetime of state u, τ radu , is defined to be the reciprocal of the radiative

transition rate, Aul.

In a multi-level model, with upper state u and lower states i, j, k, . . . equation (15)

must be written as,

dNu

dt
= −(Aui + Auj + Auk + . . .)Nu = −

∑
α<u

AuαNu, (17)

where Nu has the same meaning as above, and Auα is the radiative transition rate

from state u to state α. The summation is carried out over all states with energy less

than εu. Analogous to the result obtained previously, the solution to (17) is,

Nu(t) = Nu(0) exp
[
−

(∑
α<u

Auα

)
t
]
= Nu(0)e

− t

τrad
u , (18)

1Nu must be large enough that statistical fluctuations may be overlooked and, simultaneously, small enough to

preclude interaction between the molecules.
2Aul is also known as the Einstein coefficient for spontaneous emission or the Einstein A coefficient.

9

where the radiative lifetime of state u has been defined by (19),

τ radu ≡ 1∑
α<uAuα

. (19)

For succinctness and consistency with later notation, we make the following definition

for the half width of the line in wavenumbers,

γradu ≡ 1

4cπτ radu

. (20)

Invoking the Heisenberg Uncertainty Principle, ∆ε∆t ≈ �, and equating τ radu with

the uncertainty in time, we conclude that

∆εu =
�

τ radu

= �

∑
α<u

Auα. (21)

By the same reasoning, the lower energy level l would also have a finite width,

given by

∆εl =
�

τ radl

= �

∑
β<l

Alβ. (22)

The total effective energy width for the transition from u to l is found by adding

the two separate widths, yielding

∆εtot = ∆εu +∆εl = �

(∑
α<u

Auα +
∑
β<l

Alβ

)
= h∆νradul , (23)

where ∆νradul represents the uncertainty in the emitted (or absorbed) frequency. Rewrit-

ing (21 - 23),

∆νradul =
1

2π

(∑
α<u

Auα+
∑
β<l

Alβ

)
=
1

2π

(1

τ radu

+
1

τ radl

)
= 2c(γradu +γradl) = 2cγ

rad, (24)

where γrad is proportional to the total relaxation rate from states u and l.

This result has been confirmed through a more rigorous, quantum-mechanical ap-

proach by V. Weisskopf and E. Wigner [4]. They begin by showing that for an electron

in stationary state m (energy εm), the probability that its energy lies between ε and

ε+ dε is given by,

W (ε)dε =
cγradm

π

h

(hc γradm)
2 + (ε− εm)

2dε. (25)

10

Consequently, the simultaneous probability that the upper state has energy between

ε and ε + dε and the lower state has energy between ε′ and ε′ + dε′ is given by

W (ε)W (ε′)dεdε′. Additionally, we have the constraint that hν = ε − ε′, so that for

fixed values of ε,

|dε′| = h|dν|. (26)

The probability of emission (or absorption) occurring at a frequency between ν

and ν + dν, denoted by J ′(ν)dν, is found by replacing ε′ and dε′ in our expression

for W (ε)W (ε′)dεdε′ according to (26), then integrating over all possible values of ε.

Thus, we obtain for the normalized line shape function

J ′(ν)dν = J(|ν − νul|)dν = 1
π

cγrad

(ν − νul)2 + (cγrad)2
dν. (27)

This intensity distribution may alternatively be found by Fourier analysis of a

classical oscillator with damping constant γrad [5, 6, 7]. From equation (27) we find

that J(ν) falls to one-half of its peak value at frequency ν ′, such that

|ν ′ − νul| = 1

4π

(∑
α<u

Auα +
∑
β<l

Alβ

)
= c(γradu + γradl) = cγrad. (28)

Comparison of (24) and (28) reveals that ∆νradul = 2cγ
rad represents the FWHM of

the Lorentzian profile defined by (27), while |ν ′ − νul| = cγrad represents the HWHM

[8].

Conversion from frequency (ν) to wavenumber (ω) space, via νλ = c → ν = cω

transforms (27) into

J(|ω − ωul|)dω = 1
π

(γrad)

(ω − ωul)2 + (γrad)2
dω. (29)

Consequently, the natural line half-width (HWHM) in wavenumbers is defined to

be

|ω′ − ωul| = (γradu + γradl) = γrad. (30)

11

2.2.3 Collisional Line Broadening

Molecular collisions are a complex, quantum-mechanical process that alter the sys-

tem’s energy distribution. Two limiting types of collisions may be identified, depend-

ing on the assumptions employed. Strong collisions, which are generally regarded

as adiabatic, (i.e. occurring over a short time interval compared to the period of

oscillation) are such that the molecule is presumed to be distributed according to the

Boltzmann Law after the collision. That is to say, the molecule’s post-collision state

is independent of its state prior to the collision. Weak interactions arise when a single

collision does not impart enough energy for the system to jump to the next higher

energy level. Under these conditions an appreciable change in the system’s state may

only occur as the result of a large number of collisions; though sufficient deformation

may occur in a weak collision to cause the central frequency to shift [10].

Early attempts by Lorentz to model the quantum-mechanical processes responsible

for strong collisional broadening were based on the Fourier analysis of the classical os-

cillator undergoing collisions. However, this theory was unable to predict the correct

line shape for some regions of the electromagnetic spectrum under certain pressure

and temperature conditions. Ben-Reuven was able to develop a significantly more

generalized line shape than Lorentz by considering collisions that changed the oscil-

lator’s amplitude, phase, orientation, and momentum. The Ben-Reuven line shape is

given by the expression3

J̃ ′(ω)dω =
2(γcol − ξ)ω2 + 2(γcol + ξ)[(ωul + δ̂)2 + (γcol)2 − ξ2]

[ω2 − (ωul + δ̂)2 − (γcol)2 + ξ2]2 + 4ω2(γcol)2
dω (31)

where γcol is proportional to the collisional damping rate of the oscillator, and there-

fore related to the pressure-broadened line width (∆ωcolul), ξ describes the mean rate

of momentum-reverting collisions (also known as the coupling coefficient or coupling

element), and δ̂ measures the pressure induced shift in the line center that results

3The notation J̃ has been used to indicate that this expression is not normalized to unit area.

12

from weak interactions [11, 12, 13, 14].

If there are no momentum-reverting collisions, that is ξ = 0, then (31) reduces to

the Van Vleck-Weisskopf line shape function [10, 11, 15]

J ′(ω)dω =
1

2π

[γcol

(ω − ωul − δ̂)2 + (γcol)2
+

γcol

(ω + ωul + δ̂)2 + (γcol)2

]
dω. (32)

Formally, equation (32) predicts a “physical” resonance at (+ωul + δ̂) and an “un-

physical” resonance at (−ωul − δ̂), with a tail extending into the “physical” region,

ω > 0. If we concern ourselves with a small region around +ωul, and consider a small

pressure shift, then the first term in (32) is negligible, yielding the familiar Lorentzian

profile

J ′(ω)dω =
1

π

γcol

(ω − ωul − δ̂)2 + (γcol)2
dω. (33)

This is the same result found by Lorentz using a classical oscillator model, with the

addition of the pressure induced shift term δ̂. Furthermore, this outcome is logical

if we view collisions as a process that increases the decay rate, thereby reducing the

state’s lifetime. Consistent with §2.2.2, this process yields a Lorentzian line shape
with pressure-broadened half-width γcol determined by the mean stimulated decay

rate; while previously the radiatively-broadened half-width γrad was determined by

the mean spontaneous decay rate.

Analogous to (20), γcol is defined by,

γcol ≡ 1

4cπτ̄ col
, (34)

where τ̄ col is the mean time between collisions. This time may be found by assuming

that a collision occurs each time two molecules, A and B, approach each other within

a certain distance, referred to as the optical collision diameter. The optical collision

diameter, dAB, is given by

dAB =
1

2
(dA + dB), (35)

13

where dA and dB are the optical diameters of molecules A and B respectively. The

corresponding optical cross section is π(d2AB). The mean time between collisions of

a single molecule of species B and all A molecules, τ̄ colAB equals [nAπ(d
2
AB)c̄]

−1, where

nA is the number density of species A, c̄ is the mean relative speed,

c̄ =
(8kT
πµAB

) 1
2

, (36)

and µAB is the reduced mass of A and B. The mean time between collisions for a

single molecule of species B and all collision partners, τ̄ colB is found by summation,

τ̄ colB =

[∑
A

nA(σ
2
AB)

(8πkT
µAB

) 1
2

]−1
. (37)

Employing the ideal gas law, p = nkT , we find:

τ̄ colB =

[
p
∑
A

χA(σ
2
AB)

(8π

µABkT

) 1
2

]−1
, (38)

where χA is the mole fraction of collision partner A. Substituting (38) into (35), we

find that the pressure broadened half-width is,

γcol =
p

4cπ

[∑
A

χA(σ
2
AB)

(8π

µABkT

) 1
2

]
. (39)

The important thing to notice in (39) is the dependence of γcol on p and T ; that is,

γcol ∝ p

T
1
2

. (40)

More generally, the half-width is assumed to vary as

γcol ∝ p

T n
, with 0 < n < 1, (41)

where the coefficient of temperature dependence, n, is adjusted empirically [7]. The

discrepancy between (40) and (41) results from the approximations of kinetic theory

employed in developing (40), as opposed to a more rigorous, quantum-mechanical

calculation.

The HiTran database, which predicts infrared absorption, uses a similar scheme

to approximate the pressure broadening. The pressure broadening is characterized as

14

coming from two sources: self-broadening (i.e. coming from like molecules) and air-

broadening (i.e. coming from foreign molecules). Thus, the total pressure-broadened

half width is a linear combination of self-broadened and air-broadened half-width

terms, weighted by the partial pressures of “like” and “foreign” gases respectively.

Furthermore, the entire expression is scaled from a measured half-width at pref = 1

atm and Tref = 296 K to the desired temperature T [K], and pressure p [atm],

according to

γcol(p, T) =
(Tref

T

)n[
γcolair(pref , Tref)(p− ps) + γcolself (pref , Tref)ps

]
, (42)

where ps is the partial pressure of the gas [1]. In specgen we use (42) to calculate the

pressure-broadened half-width for each line, employing transition-dependent values

of γcolair, γ
col
self , and n supplied by HiTran.

2.2.4 Doppler Line Broadening

Neglecting for a moment the previously discussed broadening mechanisms, we mo-

tivate the presence of Doppler broadening. If, for a gas of stationary molecules, a

transition between states u and l results in the emission (or absorption) of light at

frequency νul, then the actual frequency of light emitted (or absorbed) by molecules

moving with velocity vx in the direction of the line of sight is shifted to ν according

to the Doppler principle such that,

ν = νul

(
1− vx

c

)
. (43)

For a gas in thermal equilibrium, the distribution of velocities is spherically symmet-

ric, and given by the Maxwell velocity distribution,

P (vx)dvx =
(m

2πkBT

) 1
2

exp
(
− m

2kBT
v2x

)
dvx, (44)

which gives the probability that a molecule of mass m and temperature T moving in

direction x has a velocity between vx and vx + dvx [8].

15

The probability of observing emission (or absorption) in a frequency range between

ν and ν + dν is found by first solving (43) for vx,

vx =
c

νul
(ν − νul) (45)

and subsequently differentiating (45),

dvx =
c

νul
dν (46)

and squaring (45),

v2x =
c2

ν2ul
(ν − νul)

2. (47)

Ultimately, the desired expression may be found via substitution of (46) and (47) into

(44), with the result

J ′(ν)dν = J(|ν − νul|)dν = c

νul

(m

2πkT

) 1
2

exp
[
− mc2(ν − νul)

2

2kTν2ul

]
dν. (48)

Re-expressing (48) in wavenumbers,

J ′(ω)dω = J(|ω − ωul|)dω = c

ωul

(m

2πkT

) 1
2

exp
[
− mc2(ω − ωul)

2

2kTω2ul

]
dω. (49)

The half-width of the Gaussian profile defined by (49) is found to be

|ω′ − ωul| = ωul

√
2kT ln(2)

mc2
= γdop, (50)

where ω′ is defined by the relationship J ′(ω′) = J(0)/2.

2.2.5 Combined Effects

Comparison of equations (20), (41), and (50) reveals that under different conditions

of temperature and pressure the natural, collisional, and Doppler broadening mech-

anisms may have different relative strengths. The natural line broadening is depen-

dent on the quantum-mechanical properties of the transition, collisional broadening

is determined by both temperature and pressure, while Doppler broadening is con-

trolled by temperature and transition frequency. When one effect is dominant, that

16

is it produces a half-width significantly greater than that produced by the other two

mechanisms, the weaker effects may safely be neglected. However, when two or more

effects are of similar strength, care must be taken when constructing the combined

line profile. The total line shape is given by the convolution of the individual line

shapes.

Convolution is a smoothing operation, that may act on discrete data sets or con-

tinuous functions. The discrete case, also known as a serial product, may be thought

of as a weighted moving average. For b a set of 2i+1 points, a = b⊗discrete g is found

by,

an =
+i∑

m=−i
bn−mgm. (51)

For the functions a, b, and g of continuous variables x and x′, the convolution a = b⊗g

is defined according the formula

a(x) =

∫ +∞

−∞
b(x− x′)g(x′)dx′. (52)

However, because our experimental and theoretical data are stored as discrete sam-

plings of continuous functions, eq. (51) proves to be a much more useful formula.

Convolutions are covered in greater detail in a number of sources, though Jansson is

particularly thorough [16].

For simplicity, we begin by considering combined natural and collisional broaden-

ing, in the limit both mechanisms are modeled with a Lorentzian line shape. It may

be shown that the convolution of two Lorentzians, φ1(ω) and φ2(ω), of the form

φ(ω) =
1

π

γ

(ω − ω0)2 + γ2
, (53)

with half widths γ1 and γ2 respectively, produce a third Lorentzian with half width

γ3 = γ1 + γ2. For our work, the total width is therefore proportional to the sum of

the spontaneous decay rate and the collision rate. However, for infrared transitions

of gases at p � 1 atm the lifetime of an excited level is significantly longer than the

17

mean time between collisions, making the effects of natural line broadening negligible

compared to pressure broadening.

A much more difficult situation arises when trying to calculate the line shape

resulting from the convolution of Gaussian and Lorentzian profiles of comparable

widths. Because our research takes place across a wide-range of temperatures and

pressures, we are unable to neglect one of these effects. The convolution of such

profiles generates a Voigt profile [17]

J ′(ω)dω =
{
1

γdop

√
ln 2

π

[
y

π

∫ +∞

−∞

exp(−t2)

y2 + (x− t)2
dt

]}
dω, (54)

where

x ≡ ω − ωul
γdop

√
ln 2 (55)

converts the wave number scale to units of Doppler half widths, and

y ≡ γrad + γcol

γdop

√
ln 2 � γcol

γdop

√
ln 2 (56)

gives the ratio of Lorentz to Doppler widths. In (54), the expression inside the

square brackets is referred to as the Voigt function, while the terms preceding it

are for normalization. Calculation of eq. (54) is inherently difficult, as no closed

form solution of the integral is known. However, due to its spectroscopic importance

a number of expansions have been developed dependent on the values of x and y

[8, 18, 19, 21]. The paper by Asfaw (ref. [19]) appears to contain significant errors,

though much of the basic framework is correct. The specgen program uses a slightly

modified version of the algorithm developed by Wells, which uses a different expansion

of the Voigt function dependent upon the Voigt x and y parameters [21].

2.2.6 Instrumental Line Broadening

In practice, our ability to measure an interferogram is inherently constrained by |δ| ≤
∆ where δ is the mirror displacement and ∆ is the maximum mirror displacement.

18

This limitation is equivalent to the multiplication of the interferogram, I(δ), by a

truncation function, such as the rectangle (window) function,

∏
2∆

(δ) ≡

1 |δ| ≤ ∆
0 |δ| > ∆.

(57)

The convolution theorem states: Convolution in one domain corresponds to mul-

tiplication in the other (Fourier) domain [22]. Therefore, the product I(δ)
∏
2∆(δ) =

B(ω)⊗S(ω), where the instrument function S(ω) is the Fourier transform of
∏
2∆(δ).

In other words, the spectrum obtained from FT-IR spectroscopy is the convolution

of the true spectrum B(ω) with S(ω). The instrument function, plotted in figure 3,

is easily calculated,

S(ω) = 2∆

[
sin (2πω∆)

2πω∆

]
= 2∆sinc(2πω∆). (58)

Figure 3: The sinc instrument function results from finite mirror travel in the interferometer. The

sinc function must be convolved with the absorption line profile if apodization is not used.

Figure 3 reveals two problems with the instrument function as it stands. First

the magnitudes of the primary sidelobes4 are considerable, measuring ∼ 21% of the
4Sidelobes correspond to the Gibb’s phenomenon in a finite Fourier sum. Truncation of the interferogram is an

19

central peak height. Furthermore, the sidelobes are negative - an unphysical effect.

These two effects introduce significant distortion to the recorded spectrum, though

it may be reduced by way of apodization. Apodization, Greek for “little feet”, is

a technique by which the truncation function (57) is supplanted by an apodization

function that has a more favorable instrument function. While this step may seem like

black magic, it is legitimate provided the apodization function takes values between

zero and one (inclusive) in the region −∆ ≤ δ ≤ ∆, and is uniformly zero outside
that region. One popular apodization function is the triangle function defined by,

∧
2∆

(δ) ≡

1− | δ

∆
| |δ| ≤ ∆

0 |δ| > ∆.
(59)

The corresponding instrument function,

S(ω) = ∆

[
sin2 (πω∆)

(πω∆)2

]
= ∆ sinc2(πω∆), (60)

is shown in figure 4.

The sinc-squared instrument function is used in our modeling because it has small

sidelobes (only ∼ 4.5% of peak height), is uniformly positive, and may be imple-

mented with little computational overhead5. Additionally, triangular apodization is

available on most FT-IR spectrometers. Therefore, we are able to apodize both the

experimental and theoretical spectra in an identical manner. However, the improve-

ment in appearance that comes from apodization is not free.

Convolution of the instrument function and absorption line profile results in an

absorption line profile broader (HWHM) than either of the pre-convolved functions.

As shown in figures 3 and 4, the half-widths of the sinc and sinc-squared instrument

functions are,

γsinc =
1.207

2∆
(61)

equivalent process.
5For a discussion of other popular apodization functions, see the classic text by Griffiths and de Haseth [23].

20

Figure 4: The sinc-squared instrument function results from triangular apodization of the inter-

ferogram. The sinc-squared function is convolved with the absorption line profile in the specgen

program because the experimental spectra were triangularly apodized.

and,

γsinc−squared =
1.772

2∆
(62)

respectively.

Because the area of the absorption line profile does not change in the convolution

process, it is normalized to unit area before and after, the peak height of the profile is

reduced by apodization because the resulting line is wider. Furthermore, instrumental

broadening means that two, closely-spaced lines will no longer be distinguishable.

The ability of a spectrometer to separate two, closely-spaced lines is referred to

as its resolution. While several criteria have been proposed to define an instrument’s

resolution, the most useful for triangularly apodized lines is the Rayleigh criterion.

This condition states that two adjacent lines of equal intensity, with sinc-squared

instrument functions, are fully resolved when the center of one line line is at the same

frequency as the first zero of the other. In practice, this condition is satisfied such

21

that

resolution � 1

∆
, (63)

where resolution is measured in wavenumbers and ∆ is the maximum mirror displace-

ment in centimeters.

2.2.7 Quantitative Spectroscopy

The Lorentzian, Gaussian, and Voigt profiles considered previously give, for a tran-

sition centered at ωul, the probability of observing emission (or absorption) between

|ω− ωul| and |ω− ωul|+ dω. Since we assume a transition has occurred we have nor-

malized all three to unit area. In practice, the population of the states involved and

other factors contribute to a transition’s intensity, Sul. The quantity Sul is provided

for each transition by HiTran, after being scaled to the correct temperature.

The Beer-Lambert law relates the intensity of light at frequency ω that is trans-

mitted through a sample with absorption coefficient κ(ω), concentration c, and path

length l to the incident intensity, I0, by the formula,

I(ω) = I0(ω) exp(κ(ω)cl). (64)

The ratio I(ω)
I0(ω)

is determined from the experimental spectrum, l may be measured, c

varies in a known manner with temperature and pressure, and κ(ω) is given by

κ(|ω − ωul|) = SulJ(|ω − ωul|). (65)

2.3 Fluid Dynamics

For our purposes, the discussion of fluid dynamics may be limited to the very specific

case of one-dimensional, isentropic flow. In this approximation, mass, momentum,

and energy conservation laws yield three important equations for determining ap-

proximate temperature, pressure, and density within the free stream. The ratio of

22

specific heats for the sample gas is given by,

γ0 ≡ Cp

Cv

, (66)

and Mach number M, the ratio of total (reservoir) temperature, T , pressure, p , and

density, ρ to static (free stream) conditions are given by [20],

T0
T
= 1 =

γ0 − 1
2

M2, (67)

p0
p
=

(
1 +

γ0 − 1
2

M2

) γ0
γ0−1

, (68)

and,

ρ0
ρ
=

(
1 +

γ0 − 1
2

M2

) 1
γ0−1

(69)

respectively. These equations are used by our program specgen to convert user

supplied reservoir conditions to free stream conditions based upon the Mach number

at which the tunnel is operating. The absorption spectrum in modeled at free stream

conditions.

3 Software

Two complementary pieces of software were vital to this project: the publicly avail-

able HiTran Database6 and our program, specgen7 Each of these programs will be

discussed in turn.

3.1 HiTran

HiTran is a searchable collection of spectroscopic parameters that may be used to

simulate the absorption of light in the atmosphere. The user selects the molecules

6The HiTran Database and support files may be downloaded from the ftp server at ftp://cfa-

ftp.harvard.edu/pub/hitran.
7See C++ source code listing in Appendix B.

23

and isotopes of interest. HiTran then returns a listing of parameters for each transition

above a user specified threshold intensity and within the frequency interval specified.

The parameters are automatically scaled to reflect the temperature entered by the

user. A sample HiTran output file listing is shown in (Appendix B - table 3). The

HiTran output file is parsed by specgen, to which we now turn.

3.2 specgen

Our program specgen computes a FT-IR absorption spectrum, taking into account

the effects of Mach number, temperature, pressure, path length, apodization, and

instrument resolution. Mach number is needed in wind tunnel flows because the stag-

nation (reservoir) temperature and pressure are altered as the gas accelerates through

the tunnel, as explained in §2.3. After reading the HiTran output file into a vector,
static values for the temperature, pressure, and density are calculated according to

eqs. (67 - 69). The reservoir temperature and pressure in degrees Rankine and PSI8

respectively are necessary inputs to the program. The concentration is computed

from the density and mole fraction of the gas of interest.

The bulk of the program determines the absorption coefficient. To do so, a second

vector, freq, is created, containing the frequencies at which the theoretical spectrum

will be evaluated. The entries in this vector are centered on the frequencies listed

in the HiTran output file, though for reasons that will be made apparent shortly,

they extend to somewhat higher and lower frequencies. The instrument function,

(60), is then evaluated at discrete spacings equal to the frequency interval between

consecutive entries in vector freq.

Using the static temperature and pressure determined previously, coefficients from

HiTran, and equations (42) and (50), the pressure and Doppler broadened half widths

8These units are used, as opposed to metric ones, for consistency with literature published by the Langley Wind

Tunnel Enterprise.

24

are calculated. Subsequently, these values are used to compute the Voigt x and y

parameters, which are passed to the function Humlik. This function uses an optimized

version of Humĺıček’s W4 algorithm to approximate the Voigt function. This routine

was adapted from one published in Fortran by Wells [21]. Conversion of this function

to C++ was entirely syntactical. The Voigt function, as returned by Humlik must be

properly normalized still, in accordance with (54).

Convolution of the instrument function and Voigt line shape is carried out through

the discrete convolution formula, (51). Due to end-effects inherent to the discrete

convolution operation, the freq vector was created with a buffer at either end, such

that the middle section of the line profile was not distorted. While this adds to the

computational time, it is necessary to prevent spectral anomalies.

The absorption coefficient is found by multiplying the post-convolved Voigt line

shape by the transition intensity, Sul, given by HiTran. The Beer-Lambert law

(64) is used to calculate the amount of absorption, using the user supplied path

length, the previously calculated concentration, and the absorption coefficient just

computed. This process is carried out for each entry in the vector freq, and for

each line in the HiTran data file. The HiTran file used in the validation work con-

sisted of 555 transitions between 2200cm−1 and 2500cm−1 with intensity greater than

1× 10−21cm−1/(molecule−cm−2).

4 Experimental Setup

The appeal of FT-IR spectroscopy, lies, at least in part, in the ease at which com-

mercially available systems may be adopted to our needs. This results in a clean,

yet rugged system that may be transported from one facility to another with ease.

The setup’s simplicity is reflected in figures 5 and 6, which show the layout used for

validation and the proposed layout for wind tunnel measurements.

25

M2

Detector

Computer

M1

Source
Pressure Gauge

VentVacuum Pump

Gas Cell

Beamsplitter

Figure 5: Experimental setup used for validation of the specgen program. (not to scale)

The FT-IR assembly includes a Nicolet Magna-IR 750 FT-IR spectrometer inter-

faced to a PC running Microsoft Windows 98 and manufacturer supplied software to

control the instrument. The spectrometer consists of a light source, a beamsplitter

made of KBr, and a Mercury Cadmium Telluride (MCT) detector, in a nitrogen-

purged housing. This instrument is typically used to study the spectra of thin-films,

though the sample chamber was large enough to house a custom made gas cell from

MDC Vacuum Products Corp. This cell was 7.0 inches in length, with an interior

path length of 5.9±0.1 in., and had a diameter of 1.0 inches. Infrared transparent
windows (∼ 90 % transmission per cm in the region of interest), made of 5 mm thick
KCl, were installed at both ends. Finally, ports near either end of the cell allowed a

vacuum pump and pressure gauge to be attached. For background scans the pump

was capable of evacuating the cell to pressures of less than 1.0 Torr in only several

seconds. System leaks caused the cell pressure to rise at a peak rate of ∼ 0.5 Torr

26

per minute when the vacuum pump was turned off. This effect could be neglected

though, as a single spectrum took less than five seconds to collect.

M2

Detector

M1

Source

Computer

 Model
Wind Tunnel

Beamsplitter

Fiber Optic Cable

Figure 6: Experimental setup proposed for wind tunnel testing. (not to scale)

The layout used to model validation would require only slight modification to be

used in gas flow studies. These adjustments consist of coupling fiber optics to the

source and the detector, and are commercially available as customer-installed kits

from many manufacturers. Fiber optics are necessary to prevent absorption of the

infrared beam due to carbon dioxide present in the room air. The beam path (either

external or sample chamber) is controlled via personal computer.

27

5 Results

5.1 Accuracy

The data used for quantitative analysis consisted of 11 experimental spectra and a

single background spectrum, all ranging from 600cm−1 to 4000cm−1. The data were

collected at 0.5cm−1 resolution, room-temperature (∼ 298 K), and varying pressures
from 0.7 Torr to 773.5 Torr (0.01 PSI to 14.96 PSI). Additionally, a background

spectrum was taken at 0.85 Torr (.02 PSI). Furthermore, each of the spectra was an

average of 32 individual scans to improve the signal-to-noise. The experimental spec-

tra were automatically divided by the background spectra to eliminate of absorption

due to the cell windows and carbon-dioxide remaining within the system, in addition

to correcting for the frequency dependent intensity of the light source. The absorption

path length was presumed to be the interior length of the cell, 15.1 ± 0.25cm.
Experimental spectra were written to individual files that contained columns for

frequency (wavenumbers) and the corresponding transmission (percent transmission).

Visual inspection of the data revealed minor systematic errors. The average trans-

mission in sections of the spectra in which HiTran did not predict strong transitions

was greater than 100 %. We believe that gradual warming of the cooled detector was

responsible, for the effect was found to vary with the amount of time that had passed

since the background scan was taken. The region between 2390cm−1 and 2400cm−1

was chosen as a reference region, to be normalized to 100 % transmission. This section

was selected because it was free of strong transitions according to HiTran. Normal-

ization was conducted on a spectrum-by-spectrum basis through multiplication of the

spectra by a constant, ε,

ε ≡ 100
T̄

, (70)

where T̄ is the average percentage transmission of the forty data points in the reference

28

region. Values of ε ranged from 0.9887 to 0.9992.

Spectral library files, with similar format to the experimental spectra (columns for

wavenumber and fractional absorption) were generated at 2 K temperature increments

and 0.1 PSI pressure increments using our code specgen. The library files contained

five frequency data points per experimental point. To ease comparison between theory

and experiment the frequency of every fifth library point equals a frequency in the

experimental data. This arrangement is illustrated in figure 7 for a single absorption

line of the experimental spectrum collected at 773.5 Torr. In this figure we show

the normalized experimental data, using ε = 0.99284, and the “best-fit” spectrum

generated at 318 K and 15.0 PSI.

Absorption Line @ 298K, 14.96 PSI

0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

ct
io

na
l a

bs
or

pt
io

n

2358 2358.2 2358.4 2358.6 2358.8 2359 2359.2 2359.4 2359.6

Frequency (wavenumbers)

Figure 7: A single absorption line in both theory and experiment. Notice that every fifth theoretical

point (hollow red circles and line) corresponds to an experimental one (hollow black circles).

The normalized experimental spectrum acquired at 773.5 Torr was sequentially

compared to each spectrum in the library. A “goodness of fit,” labeled χ2, was de-

29

termined for each library entry by summing the squared-difference in absorption in

the library entry and the normalized experimental data file at each of the common

frequencies between 2237.78 cm−1 and 2462.45 cm−1. The temperature and pres-

sure used to generate the library entry that minimized χ2 were alleged to be the

temperature and pressure at which the experimental spectrum was obtained.

Initial fitting of the 773.5 Torr experimental spectrum to the library over-predicted

the pressure and temperature, selecting the entry generated using a pressure of 15.4

PSI (= 796.4 Torr) and 318 K. To compensate, we adjusted the atmospheric concen-

tration of carbon dioxide to a mole-fraction of 0.000393 from .00036, as was reported

by Kraushaar and Ristinen for the observatory on Mauna Loa, Hawaii. Justification

for this adjustment is provided, in part, by the above authors, who report an annual

increase in the concentration of CO2 of ∼1.4ppm (0.4%), as well as seasonal varia-
tions of up to 12 ppm [24]. Furthermore, research by Nasrallah, et al., shows slight

daily fluctuations (∼ 3ppm) and geographical variations in the atmospheric carbon
dioxide concentration, with measurements of up to 650 ppm for urban Phoenix, Ari-

zona [25, 26]. The corrected concentration was selected such that the entry with the

minimum χ2 was generated with the proper pressure, 15.0 PSI (=775.3 Torr).

Using the adjusted carbon dioxide concentration, we analyzed the remaining ex-

perimental spectra. As shown in table 1, the pressure calculated using FT-IR spec-

troscopy agrees with the pressure gauge measurement for pressures between 1.5 PSI

(= 77.6 Torr) and 15.0 PSI (=775.3 Torr). Below this point FT-IR spectroscopy no

longer predicts the pressure accurately, due to errors in the specgen program. The

frequency interval between adjacent theoretical points is large relative to the width

of the low pressure lines. This problem could be resolved by increasing the sampling

density, though doing so would add significant computational time to library gen-

eration. Figure 8 shows the pressure inferred from FT-IR spectroscopy versus the

30

Gauge FT-IR

Pressure Pressure Temperature Peak

Order (PSI) (PSI) K χ2 ε Absorption

10 0.01 0.0 — 0.000423 0.9962 0.0023

11 0.11 0.0 — 0.000828 0.9956 0.0054

1 0.33 0.0 — 0.008394 0.9992 0.0161

2 0.67 0.1 318 0.029322 0.9987 0.0315

3 1.65 1.5 320 0.074622 0.9978 0.0741

4 2.72 2.6 320 0.057583 0.9973 0.1208

5 5.44 5.4 318 0.028684 0.9959 0.2444

6 7.75 7.5 318 0.035354 0.9948 0.3204

7 9.72 9.4 318 0.045539 0.9945 0.3734

8 13.00 12.9 318 0.067254 0.9935 0.4540

9 14.96 15.0 318 0.076935 0.9928 0.4970

Table 1: Comparison of pressure gauge measurements and temperature and pressure obtained by

analysis of FT-IR spectra. The measured temperature for each run was 298±0.5 K. Order gives the

order in which the spectra were acquired, χ2 measures the goodness of fit, and ε is the normalization

constant.

pressure measured via gauge.

Adjustment of the CO2 concentration did not affect the system’s temperature

accuracy. As table 1 shows that the fitting scheme consistently selects a temperature

hotter than that measured with a thermocouple, 298±0.5 K. Because no additional
free parameters, like concentration, exist in our model, we are unable to normalize

the theory to a reference point, as we did for pressure. The model is not sensitive to

temperature for the three lowest pressures, because it selects a best-fit pressure of 0.0

31

Reference
(Known, Fitted) pressure

Legend

Fitted Versus Known Pressure

0

2

4

6

8

10

12

14

F
itt

ed
 P

re
ss

ur
e

(P
S

I)

2 4 6 8 10 12 14
Known Pressure (PSI)

Figure 8: The fitted pressure plotted against the measured pressure.

PSI. In this situation, the theoretical spectrum shows no absorption at any frequency,

regardless of the temperature used in its generation. Therefore, the model is unable

to determine the temperature of the experimental spectrum.

The source of the consistent over-prediction of the fitted temperature is unknown.

Visual comparison of the experimental spectra, their best-fit counterparts, and the-

oretical spectra generated at the known pressure and temperature reveals that the

experimental spectra (and their best-fit analogues) display noticeably more absorp-

tion in the high J lines than the theoretical spectra generated at the known conditions,

as seen in figure 9. This phenomenon results from the greater population of the high

J states at higher temperatures as compared to low temperatures. Furthermore, in-

spection of the line intensities given by HiTran appear to support a higher sample

temperature. This may suggest an error in the way specgen implements temperature

dependence, though no specific errors have been identified.

32

Figure 9 shows theoretical spectra for both 298 and 318 K. These spectra were

choosen to show the difference between known and fitted temperatures. Though the

two spectra look similar, we notice that the lower temperature spectrum has more

absorption than the higher temperature spectrum near the band center, while the

opposite is true far from the center.

Theory @ 298K, 15.0 PSI
Theory @ 318K, 15.0 PSI

Legend

Comparison of ’correct’ and ’best-fit’ spectra

0

0.1

0.2

0.3

0.4

0.5

0.6

F
ra

ct
io

na
l a

bs
or

pt
io

n

2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400
Frequency (wavenumbers)

Figure 9: Absorption spectra at 15.0 PSI, 298 K and 15.0 PSI, 318 K.

Figures 10 - 13 show FT-IR absorption spectra taken over a range of pressures.

Also shown in each figure is the “best-fit” theoretical spectrum that minimizes χ2

for the data. Notice that the theoretical spectra at low pressure do not agree well

with the experimental ones. This results from the specgen program calculating the

absorption at points that are spaced too widely relative to the pressure-broadened half

width. This could be corrected easily, though at the expense of higher computational

time.

The theoretical spectrum in figure 10 does not show the expected distribution of

33

intensities that we expected, due to errors in our program specgen. This error is

not due to the model we are using, but rather a poor choice of sampling density. The

same effect may be seen in figure 11, though a larger number of lines are observed.

Theory @ 318K, 0.1 PSI
Experimental @ 298K, 0.67 PSI

Legend

Absorption Spectra @ 298K, 0.67 PSI

0

0.01

0.02

0.03

0.04

F
ra

ct
io

na
l a

bs
or

pt
io

n

2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400
Frequency (wavenumbers)

Figure 10: Absorption spectra at 0.67 PSI, 298 K.

At higher pressures the absorption lines are broader. Consequently, the frequency

spacing used in specgen is sufficient for accurate spectra modeling, as seen in figures

12 and 13. The line intensities follow the expected Maxwell distribution in both of

these cases.

34

Theory @ 320K, 1.5 PSI
Experimental @ 298K, 1.65 PSI

Legend

Absorption Spectra @ 298K, 1.65 PSI

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

F
ra

ct
io

na
l a

bs
or

pt
io

n

2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400
Frequency (wavenumbers)

Figure 11: Absorption spectra at 1.65 PSI, 298 K.

Theory @ 318K, 7.5 PSI
Experimental @ 298K, 7.75 PSI

Legend

Absorption Spectra @ 298K, 7.75 PSI

0

0.1

0.2

0.3

0.4

F
ra

ct
io

na
l a

bs
or

pt
io

n

2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400
Frequency (wavenumbers)

Figure 12: Absorption spectra at 7.75 PSI, 298 K.

35

Theory @ 318K, 15.0 PSI
Experimental @ 298K, 14.96 PSI

Legend

Absorption Spectra @ 298K, 14.96 PSI

0

0.1

0.2

0.3

0.4

0.5

F
ra

ct
io

na
l a

bs
or

pt
io

n

2300 2310 2320 2330 2340 2350 2360 2370 2380 2390 2400
Frequency (wavenumbers)

Figure 13: Absorption spectra at 14.96 PSI, 298 K.

36

5.2 Precision

Additional data, consisting of 10 single-scan spectra, were acquired to estimate mea-

surement precision. These spectra each required three seconds to obtain, and were

all taken at approximately the same pressure, 770.3 - 771.1 Torr (=14.90 - 14.91

PSI), and the same temperature, 298±0.5K K. These spectra were also collected at

a resolution of 0.5cm−1 and with triangular apodization. The fitted pressures and

temperatures are shown in table 2, along with the ε used for normalization and the

peak absorption after normalization.

Pressure Temperature Peak

(PSI) K ε Absorption

17.6 319.0 0.98950 0.53959

17.6 319.5 0.98957 0.54304

17.6 319.5 0.98869 0.54052

17.3 316.5 0.99012 0.54302

17.3 316.5 0.99012 0.53929

17.6 318.5 0.98967 0.54269

17.4 317.0 0.99100 0.54147

17.3 317.0 0.99175 0.54172

17.2 316.5 0.99267 0.54522

17.1 317.0 0.99629 0.54938

0.18 1.21 Standard Deviation

Table 2: Temperature and pressure calculated from 10 different FT-IR spectra taken at the same

conditions, 14.9 PSI,2198 K.

We used this data to calculate the standard deviation for both pressure and temper-

ature for measurements taken at ∼ 14.9 PSI and 298 K. It is likely that the standard

37

deviation will be different at other conditions. Deviations of 0.18 PSI (1.2%) and

1.21 K (0.4%) were found for pressure and temperature respectively. The standard

deviation in temperature is small compared to other optical techniques such as CARS

and PLIF, which have reported deviations 2% and 4% respectively [27].

Two things should be noted about the data and the results used. First, each spec-

trum was composed of a single scan, giving a worse signal-to-noise ratio than the

spectra created by averaging 32 individual scans. Secondly, we notice a systematic

error in temperature of ∼ 20 K and in pressure of ∼ 2.5 PSI. The error in temperature
is consistent with our earlier work. The error in pressure is difficult to explain. A

background scan was taken immediately prior to the obtaining the spectra, eliminat-

ing effects due to detector drift. Approximately one hour passed between when these

spectra were acquired and when the ones described in table 1 were taken; too little

time for significant changes in the atmospheric concentration of CO2.

38

6 Future Work and Conclusion

A novel use of FT-IR spectroscopy to determine the temperature and pressure in

wind tunnel free streams has been considered. A program to model the absorption

spectra produced by FT-IR spectroscopy has been written and validated at a range

of pressures. Comparison of theoretical and experimental carbon dioxide rotational

spectra of the ν3 asymmetric stretch band was used to determine temperature and

pressure. Laboratory studies, conducted in a gas cell indicate that this technique

yields accurate pressure measurements when the CO2 concentration is such that peak

absorption is greater than 3 percent. We expect this condition to be met in most

LaRC facilities. In the lab, atmospheric CO2 calibration was completed by forcing

the algorithm to pick the correct pressure for the spectrum taken at 773.5 Torr. The

correct concentration of carbon dioxide within the wind tunnel could be determined

by forcing the algorithm to select the appropriate pressure for a “wind-off” spectrum.

A significant systematic error of 20 Kelvins was present. The source of this error is

under continued investigation, though if eliminated, this technique could also be used

to make rapid, accurate, automated temperature measurements.

The main drawbacks of using FT-IR spectroscopy to make quantitative measure-

ments are that it is time-averaged over several seconds and path-averaged across the

flow. However, these disadvantages are offset by the potential of FT-IR spectroscopy

to make real-time measurements of free stream conditions in a large number of facil-

ities, without modification to the system.

Future work is needed to study system performance over a range of temperatures.

Hopefully, these measurements will enable us to resolve the present systematic tem-

perature error. Additionally, extension from a laboratory setting to the wind tunnel

will require some work. Problems resulting from the incorporation of fiber optics

are expected. When these obstacles are surmounted, FT-IR spectroscopy will give

39

LaRC the ability to make unperturbed free stream measurements necessary for better

understanding of model performance, the refinement of CFD code input parameters,

and as a diagnostic tool.

40

A HiTran Output

Mol ωul Sul �ul γcol
air γcol

self εl n δ ivu ivl qu ql ierr iref

91 2487.526800 9.074E-22 2.932E-04 .0943 .3900 116.8625 .75 .000000 13 118 118 19 119 002 8 5 1

41 2487.807000 2.555E-21 1.581E-04 .0664 .0000 415.4855 .82 .000000 11 1 R 31E 000 0 0 0

91 2488.177600 9.036E-22 2.921E-04 .0943 .3900 105.2994 .75 .000000 13 117 017 18 018 002 8 5 1

41 2488.576800 2.342E-21 1.584E-04 .0663 .0000 442.2791 .82 .000000 11 1 R 32E 000 0 0 0

162 2489.044050 1.289E-21 0.000E+00 .0769 .1344 166.83380 .500 .000000 2 1 Q 4.5 P 4 452 5 1 1

Table 3: Sample HiTran output file format.

Mol Molecule and isotope numbers n Coefficient of temperature dependence

ωul Frequency δ Air-broadened pressure shift

Sul Intensity ivu, ivl Upper and lower state global quanta indexes

�ul Weighted transition moment-squared qu, ql Upper and lower state local quanta indexes

γcolair Air-broadened half width ierr Accuracy indexes

γcolself Self-broadened half width iref Indices for references

41

B specgen.cpp

// *

// * *

// * Specgen.cpp - Generates FT-IR spectra based on temperature, pressure *

// * path length, etc... selected by the user, and an output file from the *

// * program hitran (available at ftp://cfa-ftp.harvard.edu/pub/hitran). *

// * Based on method documented by L. Rothman and S.S. Penner. *

// * Additional effects due to doppler broadening are accounted for, giving *

// * a Voigt function. Also, instrument effects are account for, with user *

// * selected instrument function. Further information available in honors *

// * thesis: Non-intrusive Temperature and Species Density Measurements *

// * using FT-IR Spectroscopy, Jason Hoffman, The College of William and *

// * Mary, 2003. *

// * *

// * Written by: Jason D. Hoffman - Decemeber 23, 2002 *

// * *

// *

#include <iostream> // for input and output

#include <fstream> // for file input

#include <string> // for strings

#include <vector> // for vectors

#include <iomanip> // for Humlik()

#include <cmath> // for Humlik()

#define PI 3.14159265359

using namespace std; // initialize global namespace

struct linedata

{

double frequency; // frequency in wavenumbers

42

double intensity; // intensity @ 296 Kelvins in wavenumbers per

(molecule * wavenumbers-squared)

double wtms; // weighted transition moment-squared in Debye-squared

double abhw; // air-broadened halfwidth @ 296 Kelvins in wavenumbers

per atmosphere

double sbhw; // self-broadened halfwidth @ 296 Kelvins in wavenumbers

per atmosphere

double cotd; // coeffficient of temperature dependence

double abps; // air-broadened pressure shift @ 296 Kelvins in

wavenumbers per atmosphere

};

void readin(const char* filename, vector<linedata>& hitran);

int print_help(void);

void HUMLIK(int N, vector<long double>& X, long double Y, vector<long double>& K);

void error(const string p, const char* p2, bool quit);

void error(const string p, bool quit);

int main(int argc, char* argv[])

{

double reference_temperature = 296.0; // reference temperature in Kelvins for Rothman, et al

const char* filename; // name of hitran data file (c-string)

vector<linedata> hitran; // vector of lines read in from hitran file

// default values for experiment

double total_pressure_psi = 14.8875; // total pressure in pounds per square inch

double total_temperature_rankines = 536.85;// total temperature in Rankine

double path_length_centimeters = 15.094; // path length in centimeters

double resolution_wavenumbers = 1.000; // resolution in wavenumbers

double mach_number = 0.0; // mach number of flow

// default properties for gas

double gamma = 1.4; // ratio of specific heats

double specific_gas_constant = 287.0; // specific gas constant in Joules / (kilogram * Kelvin)

43

double molecular_mass_environment = 28.84;// molecular mass of environemnt in grams per gram-mole

double molecular_mass_gas = 43.98983; // molecular mass of gas in grams per gram-mole

double mole_fraction = .000393; // mole fraction

switch(argc)

{

case 1: // get all information from user ** implement this section as a do-while menu, that it

uses when the wrong comamnd line arguments given

{

string userfilename; // user entered filename

cout << "Please enter the name of the HiTran input file: ";

cin >> userfilename; // user enters name of hitran file

filename = userfilename.c_str(); // it is then converted to c-string

cout << endl << "Please enter the total pressure in pounds per square inch: ";

cin >> total_pressure_psi; // user enters total pressure in atmospheres

cout << endl << "Please enter the total temperature in degress Rankine: ";

cin >> total_temperature_rankines; // user enters total temperature in Rankine

cout << endl << "Please enter the path length in centimeters: ";

cin >> path_length_centimeters; // user enters path length in centimeters

cout << endl << "Please enter the resolution in wavenumbers: ";

cin >> resolution_wavenumbers; // user enters resolution in wavenumbers

cout << endl << "Please enter the mach number of the flow: ";

cin >> mach_number; // user enters mach number

cout << endl << "Please enter gamma, the ratio of specific heats: ";

cin >> gamma; // user enters gamma, ratio of specific heats

cout << endl << "Please enter the specific gas constant in Joules / (kilogram * Kelvin): ";

cin >> specific_gas_constant; // user enters specific gas constant in Joules

per (kilogram * Kelvin)

cout << endl << "Please enter the molecular mass of environment in grams per gram-mole: ";

cin >> molecular_mass_environment; // user enters molecular mass in grams per gram-mole

cout << endl << "Please enter the molecular mass of gas in grams per gram-mole: ";

cin >> molecular_mass_gas; // user enters molecular mass in grams per gram-mole

cout << endl << "Please enter the mole fraction: ";

44

cin >> mole_fraction; // user enters mole fraction

break;

}

case 2: // print help message, or use defaults

{

// print help message

if(((argv[1])[0] == ’-’) && ((argv[1])[1] == ’h’))

{

print_help();

exit(-1);

} // end if

// use default data values

if(((argv[1])[0] == ’-’) && ((argv[1])[1] == ’d’))

{

// use a defautlt filename and convert to c-string

string defaultfilename = "default.out";

filename = defaultfilename.c_str();

}

else

error("invalid command line argument", true);

break;

}

case 7: // read in half from command line, half from user

{

filename = argv[1]; // filename is read from command line

total_pressure_psi

= (double)atof(argv[2]); // total pressure is read from command line

total_temperature_rankines

= (double)atof(argv[3]); // total temperature is read from command line

path_length_centimeters

= (double)atof(argv[4]); // path length is read from command line

resolution_wavenumbers

45

= (double)atof(argv[5]); // resolution is read from command line

mach_number

= (double)atof(argv[6]); // Mach number is read from command line

cout << endl << "Please enter gamma, the ratio of specific heats: ";

cin >> gamma; // user enters gamma, ratio of specific heats

cout << endl << "Please enter the specific gas constant in Joules / (kilogram * Kelvin): ";

cin >> specific_gas_constant; // user enters specific gas constant in

Joules per (kilogram * Kelvin)

cout << endl << "Please enter the molecular mass of environment in grams per gram-mole: ";

cin >> molecular_mass_environment; // user enters molecular mass in grams per gram-mole

cout << endl << "Please enter the molecular mass of gas in grams per gram-mole: ";

cin >> molecular_mass_gas; // user enters molecular mass in grams per gram-mole

cout << endl << "Please enter the mole fraction: ";

cin >> mole_fraction; // user enters mole fraction

break;

}

case 8: // read in half from command line, half from defaults

{

if(((argv[1])[0] == ’-’) && ((argv[1])[1] == ’d’))

{

filename = argv[2]; // filename is read from command line

total_pressure_psi

= (double)atof(argv[3]); // total pressure is read from command line

total_temperature_rankines

= (double)atof(argv[4]); // total temperature is read from command line

path_length_centimeters

= (double)atof(argv[5]); // path length is read from command line

resolution_wavenumbers

= (double)atof(argv[6]); // resolution is read from command line

mach_number

= (double)atof(argv[7]); // Mach number is read from command line

} // end if

46

else

error("invalid command line argument", true);

break;

}

case 12: // read in everything from the command line

{

filename = argv[1]; // filename is read from command line

total_pressure_psi

= (double)atof(argv[2]); // total pressure is read from command line

total_temperature_rankines

= (double)atof(argv[3]); // total temperature is read from command line

path_length_centimeters

= (double)atof(argv[4]); // path length is read from command line

resolution_wavenumbers

= (double)atof(argv[5]); // resolution is read from command line

mach_number

= (double)atof(argv[6]); // Mach number is read from command line

gamma

= (double)atof(argv[7]); // gamma is read from command line

specific_gas_constant

= (double)atof(argv[8]); // gas constant is read from command line

molecular_mass_environment

= (double)atof(argv[9]); // molecular mass of environtment is read from command line

molecular_mass_gas

= (double)atof(argv[10]); // molecular mass of gas is read from command line

mole_fraction

= (double)atof(argv[11]); // mole fraction is read from command line

break;

}

default:

error("invalid number of command line arguments", true);

} // end switch(argc)

47

readin(filename, hitran); // read in the data from hitran file

int numlines = hitran.size(); // number of lines read in from hitran file

if(numlines == 0)

error("no input read in from file,", filename, true);

// convert total pressure and temperature into standard units

double total_pressure_pascals = total_pressure_psi * 6894.75729317;

double total_temperature_kelvins = total_temperature_rankines / 1.8;

// find the total density in kilograms per cubic meter using ideal gas law

double total_density =

total_pressure_pascals / (specific_gas_constant * total_temperature_kelvins);

// convert total pressure, temperature, and density to static pressure, temperature, and density

double static_temperature_kelvins =

total_temperature_kelvins / (1 + 0.5 * (mach_number * mach_number) * (gamma - 1));

double static_pressure_pascals = total_pressure_pascals /

pow((1 + 0.5 * (mach_number * mach_number) * (gamma - 1)) , (gamma / (gamma - 1)));

double static_density = total_density /

pow((1 + 0.5 * (mach_number * mach_number) * (gamma - 1)) , (1 / (gamma - 1)));

// convert static pressure to atmospheres for consistency with Rothman, et al.

double static_pressure_atmospheres = static_pressure_pascals / 101325.0;

// calculate the number density of particles in particles per cubic meter

double number_density = static_density * 1000 * 6.0221367 * pow(10.0, 23.0)

/ molecular_mass_environment;

// calculate the concentration of specific gas in particles per cubic meter

double concentration = number_density * mole_fraction;

// ** note, if number_of_frequencies is too small, numerical integration will not yield area ~1.0

48

int number_of_frequencies = 10000; // the number of frequency points to be evaluated

// define variables needed to set up the vector of frequency points to be evaluated

long double freq_range = hitran[numlines-1].frequency - hitran[0].frequency;

// handle poor resolution correctly

if(freq_range < 8 * resolution_wavenumbers)

freq_range = 8 * resolution_wavenumbers;

long double freq_delta = 2.0 * freq_range / (double)number_of_frequencies;

long double freq_current = hitran[0].frequency - 0.5 * freq_range;

vector<long double> freq; // vector of frequency points to be evaluated

// set up the vector of frequency points to be evaluated

freq.push_back(freq_current);

for(int i = 1; i < number_of_frequencies; i++)

freq.push_back(freq_current += freq_delta);

// define variables regarding instrumental lineshape

long double retardation_centimeters = 1 / resolution_wavenumbers;

long double instrument_lineshape_function = 0.0;

vector<long double> ilsf; // instrument lineshape function

freq_current = (-number_of_frequencies / 8.0) * freq_delta;

// calculate the instrument function

// currently uses a sinc-squared function - need to change to user choice

for(int i = 0; i <= number_of_frequencies / 4; i++)

{

// calculate the instrument lineshape function

instrument_lineshape_function = retardation_centimeters *

(pow((sin(PI * freq_current * retardation_centimeters)) , 2)) /

(pow((PI * freq_current * retardation_centimeters), 2));

// add the instrument lineshape function to vector

ilsf.push_back(instrument_lineshape_function);

49

freq_current += freq_delta; // update the evaluation frequency

} // end for(i)

// vectors to store information on environmental lineshape

vector<long double> pblh; // vector of pressure broadened line halfhwidths

vector<long double> dblh; // vector of doppler broadened line halfhwidths

vector<long double> pstf; // vector of pressure shifted transition frequencies

vector<long double> voigty; // vector of voigt y parameters (Wells)

vector<long double> voigtx; // vector of voigt x parameters for a single transition

vector<long double> voigtk; // vector of voigt function values returned from Humlik

vector<long double> nlsf; // vector of normalized lineshape functions (Weisstein)

vector<long double> conv; // vector of convolved voigt and instrument functions

vector<long double> mac; // vector of monochromatic absorption coefficients

vector<long double> tmac; // vector total monochromatic absorption coefficients

// define variables regarding environmental lineshape

long double pressure_broadened_line_halfwidth = 0.0;

long double doppler_broadened_line_halfwidth = 0.0;

long double pressure_shifted_transition_frequency = 0.0;

long double voigt_x = 0.0; // the voigt x parameter (Wells)

long double voigt_y = 0.0; // the voigt y parameter (Wells)

long double normalized_lineshape_function = 0.0;

long double preconvolved_area = 0.0; // the area of the line before convolution

long double postconvolved_area = 0.0; // the area of the line after convolution

long double convolution = 0.0; // value of convolution

long double monochromatic_absorption_coefficient = 0.0;

for(int i = 0; i < numlines; i++)

{

50

// calculate the pressure shifted transition frequency

pressure_shifted_transition_frequency = hitran[i].frequency +

hitran[i].abps * static_pressure_atmospheres;

// add pressure shifted transition frequency to vector

pstf.push_back(pressure_shifted_transition_frequency);

// calculate the pressure_broadened_line_halfwidth (Rothman eqn. A12)

pressure_broadened_line_halfwidth =

pow((reference_temperature / static_temperature_kelvins), hitran[i].cotd) *

static_pressure_atmospheres * ((1.0 - mole_fraction) * hitran[i].abhw +

mole_fraction * hitran[i].sbhw);

// calculate the doppler_broadened_line_halfwidth (Penner eqn. 3.30)

doppler_broadened_line_halfwidth = 3.5811735 * pow(10.0, -7.0) * pstf[i] *

sqrt(static_temperature_kelvins / molecular_mass_gas);

// add pressure and doppler broadened line halfwidths to vectors

pblh.push_back(pressure_broadened_line_halfwidth);

dblh.push_back(doppler_broadened_line_halfwidth);

// calculate the voigt y parameter

voigt_y = sqrt(log(2.0)) * pressure_broadened_line_halfwidth /

doppler_broadened_line_halfwidth;

// add voigt y to vector;

voigty.push_back(voigt_y);

voigtx.clear(); // clean up the old vector

for(int j = 0; j < number_of_frequencies; j++)

{

// calculate the voigt x parameter

voigt_x = sqrt(log(2.0)) * (freq[j] - pstf[i]) / dblh[i];

51

// add the current parameter to vector

voigtx.push_back(voigt_x);

} // end for(j)

voigtk.clear(); // clean up the old vector

// call HUMLIK function to calculate voigt function (Wells)

HUMLIK(number_of_frequencies, voigtx, voigt_y, voigtk);

nlsf.clear(); // clean up the old vector

// normalize the voigt function (Weisstein)

for(int j = 0; j < number_of_frequencies; j++)

{

// calculate the normalized lineshape function

normalized_lineshape_function = (1 / doppler_broadened_line_halfwidth) *

sqrt(log(2.0) / PI) * voigtk[j];

// add the normalized lineshape function to vector

nlsf.push_back(normalized_lineshape_function);

} // end for(j)

// calculate the area of the preconvolved line (~1.0)

preconvolved_area = 0.0; // reset the area to 0.0

for(int j = 0; j < number_of_frequencies; j++)

preconvolved_area += freq_delta*nlsf[j];

// if the area of the line is not ~1.0, print error

if(preconvolved_area < 0.9 || preconvolved_area > 1.1)

error("Spectral line area not normalized. Increase number_of_frequencies!", false);

conv.clear(); // clean up the old vector

// fill front of vector with 0.0

for(int j = 0; j < number_of_frequencies / 8; j++)

conv.push_back(0.0);

52

// convolve the line with the instrument function

for(int j = number_of_frequencies / 8; j < 7 * number_of_frequencies / 8; j++)

{

convolution = 0.0; // reset to 0.0

// perform discrete convolution

for(int k = j - number_of_frequencies / 8; k < j + number_of_frequencies / 8; k++)

convolution += (ilsf[j - k + number_of_frequencies / 8] * nlsf[k]);

conv.push_back(convolution);

} // end for(j)

// fill end of vector with 0.0

for(int j = 0; j < number_of_frequencies / 8; j++)

conv.push_back(0.0);

// calculate the area of the postconvolved line (~1.0?)

postconvolved_area = 0.0; // reset the area to 0.0

for(int j = 0; j < number_of_frequencies; j++)

postconvolved_area += freq_delta*conv[j];

// renormalize the line after convolution

for(int j = 0; j < number_of_frequencies; j++)

conv[j] = conv[j] * preconvolved_area / postconvolved_area;

// calculate the monochromatic absorption coefficient (Rothman)

mac.clear(); // clean up the old vector

for(int j = number_of_frequencies / 8; j < 7 * number_of_frequencies / 8; j++)

{

monochromatic_absorption_coefficient = conv[j]*hitran[i].intensity;

mac.push_back(monochromatic_absorption_coefficient);

}

// calculate the total monochromatic absorption coefficient

53

if(i == 0) // first time through

{

// initialize with correct values

for(int j = 0; j < 3 * number_of_frequencies / 4; j++)

tmac.push_back(mac[j]);

} // end if(i)

else

{

// update the array

for(int j = 0; j < 3 * number_of_frequencies / 4; j++)

tmac[j] += mac[j];

} // end else(i)

} // end for(i)

// define variables for total absorption

vector<long double> absorb; // vector to hold total absorption

long double total_absorption = 0.0; // the total absorption at a frequency

for(int j = 0; j < 3 * number_of_frequencies / 4; j++)

{

total_absorption= 1.0-exp(-1.0*tmac[j]*concentration*0.000001*path_length_centimeters);

absorb.push_back(total_absorption);

}

cout.precision(10);

for(int j = 0; j < 3 * number_of_frequencies / 4; j++)

cout << freq[j + number_of_frequencies / 8] << " " << absorb[j] << endl;

return 0;

} // end int main()

// * read in the data from hitran file *

void readin(const char* filename, vector<linedata>& hitran)

54

{

string line; // line read in from file to be parsed

ifstream input(filename); // open hitran data file

if (!input) // exit with error if can’t open file

error("cannot open input file", filename, true);

linedata current; // struct for current line data

while(input)

{

getline(input, line); // read in the line to be parsed

if(input) // handle last line correctly

{

// read in data from file and store it in growing vector

current.frequency = atof(line.substr(3,12).c_str());

current.intensity = atof(line.substr(15,10).c_str());

current.wtms = atof(line.substr(25,10).c_str());

current.abhw = atof(line.substr(35,5).c_str());

current.sbhw = atof(line.substr(40,5).c_str());

current.cotd = atof(line.substr(55,4).c_str());

current.abps = atof(line.substr(59,8).c_str());

hitran.push_back(current); // push the current data onto vector

} // end if(input)

} // end while(input)

} // end void readin()

// * print the help message with options *

int print_help(void)

{

cout << "Usage: specgen" << endl;

cout << " -- allows user to enter all data" << endl << endl;

55

cout << "Usage: specgen -h" << endl;

cout << " -- get help" << endl << endl;

cout << "Usage: specgen -d" << endl;

cout << " -- use all default values" << endl << endl;

cout << "Usage: specgen filename, pressure, temperature, path length,"

<< endl << " resolution, mach number" << endl;

cout << " -- reads filename, total pressure in pounds per square inch, total temperature

in degrees Rankine,"

<< endl << " path length in centimeters, resolution in wavenumbers, and Mach

number from command line"

<< endl << " -- all other values are entered by user" << endl << endl;

cout << "Usage: specgen -d filename, pressure, temperature, path length"

<< endl << " resolution, mach number" << endl;

cout << " -- reads filename, total pressure in pounds per square inch, total temperature

in degress Rankine,"

<< endl << " path length in centimeters, resolution in wavenumbers and Mach

number from command line."

<< endl << " -- all other values assume default value" << endl << endl;

cout << "Usage: specgen filename, pressure, temperature, path length, resolution,

mach number,"

<< endl << " gas constant, gamma, molecular mass of environement,

molecular mass of gas, mole fraction" << endl;

cout << " -- reads filename, total pressure in pounds per square inch,

total temperature in degrees Rankine,"

<< endl << " path length in centimeters, resolution in wavenumbers,

mach number,"

<< endl << " gamma = ratio of specific heats, gas constant in Joules

per (kilogram * Kelvin),"

<< endl << " molecular mass of environment in grams per gram-mole, molecular

56

mass of gas in grams per gram-mole,"

<< endl << " and mole fraction from command line." << endl;

return 0;

} // end print_help

// **

// This code is based on Fortan code published by R.J. Wells

// "Rapid Approximation to the Voigt/Faddeeva Function and its Derivatives"

// Journal of Quantitative Spectroscopy and Radiative Transfer 62.

//

// Translation by: Jason Hoffman - August 2002

//

// Updated to support vectors instead of arrays for compatability

//

// **

// To calculate the Faddeeva function with relative error less than 10^(-R).

// R0=1.51*EXP(1.144*R) and R1=1.60*EXP(0.554*R) can be set by the the user

// subject to the constraints 14.88<R0<460.4 and 4.85<R1<25.5

// Global Constants

long double RRTPI = 0.56418958; // 1/SQRT(pi)

long double Y0 = 1.5;

long double Y0PY0 = Y0+Y0;

long double Y0Q = Y0*Y0; // for CPF12 algorithm

long double C[6] = { 1.0117281, -0.75197147, 0.012557727,

0.010022008, -0.00024206814, 0.00000050084806 };

long double S[6] = { 1.393237, 0.23115241, -0.15535147,

0.0062183662, 0.000091908299, -0.00000062752596 };

long double T[6] = { 0.31424038, 0.94778839, 1.5976826,

2.2795071, 3.0206370, 3.8897249 };

57

void HUMLIK(int N, vector<long double>& X, long double Y, vector<long double>& K)

{

long double R0 = 146.7; // Region boundaries

long double R1 = 14.67; // for R=4

// Local variables

int RG1 = 0;

int RG2 = 0;

int RG3 = 0; // y polynomial flags

long double ABX = 0; // |x|

long double XQ = 0; // x^2

long double YQ = 0; // y^2

long double YRRTPI = 0; // y/SQRT(pi)

long double XLIM0 = 0;

long double XLIM1 = 0;

long double XLIM2 = 0;

long double XLIM3 = 0;

long double XLIM4 = 0; // |x| on region boundaries

long double A0 = 0;

long double D0 = 0;

long double D2 = 0;

long double E0 = 0;

long double E2 = 0;

long double E4 = 0;

long double H0 = 0;

long double H2 = 0;

long double H4 = 0;

long double H6 = 0; // W4 temporary variables

long double P0 = 0;

58

long double P2 = 0;

long double P4 = 0;

long double P6 = 0;

long double P8 = 0;

long double Z0 = 0;

long double Z2 = 0;

long double Z4 = 0;

long double Z6 = 0;

long double Z8 = 0;

long double XP[6], XM[6], YP[6], YM[6]; // CPF12 temporary values

long double MQ[6], PQ[6], MF[6], PF[6];

long double D, YF, YPY0, YPY0Q;

// ***** Start of executable code ***

RG1 = 1; // Set flags

RG2 = 1;

RG3 = 1;

YQ = Y*Y; // y^2

YRRTPI = Y*RRTPI; // y/SQRT(pi)

// Region boundaries when both K and L are required or when R<>4

XLIM0 = R0 - Y;

XLIM1 = R1 - Y;

XLIM3 = 3.097*Y - 0.45;

XLIM2 = 6.8 - Y;

XLIM4 = 18.1*Y + 1.65;

if (Y <= 0.000001) // When y<10^-6

{

XLIM1 = XLIM0; // avoid W4 algorithm

59

XLIM2 = XLIM0;

} // end if

for(int i = 0; i < N; i++) // Loop over all points

{

ABX = fabs(X[i]); // |x|

XQ = ABX*ABX; // x^2

if (ABX > XLIM0) // Region 0 algorithm

K.push_back(YRRTPI / (XQ + YQ));

else

{

if (ABX > XLIM1) // Humlicek W4 Region 1

{

if (RG1 != 0) // First point in Region 1

{

RG1 = 0;

A0 = YQ + 0.5; // Region 1 y-dependents

D0 = A0*A0;

D2 = YQ + YQ - 1.0;

} // end if RG1 != 0

D = RRTPI / (D0 + XQ*(D2 + XQ));

K.push_back(D*Y*(A0 + XQ));

} // end if ABX > XLIM

else

{

if (ABX > XLIM2) // Humlicek W4 Region 2

{

if (RG2 != 0) // First point in Region 2

{

RG2 = 0;

H0 = 0.5625 + YQ*(4.5 + YQ*(10.5 + YQ*(6.0 + YQ))); // Region 2 y-dependents

H2 = -4.5 + YQ*(9.0 + YQ*(6.0 + YQ* 4.0));

60

H4 = 10.5 - YQ*(6.0 - YQ* 6.0);

H6 = -6.0 + YQ* 4.0;

E0 = 1.875 + YQ*(8.25 + YQ*(5.5 + YQ));

E2 = 5.25 + YQ*(1.0 + YQ* 3.0);

E4 = 0.75*H6;

} // end if RG2 != 0

D = RRTPI / (H0 + XQ*(H2 + XQ*(H4 + XQ*(H6 + XQ))));

K.push_back(D*Y*(E0 + XQ*(E2 + XQ*(E4 + XQ))));

} // end if ABX > XLIM2

else

{

if (ABX < XLIM3) // Humlicek W4 Region 3

{

if (RG3 != 0) // First point in Region 3

{

RG3 = 0;

// Region 3 y-dependents

Z0 = 272.1014 + Y*(1280.829 + Y*(2802.870 + Y*(3764.966 + Y*(3447.629 +

Y*(2256.981 + Y*(1074.409 + Y*(369.1989 + Y*(88.26741 + Y*(13.39880 + Y)))))))));

Z2 = 211.678 + Y*(902.3066 + Y*(1758.336 + Y*(2037.310 + Y*(1549.675 +

Y*(793.4273 + Y*(266.2987 + Y*(53.59518 + Y*5.0)))))));

Z4 = 78.86585 + Y*(308.1852 + Y*(497.3014 + Y*(479.2576 + Y*(269.2916 + Y*(80.39278 + Y*10.0)))));

Z6 = 22.03523 + Y*(55.02933 + Y*(92.75679 + Y*(53.59518 + Y*10.0)));

Z8 = 1.496460 + Y*(13.39880 + Y*5.0);

P0 = 153.5168 + Y*(549.3954 + Y*(919.4955 + Y*(946.8970 + Y*(662.8097 +

Y*(328.2151 + Y*(115.3772 + Y*(27.93941 + Y*(4.264678 + Y*0.3183291))))))));

P2 = -34.16955 + Y*(-1.322256+ Y*(124.5975 + Y*(189.7730 + Y*(139.4665 +

Y*(56.81652 + Y*(12.79458 + Y*1.2733163))))));

P4 = 2.584042 + Y*(10.46332 + Y*(24.01655 + Y*(29.81482 + Y*(12.79568 + Y*1.9099744))));

P6 = -0.07272979 + Y*(0.9377051+ Y*(4.266322 + Y*1.273316));

P8 = 0.0005480304 + Y*0.3183291;

} // end if

61

D = 1.7724538 / (Z0 + XQ*(Z2 + XQ*(Z4 + XQ*(Z6 + XQ*(Z8+XQ)))));

K.push_back(D*(P0 + XQ*(P2 + XQ*(P4 + XQ*(P6 + XQ*P8)))));

} // end if ABX < XLIM3

else // Humlicek CPF12 algorithm

{

YPY0 = Y + Y0;

YPY0Q = YPY0*YPY0;

K.push_back(0.0);

for(int j = 0; j < 6; j++)

{

D = X[i] - T[j];

MQ[j] = D*D;

MF[j] = 1.0 / (MQ[j] + YPY0Q);

XM[j] = MF[j]*D;

YM[j] = MF[j]*YPY0;

D = X[i] + T[j];

PQ[j] = D*D;

PF[j] = 1.0 / (PQ[j] + YPY0Q);

XP[j] = PF[j]*D;

YP[j] = PF[j]*YPY0;

} // end for j

if (ABX < XLIM4) // Humlicek CPF12 Region I

{

for(int j = 0; j < 6; j++)

K[i] = K[i] + C[j]*(YM[j]+YP[j]) - S[j]*(XM[j]-XP[j]);

} // end if ABX < XLIM4

else // Humlicek CPF12 Region II

{

YF = Y + Y0PY0;

for(int j = 0; j < 6; j++)

62

K[i] = K[i] + (C[j]*(MQ[j]*MF[j]-Y0*YM[j]) + S[j]*YF*XM[j]) /

(MQ[j]+Y0Q) + (C[j]*(PQ[j]*PF[j]-Y0*YP[j]) - S[j]*YF*XP[j]) / (PQ[j]+Y0Q);

K[i] = Y*K[i] + exp(-XQ);

} // end else

} // end else

} // end else

} // end else

} // end else

// cout << "here " << K[i] << endl;

} // end for

} // end humlik

void error(const string p, const char* p2, bool quit)

{

cerr << p << ’ ’ << p2 << endl;

if(quit)

exit(1);

}

void error(const string p, bool quit)

{

cerr << p << endl;

if(quit)

exit(1);

}

63

References

[1] L. Rothman, et al., “The HiTran Molecular Spectroscopic Database and HAWKS

(HiTran Atmospheric Workstation): 1996 Edition,” J. Quant. Spectros. & Ra-

diat. Transfer. 60, 665 (1998).

[2] S. Davis, et al. Fourier Transform Spectroscopy. Academic Press, Inc., New York,

2001.

[3] G. Herzberg.Molecular Spectra and Molecular Structure II. D. Van Nostrand Co.

Inc., New York, 1945.

[4] V. Weisskopf, E. Wigner, “Berechnung der natürlichen Linienbreite auf Grund

der Diracschen Lichttheorie,” Z. Phys. 63, 54 (1930).

[5] F. Hoyt, “The Structure of Emission Lines,” Phys. Rev. 36, 860 (1930).

[6] H. Margenau, W. W. Watson, “Pressure Effects on Spectral Lines,” Rev. Mod.

Phys. 8, 22 (1936).

[7] J. Lenoble.Atmospheric Radiative Transfer. A. Deepak Pub, Hampton, VA, 1993.

[8] S. Penner. Quantitative Molecular Spectroscopy and Gas Emissivities. Addison-

Wesley Pub. Co. Inc., Reading, MA, 1959.

[9] W. Silfvast. Laser Fundamentals. Cambridge U.P., UK, 1996.

[10] J. Van Vleck, V. Weisskopf, “On the Shape of Collision-Broadened Lines,” Rev.

Mod. Phys. 17, 227 (1945).

[11] A. Ben-Reuven, “Transition from Resonant to Nonresonant Line Shape in Mi-

crowave Absorption,” Phys. Rev. Lett. 14, 349 (1965).

[12] A. Ben-Reuven, “Impact Broadening of Microwave Spectra,” Phys. Rev. 145, 7

(1966).

64

[13] A. Ben-Reuven, “The Meaning of Collisional Broadening of Spectral Lines: The

Classical-Oscillator Analog,” Adv. At. Mol. Phys. 5, 201 (1969).

[14] J. Waters, “Absorption and Emission by Atmospheric Gases,” In Methods of

Experimental Physics, 12B (M.L. Meeks, Ed.). Academic Press, New York, 1976.

[15] M. Harmony. Introduction to Molecular Energies and Spectra. Holt, Rinehart and

Winston, Inc., New York, 1972.

[16] P. Jansson. Deconvolution: With Applications to Spectroscopy. Academic Press,

Inc., New York, 1984.

[17] B. Armstrong, “Spectrum Line Profiles: the Voigt Function,” J. Quant. Spectros.

& Radiat. Transfer. 7, 62 (1967).

[18] V. Faddeyeva, N. Terent’ev. Tables of Values of the Function w(z) = e−z
2
(
1 +

2ı√
π

∫ z

0
et

2
dt

)
for Complex Argument. Pergamon Press, New York, 1961.

[19] A. Asfaw, “A Fast Method of Modeling Spectral Lines,” J. Quant. Spectros. &

Radiat. Transfer. 70, 129 (2001).

[20] J. Anderson. Modern Compressible Flow. McGraw Hill, New York, 2003.

[21] R. Wells, “Rapid Approximation to the Voigt/Faddeeva Function and its Deriva-

tives,” J. Quant. Spectros. & Radiat. Transfer. 62, 29 (1999).

[22] J. Kauppinen, J. Partanen. Fourier Transforms in Spectroscopy. Wiley-VCH,

New York, 2001.

[23] P. Griffiths, J. de Haseth. Fourier Transform Infrared Spectroscopy. John Wiley

& Sons, Inc., New York, 1986.

[24] J. Kraushaar, R. Ristinen. Energy and Problems of a Technical Society. John

Wiley & Sons, Inc., New York, 1993.

65

[25] H. Nasrallah, et al., “Temporal Variations in Atmospheric CO2 Concentrations

in Kuwait City, Kuwait with Comparisons to Phoenix, Arizona, USA.” Environ-

mental Pollution, 121, 301 (2003).

[26] C. Idso, et al., “An Intensive Two-week Study of an Urban CO2 Dome in Phoenix,

Arizona, USA.” Atmospheric Environment, 6, 995 (2001).

[27] A. Eckbreth, Laser Diagnostics for Combustion Temperature and Species. Gor-

don and Breach Publishers, New York, 1996.

66

