
A PRESENTED SOFTWARE 41

A.3 Functional Form Fitting

libLGD/lgdClusterIU.c:

float DBFit2(float Rf, float w) {

return ((DB_ParamA(w)/Rf)+(DB_ParamB(w)/(Rf*Rf))+(DB_ParamC(w)));

}

float DB_ParamA(float width) {

return (((0.40633)*width)-1.4932);

}

float DB_ParamB(float width) {

return (((-0.36261)*width)+1.4667);

}

float DB_ParamC(float width) {

return (((-0.12124)*width)+0.43097);

}

A PRESENTED SOFTWARE 40

}

if(clusters->cluster[clus_idx].nBlocks <= 5) break;

for(p=0;p<nNeighbors;p++) {

for(q=0;q<hits->nhits;q++) {

if(hits->hits[q].channel == neighbor[p]) {

guessE += hits->hits[q].energy;

}

}

}

guessE = guessE / nNeighbors;

break;

}

/* never guess more than 30% of total cluster energy */

if(guessE / clusters->cluster[clus_idx].old_e > 0.3)

guessE = 0.3 * clusters->cluster[clus_idx].old_e;

/* update data structures with estimation */

hitList[clus_idx][block_idx].energy = scaling*guessE;

clusters->cluster[clus_idx].energy =

clusters->cluster[clus_idx].old_e + scaling*guessE;

} /* endif */

} /* endfor */

} /* endfor */

}

A PRESENTED SOFTWARE 39

case LGD_DB_FIT2: /* Dead Blocks - New Fitting Method (2)*/

if(lgdLocalCoord(hitList[clus_idx][block_idx].channel, &ithblock)

!= LGDGEOM_OK)

printf("Channel Error!\n");

if(clusters->cluster[clus_idx].nBlocks <= 5) break;

totaldist =

sqrt(pow(ithblock.x-clusters->cluster[clus_idx].space.x,2)+

pow(ithblock.y-clusters->cluster[clus_idx].space.y,2));

Rfrac = totaldist / clusters->cluster[clus_idx].width;

if(Rfrac<0.9 || Rfrac > 2.25) break;

Efrac = DBFit2(Rfrac, clusters->cluster[clus_idx].width);

guessE = clusters->cluster[clus_idx].energy * Efrac;

break;

case LGD_DB_WEIGHTAVG: /* === Dead Blocks - Weighted Average Method */

if(lgdGeomGetNeighbors(hitList[clus_idx][block_idx].channel,

&neighbor[0], &nNeighbors)

== LGDGEOM_CHANNELERROR) {

printf("Channel Error!\n");

}

if(clusters->cluster[clus_idx].nBlocks <= 5) break;

for(p=0;p<nNeighbors;p++) {

for(q=0;q<hits->nhits;q++) {

if(hits->hits[q].channel == neighbor[p]) {

if(lgdLocalCoord(hits->hits[q].channel, &ithblock)

!= LGDGEOM_OK)

printf("Channel Error!\n");

totaldist +=

sqrt(pow(ithblock.x-clusters->cluster[clus_idx].space.x,2)+

pow(ithblock.y-clusters->cluster[clus_idx].space.y,2));

}

}

}

for(p=0;p<nNeighbors;p++) {

for(q=0;q<hits->nhits;q++) {

if(hits->hits[q].channel == neighbor[p]) {

if(lgdLocalCoord(hits->hits[q].channel, &ithblock)

!= LGDGEOM_OK)

printf("Channel Error!\n");

dist =

sqrt(pow(ithblock.x-clusters->cluster[clus_idx].space.x,2)+

pow(ithblock.y-clusters->cluster[clus_idx].space.y,2));

guessE += (hits->hits[q].energy * (dist/totaldist));

}

}

}

break;

case LGD_DB_SIMPLEAVG: /* === Dead Blocks - Simple Average Method === */

if(lgdGeomGetNeighbors(hitList[clus_idx][block_idx].channel,

&neighbor[0], &nNeighbors)

== LGDGEOM_CHANNELERROR) {

printf("Channel Error!\n");

A PRESENTED SOFTWARE 38

A.2 Additional Level Three Search

libLGD/lgdClusterIU.c:

void levelThreeSearch_DeadBlocks(lgd_hits_t *hits,

lgd_clusters_t *clusters,

float fractionClusterized,

lgd_hit_t **hitList,

lgd_hits_t *isolatedHits,

float scaling)

/* Search through all clusters for blocks that are marked dead

and estimate the energy that would have been recorded in them. */

{

int clus_idx, block_idx, k, p, q;

float guessE, totaldist, Rfrac, Efrac, dist;

int neighbor[8], nNeighbors;

vector3_t ithblock, jthblock;

FILE *f;

if(clusters->nClusters == 0) return;

if(LGD_DB_METHOD == LGD_DB_NONE) return;

/* Look through all blocks in all clusters for dead blocks ... */

for(clus_idx=0; clus_idx<clusters->nClusters; clus_idx++) {

for(block_idx=1;block_idx<clusters->cluster[clus_idx].nBlocks;block_idx++) {

/* if the block is dead */

if(hitList[clus_idx][block_idx].flags == 205) {

/* flag the cluster as modified */

clusters->cluster[clus_idx].flags |= LGD_F_DEADBLOCK;

guessE = 0.0;

switch(LGD_DB_METHOD) {

case LGD_DB_BLANK: /* === Dead Blocks - Don't put in energy */

guessE = 0.0;

break;

case LGD_DB_FIT1: /* === Dead Blocks - ORIGINAL Fitting Method (1) */

if(lgdLocalCoord(hitList[clus_idx][block_idx].channel, &ithblock)

!= LGDGEOM_OK)

printf("Channel Error!\n");

totaldist =

sqrt(pow(ithblock.x-clusters->cluster[clus_idx].space.x,2)+

pow(ithblock.y-clusters->cluster[clus_idx].space.y,2));

guessE = 0.75*(1/pow(totaldist,2)) + 0.25*(1/(totaldist));

break;

A PRESENTED SOFTWARE 37

hits->hits[found].energy = 0;

hits->hits[found].flags |= LGD_F_DEADBLOCK;

} else {

/* add a new hit */

hits->hits[hits->nhits].channel = LGD_db[index];

hits->hits[hits->nhits].energy = 0;

hits->hits[hits->nhits].flags |= LGD_F_DEADBLOCK;

(hits->nhits)++;

}

} else {

fprintf(stderr,"Warning in make_lgd_hits: ");

fprintf(stderr," buffer full at %d hits, truncating.\n",

maxhits+1);

break;

}

}

}

if(p_lgd==NULL) {

int size = sizeof_lgd_hits_t(hits->nhits);

lgd_hits_t *tmp = data_addGroup(event,BUFSIZE,

GROUP_LGD_HITS,0,size);

memcpy(tmp,hits,size);

free(hits);

}

return(0);

}

A PRESENTED SOFTWARE 36

if(p_lgd==NULL){

hits = malloc(sizeof_lgd_hits_t(maxhits+LGD_db_nChannels));

}

else{

hits = p_lgd;

}

hits->nhits = 0;

if((lgd = data_getGroup(event,GROUP_LGD_ADCS,0)) == NULL){

static int first_time=1;

if(p_lgd==NULL)

free(hits);

if (first_time && !monte_carlo) {

fprintf(stderr,"Warning in make_lgd_hits: No LGD ADC's\n");

first_time=0;

return(0);

}

else return(0);

}

for(index=0;index<lgd->nadc;index++){

if((((float)lgd->adc[index].value) -

lgd_ped[lgd->adc[index].channel])>8.0){

if(hits->nhits < maxhits){

hits->hits[hits->nhits].channel = lgd->adc[index].channel;

hits->hits[hits->nhits].energy = (lgd->adc[index].value -

lgd_ped[lgd->adc[index].channel])*

lgd_cc[lgd->adc[index].channel];

hits->hits[hits->nhits].flags = 0;

(hits->nhits)++;

}else{

fprintf(stderr,"Warning in make_lgd_hits: ");

fprintf(stderr," buffer full at %d hits, truncating.\n",

maxhits+1);

break;

}

}

}

if(LGD_DB_METHOD != LGD_DB_NONE) {

/* add dead blocks to the hit list */

for(index=0; index<LGD_db_nChannels; index++) {

if(hits->nhits < maxhits){

/* see if we already have one */

found = 0;

for(idx=0;((idx<hits->nhits)&&(found==0));idx++) {

if(hits->hits[idx].channel == LGD_db[index])

found = idx;

}

/* clear it out if its already there */

if(found) {

A PRESENTED SOFTWARE 35

A Presented Software

A.1 Revised MakeHits

makehits/make lgd hits.c

/* make_lgd_hits.c */

/* D.S. Armstrong March 9 2000 */

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h>

#include <time.h>

#include <string.h>

#include <itypes.h>

#include <eventType.h>

#include <ntypes.h>

#include <disData.h>

#include <lgdCluster.h>

#include <lgdUtil.h>

#include <lgdGeom.h>

#include <pedestals.h>

#include <calibration.h>

#include <makeHits.h>

/*

* This routine will calculate the hits in the LGD, where a hit requires

* an ADC value sufficiently over threshold, and the hit value is in

* energy units (GeV), i.e. a calibration has been applied. The group

* GROUP_LGD_HITS is then created. The routine setup_makeHits must be

* called some time before this routine is invoked, to load geometry and

* calibrations appropriate for the particular run number.

*/

int make_lgd_hits(itape_header_t *event,

lgd_hits_t *p_lgd, int maxhits)

{

adc_values_t *lgd=NULL;

lgd_hits_t *hits=NULL;

int index, index2, flag, found, idx;

int LGD_db_nChannels, LGD_db[20]; /* deadblocks */

/* These dead channels will be appended */

LGD_db_nChannels = 14;

LGD_db[0] = 459; LGD_db[1] = 611;

LGD_db[2] = 329; LGD_db[3] = 321;

LGD_db[4] = 90; LGD_db[5] = 629;

LGD_db[6] = 277; LGD_db[7] = 314;

LGD_db[8] = 303; LGD_db[9] = 311;

LGD_db[10] = 661; LGD_db[11] = 120;

LGD_db[12] = 582; LGD_db[13] = 72;

REFERENCES 34

References

[1] D. S. Armstrong. RODD for Radiative Phi http://www.jlab.org/ radphi/Software/RODD.html.

[2] H. C. et al. CEBAF proposol e-94-016 proposal to PAC-8. (unpublished), 1994.

[3] S. K. F. Close, N. Isgur. B389. Nuclear Physics, 1993.

[4] L. J. Kaufman. Recoil proton detection for radiative decays of the � meson. Senior
Thesis, College of William and Mary.

[5] R. A. Lindenbusch. An Analysis of ��p ! ��0n at 18 GeV/c. PhD thesis, Indiana
University, Department of Physics, 1996.

[6] T. O'Connor. O�-line data analysis software for TJNAF e94-016. Master's thesis, April
1997.

[7] E. Scott. The Lead Glass Detector http://www.jlab.org/ radphi/LGD/LGD.html.

5 CONCLUSIONS 33

5 Conclusions

The functionality of the lead glass detector is essential in developing the kinematics of

incident high-energy photons. The momentum and energy of the photon is derived from

the location and total energy of clusters. Each individual block directly contributes to the

distribution of the cluster and, ultimately, the kinematics of the incident photon. As we

have seen, the parameterized �tting method is the most e�ective at predicting dead block

energy when compared with the simple average and weighted average techniques. We have

shown that providing dead block energy estimates in the clusterizing software improves the

overall experimental results.

4 RESULTS 32

Con�guration Events in Peak Area of Peak Centroid (GeV) Width (GeV)

Ideal 26,746 1,360.02 0.13065 0.20286E-01
Dead 25,707 1,343.98 0.12877 0.20857E-01
Simple Average 25,302 1,339.11 0.13056 0.21114E-01
Weighted Average 25,681 1,344.42 0.12895 0.20885E-01
Curve Fit 26,331 1,353.83 0.13010 0.20512E-01

Figure 16: �0 statistics for each software con�guration.

energy sum is less than the total energy of the incident photon. Often this causes a cluster

to \fall out" below the peak, decrementing the number of events within the peak. Those

that do not fall out of the peak, help move the centroid to the left, further from the true

value. Finally, the width of the peak in the dead con�guration is greater, representing more

variance in the statistics.

Neither averaging technique is e�ective at reviving the ideal statistics. In both cases,

the width is larger that that of the ideal Gaussian, and the centroid is less than the ideal.

While the simple average method does estimate the centroid pretty well, this indicates that

individual estimates are generally either too high or too low, but equally so. Unlike the

averaging techniques, the curve �tting method seems to be the most e�ective. Of all of the

techniques, it is the only one in which the area and the width of the Gaussian are better

than when all dead blocks are left at zero. Thus, we have chosen to incorporate the curve

�tting method into the software to estimate dead block energy.

4 RESULTS 31

2 Gamma Invarient Mass (GeV)

30,000

20,000

10,000

0

Figure 15: Invariant mass M

 histogram for run 8209.

5. Curve Fit: Dead blocks given energy estimated by the curve �tting method.

Figure 16 illustrates the histogram properties for each of the above con�gurations based

on a sample of 1; 150; 000 events from run number 8209. The �rst two con�gurations provide

a framework for comparing the methods. The statistics for a perfect estimation technique

would be identical to those gathered for the ideal con�guration. All estimations for dead

blocks would be precisely what was actually recorded and, thus, there would be no di�erence

between the ideal con�guration and the perfect method con�guration.

Comparing the Ideal to the Dead con�guration, the statistics are signi�cantly skewed.

Clusters with dead blocks in them receive no estimation for the dead block and the total

4 RESULTS 30

� = 53:4878 MeV

hEact �Eesti = 0:004246 MeV

Area = 61; 164

Figure 14: Di�erence between actual and estimated energy.

To make these statistical comparisons, we use the same source data (run number 8209)

and examine the shape of the histogram for each technique. We compare these histograms

with those produced from the same run for a situation in which no dead blocks were invented

and a situation in which all dead blocks are left at zero, with no estimation applied. Thus,

we compare the statistics for the following �ve di�erent software con�gurations:

1. Ideal: No invented dead blocks.

2. Dead: All dead blocks left with zero energy.

3. Simple Average: Dead blocks given energy estimated by the simple average method.

4. Weighted Average: Dead blocks given energy estimated by the weighted average
method.

4 RESULTS 29

4 Results

4.1 Testing E�ectiveness of Techniques

In order to test the e�ectiveness of this method, we need to \invent" dead blocks. We

consider a normal run in which there are no dead blocks and arbitrarily chose several blocks

throughout the lead glass detector to ascribe as \dead." We compare the e�ectiveness of

each estimation technique in the following two manners.

4.1.1 Estimation Comparisons

We examined the e�ectiveness of the estimation technique by comparing the estimated and

the actual energy for a number of dead blocks. Based on 10; 000 events from run 8209, we

histogram the di�erence between the actual and the estimated block energy, as illustrated

in Figure 14. As expected, the mean di�erence hEact�Eesti is nearly zero and the standard

deviation � is rather small. These statistics signify that on average, our technique provided

an appropriate estimate.

4.1.2 Improvement in Invariant Mass Determination

Since a large percentage of events involve the process �0 !

, we will test the e�ectiveness

of the methods by comparing histograms of the invariant mass two photon combinations.

Figure 15 illustrates a histogram of two photon masses (M

) for an analysis in which

no dead block estimation techniques were used. Each technique has a di�erent e�ect on

the results, and the most e�ective technique would ideally produce a more narrow peak.

Moreover, the center of the peak re
ects the mass of the source �0 whose mass is known.

Thus, if our methods are e�ective, we will improve the invariant mass plots, by shifting the

centroid of the �0 histogram closer to the accepted mass of a �0.

3 ESTIMATING DEAD BLOCK ENERGY 28

account of the shape of the cluster and therefore, the peak energy of the cluster. Thus, we

only apply our method to clusters in which the total number of blocks is greater than three.

3.5.2 Detector limitations

We are also limited by the size of the overall detector. Clusters along the edge often \leak

over" beyond the outer lead glass blocks, preventing us from determining the portion of

the energy that was lost. Similarly, the inner ring of the detector has a hole through which

the beam passes. High-energy photons may strike the LGD along the rim of the hole. In

both of these regions, it is diÆcult to �nd a curve to represent the clusters, and, therefore,

the dead block energy predictions will su�er as well. Since much of the general data error

results from these clusters and there is little we can do to improve these clusters, we accept

them as they are without trying to improve the data.

3.5.3 Block Sharing

A third consideration involves overlapping clusters. Often two photons that are incident on

the LGD have not had enough distance to spread apart suÆciently. Thus, many clusters

overlap neighboring clusters. The �rst hindering e�ect of this phenomenon is that the energy

measure in the blocks of the individual clusters do not represent the energy of the individual

incident photon. Therefore, the entire cluster is somewhat faulty to begin with. Moreover,

if a dead block resides between the two clusters, two energy predictions must be made, one

for each cluster, and then combined for the block. This becomes even more nebulous when

three or more clusters overlap. In most cases, the estimation technique resolves the block

sharing issue. In our technique, the energy in a shared block is estimated twice, once for

one cluster, and then erased and estimated again for the other cluster.

3 ESTIMATING DEAD BLOCK ENERGY 27

Figure 13: Functional form variations based on cluster width.

3 ESTIMATING DEAD BLOCK ENERGY 26

Figure 12: Individual parameter values versus cluster width (cm).

4. Determine efi = a=rfi + b=r2fi + c.

5. Calculate the amount energy that should have been recorded as ei = Et � efi, where
Et is the total energy of the cluster.

3.5 Special Considerations

3.5.1 Few-Block Clusters

Most of the methods that we present require a well behaved energy distribution in the

cluster in order to be e�ective. We have seen that for cases where there are less than three

blocks in the cluster, it is very unlikely that we will be able to establish a reasonable block

energy prediction. In these cases, the dead block may be the block that would have been

the center of the cluster. Since these clusters are narrow, we cannot develop an accurate

3 ESTIMATING DEAD BLOCK ENERGY 25

Figure 10: Fitting efi versus rfi to Eqn (1).

Figure 11: Fitting efi versus rfi to Eqn (2).

3 ESTIMATING DEAD BLOCK ENERGY 24

efi = (a � rfi) + (b � r2fi) + (c � r3fi) + d (2)

where a; b; c; and d are variable parameters. Figures 10 and 11 illustrates how data points

are approximated using a �t to each of these forms. We chose to use Eqn. (1) as it more

accurately captures the shape of typical showers, particularly since it approaces zero at a

large fractional radius.

3.4.2 Parameter Dependence

In order to accommodate shower shape di�erences that arise from variables such as the clus-

ter width into the curve equation, we determine how each parameter, a; b; c; : : :, depends on

the number of blocks, distance from the beam-line, and cluster width. Figure 12 illustrates

how each parameter depends on the cluster width. The crosses in the �gure illustrate how

the �t approximates parameter values.

While we examined how each parameter varies depending on the number of blocks

and on the distance from the beam line, the cluster width presented the most striking

correlation. As a result, we chose to vary the functional form based on the cluster width.

Figure 13 illustrates how our functional form varies with the width of cluster based on these

parameters.

3.4.3 Fitting Method Implementation

In order to estimate the energy in a dead block using the �tting method, the following

algorithm is used.

1. Determine the distance, di between the dead block and the cluster center

2. Calculate rfi = di=�, where � is the cluster width.

3. Calculate the parameters for the �t based on the cluster width as: a = 0:406���1:493,
b = �0:363 � � + 1:467, and c = �0:121 � � + 0:431.

3 ESTIMATING DEAD BLOCK ENERGY 23

Figure 9: Dependence of shower shape on cluster width.

3.3.3 Cluster Width

A �nal parameter we examine for curve dependence is the width, or standard deviation of

the distribution. Figure 9 illustrates the strong dependence of efi versus rfi on the cluster

width. The cluster width is one of the more signi�cant parameters since it is computed

directly based on the shower shape.

3.4 Curve-Fit Equation

3.4.1 Functional Forms

In order to �t the shower shape distribution to a curve, we compare the e�ectiveness of the

following empirical models:

efi = (a=rfi) + (b=r2fi) + c (1)

3 ESTIMATING DEAD BLOCK ENERGY 22

Figure 8: Dependence of shower shape on distance of cluster from beam-line.

3.3.2 Distance Between Cluster Center and Beam-line

We examine how the relationship between efi and rfi depends on the distance of the cluster

center from the center of the beam-line. Since the geometry of the apparatus includes a

point target and a single-plane lead glass detector, the shape of the shower may be di�erent

for photons that are produced at a wider angle. In order to �nd this dependence, we examine

plots which illustrate the shower shape for several distances from the beam-line. Figure 8

demonstrates only a small dependence of shower shape on the distance of the cluster center

from the beam-line. Thus we have decided not to base the functional form on a parameter

corresponding to distance from the beam-line.

3 ESTIMATING DEAD BLOCK ENERGY 21

Figure 7: Dependence of Shower Shape on Number of Blocks in the Cluster.

number of blocks in the cluster, then we need to include a parameter in the curve to adjust

the shape of the curve based on the number of blocks in the cluster.

3.3.1 Number of Blocks in the Cluster

We examine how the relationship between efi and rfi depends on the total number of blocks

present in the cluster. To determine whether or not this dependence exists, we examine

the relationship between efi and rfi for varying number of blocks in the cluster. Figure 7

illustrates the dependence of shower shape on the number of blocks in the cluster. Note

that the absence of data points where rfi < 0:6 is a result of the granularity of the LGD.

Section 3:5:1 discusses these limitations.

3 ESTIMATING DEAD BLOCK ENERGY 20

Figure 6: Fitting efi versus rfi for blocks in various clusters.

energy in the block (or, the block energy divided by total cluster energy), efi, and the

fractional radius of the block from the center of the cluster (or, distance of the block from

the center divided by the width of the cluster), rfi. The width we used is calculated by

the getClusterPositions function which determines the standard deviation of the shower

distribution. Figure 6 reveals a strong relationship between efi and rfi. We discuss the

functional forms used to model this in the �nal portion of Section 3.

Figure 6 illustrates how individual data points are represented with a global �t. Al-

though the curve passes through the middle of the data points, there is a large degree of

error involved in reducing the distribution to a single curve. In order to reduce the error,

the curve must be parameterized, so that the curve is customized to an individual shower.

In the following portions of this section, we study how the shower shape depends on several

important parameters. For example, if the shower shape is quite di�erent depending on the

3 ESTIMATING DEAD BLOCK ENERGY 19

as the dead block are given less weight then those at more dissimilar distances. To resolve

this, we take the complement of each fractional distance, gi = 1� fi. To normalize the sum

of the weights back to one, each complement is then divided by the sum of the complements

as follows to determine hi:

hi =
giPN
j=1 gj

:

The set of weights, de�ned as fh1; : : : ; hNg, is then used to scale individual block energies

when computing the dead block energy estimate. Thus the estimated energy Ei is calculated

as

Ei =
NX

j=1

hj � Ej ;

where Ej is the energy recorded in neighboring block, j.

3.3 Fitting Method

A third method we investigated involves �tting the cluster energy distribution to a shower

shape. Given a function that accurately models a typical shower, we extrapolate an energy

estimate for a block at a particular position from the cluster center. In order to develop a

shower shape model, we performed a study on the shapes of typical photon showers.

We began by developing histograms which illustrate the relationship between the energy

in a single block of the cluster, ei verses the distance of that block from the center of the

cluster, ri. Since showers have a great deal of variance in total energy, we did not want

the curve to depend on the total energy. Moreover, the cluster width is much greater for

higher energy showers. So, instead we looked for a relationship between the fractional

3 ESTIMATING DEAD BLOCK ENERGY 18

�
�
�

�
�
�

67

110131

79

70 554 62

325 1101 170

Cluster Center
68 290

Actual: 160
Estimate: 253

Individual Block Energy (MeV)

Figure 5: Sample e�ect of the simple average method.

our average gives more weight to those blocks which are at similar distances from the center

of the cluster. Conversely, those blocks which are at dissimilar distances from the center of

the cluster are given less weight in the overall average of the blocks.

To accomplish this, we begin by computing the di�erences in distances from the cluster

center, Ĉ, between the dead block Â, and each neighboring block, B̂j. These di�erences as

calculated as

di = jkĈ � Âk � kĈ � B̂jkj:

The sum of these distances is, d =
PN

j=1 di. Thus, we compute a fractional distance

di�erence for each neighbor as fi = di=d.

Each of these fractions is, however, incorrectly weighted; those blocks at similar distances

3 ESTIMATING DEAD BLOCK ENERGY 17

3 Estimating Dead Block Energy

The crucial step in accounting for dead blocks is estimating the energy that would have

been recorded in the block, had it not been faulty. In this section, we describe several

estimation techniques that were explored and how they are used within the context of the

software. Each of the estimation techniques were evaluated by temporarily \turning o�"

properly functioning blocks and comparing the energy estimation with the actual value.

3.1 Simple Average Method

The most basic method used was the simple average method. To estimate the energy in

the block, an average of all neighboring block energies is used. Thus, the energy estimated

for a dead block i is calculated using all N neighbors as

Ei =

PN
j=1Ej

N
:

This technique ensures that the estimated energy will be on the same order as all

neighbors. Figure 5 illustrates a typical cluster in which this method is used (from event

three in run number 8209). Unfortunately, although the estimated value of 253 MeV is on

the same order as the actual energy value of 160 MeV, this method is not as accurate as

the following methods.

3.2 Weighted Average Method

The next method of estimating dead block energy involves determining a weighted average

of neighboring blocks. Since the clusters seem to exhibit a large fraction of the total energy

in the most central blocks and smaller fractions for those blocks further from the center,

2 IMPLEMENTATION 16

anything in the hitList has an above-threshold energy reading. Thus, while dead blocks

are not recognized as high-energy cluster centers, they will automatically be incorporated

into the cluster that they are neighbors of.

Once the clusters have been isolated, the estimation technique described in Section 3 is

applied to all blocks marked as dead. Finally, the getClusterPositions function is used

one more time. After this phase is complete, the total energy, position, and momentum of

the incident photons are identi�ed and the analysis of the source � meson proceeds.

2 IMPLEMENTATION 15

is the least biased towards positioning the cluster in the middle of an individual block. Once

the position of the photon is located, the momentum ~p of the photon is determined [4] as

~p =
~rc
j~rcj

Ec;

where rc and Ec are the position and energy (respectively) of the cluster. A small depth

correction must be applied since the incident photon travels some distance through the lead

glass before the �rst pair production occurs [4].

2.3 Overall Structure

In practice, the level one search is used two times. The �rst time, the minimum energy

is set to a high value so that all high-energy clusters are located. Once these blocks and

their neighbors have been associated into clusters, a second level one search with a lower

minimum energy locates low-energy clusters using blocks that have not yet been associated.

Figure 3 illustrates individual block hits, notated by coloring, and their associated clusters,

notated by black circles. In summary, the search levels are used in the following order:

levelOneSearch �! getClusterPositions �! levelTwoSearch �! levelOneSearch �!

getClusterPositions �! levelThreeSearch �! getClusterPositions

2.4 Presented Software Additions

We present an addition to the software in both the levelThreeSearch as well as during

the generation of the hitList, to incorporate dead blocks. After the hitList has been

built, dead blocks are appended to the list. These blocks, however, are marked as dead

and assigned zero for the energy reading. The clusterizer is designed such that it assumes

2 IMPLEMENTATION 14

shared between the two blocks. At the end of the level two search, all blocks that are not

close to existing clusters are recorded in the structure, isolatedHits.

2.2.3 Level Three Search

The third level of the clusterizer is the new software component developed in the present

work. This level is used to estimate the energy in dead blocks. The algorithm looks for

blocks that are
agged as \dead" and uses the techniques described in Section 3 to estimate

the amount of energy that would have been recorded.

2.2.4 Determining Cluster Positions

The getClusterPositions function is used to determine the physical location, total energy

and width of the cluster shower, which corresponds to the momentum of the incident high

energy photon. The pixelized nature of the LGD allows is fundamental in determining the

location of the incident photon. Using the distribution of energy stored in individual block

hits, the center of the cluster is determined [5] using a weighted mean formula

xc =

PN
j=1wj(Ej)xj
PN

j=1wj(Ej)
;

where the sum is over all blocks in the cluster, Ej and wj are the energy measured and

weight used for block j, respectively. A similar form is used to determine yc. One linear

and two logarithmic weighting algorithms were evaluated [5] and it has been shown that

the second logarithmic weighting,

wj = Max(0; a0 + ln
Ej

Etot
);

2 IMPLEMENTATION 13

2.2 Clusterizing

Once the hitList has been constructed to contain all blocks in which relevant energy

was recorded, the clusterizing phase begins. The clusterizer applies a pattern recognition

algorithm to group neighboring blocks with above pedestal energy readings into clusters.

During this stage, energy hits stored in the hitList are combined into clusters in the

clusters data structure. Ultimately, the total energy and position of the cluster re
ects

the incident high-energy photon's 4-momentum.

Clusterizing is divided into a three levels as described in the following portions of Section

2. These three phases are levelOneSearch, levelTwoSearch, and levelThreeSearch. In

between each search, the function, getClusterPositions calculates the total energy, cluster

center, and cluster width. The following portions of this Section 2 explain the algorithms

used in each phase.

2.2.1 Level One Search

In the �rst phase of the clusterizer, an algorithm is used which looks through all of the

individual LGD blocks to �nd energy hits greater than a speci�ed minimum. Each of these

high-energy block hits is used to build a unique entry in the clusters data structure.

2.2.2 Level Two Search

After all high energy hits have been assigned to clusters, the level two search adds additional

hits that are close to the high energy hits into the same cluster. The algorithm searches

through all unused hits, and if the block is close to one of the clusters de�ned in the level

one search, it is added to that cluster. In some cases, a block is locate between two clusters

and is close to each. These blocks are marked as shared and the energy will ultimately be

2 IMPLEMENTATION 12

2 Implementation

2.1 Software Background

During experimental runs, all information produced by the detectors is stored in compacted,

binary format �les. We use a software program, entitled RODD [6], to unpack the com-

pacted data, interpret the data, and produce �les which can be read by histogram display

software [1]. It is during this process that the values recorded by hardware detectors are

interpreted.

The �rst phase of the process involves building a list of \hits", or blocks that recorded

a non-zero energy. RODD dynamically builds a data structure called the hitList, which

stores the lead glass block ID and the amount of energy recorded in the block. To accomplish

this, RODD looks at the raw energy readings that are recorded in each block. However, the

varying quality of materials comprising the blocks, and the varying environmental conditions

incident on the block prevents the raw energy values from being consistent across all blocks

for a given true energy value. To account for this, calibration constants have been calculated

which are multiplied by the raw energy values (after subtraction of an o�set, or pedestal to

produce a more accurate value for the energy recorded as a result of the event.

Once the calibration constant has been applied to the raw energy reading, a cut is made,

depending on whether the energy is above a minimum. Many of the blocks record energy

values above zero for each event. However, in most of these uses this small amount of energy

represents electronic noise or background radiation. This minimum value allows for all of

the blocks which read nonzero but insigni�cant values to be restricted from the hitList.

1 INTRODUCTION AND MOTIVATION 11

A more accurate account of the photon will help us determine more precisely the kinematics

of the event.

1.6 Organization

Section 2 discusses the clusterizing software and how the correction is included. The esti-

mation techniques are described in Section 3, and their e�ectiveness is analyzed in Section

4.

1 INTRODUCTION AND MOTIVATION 10

it at least indicates which blocks are not recording any energy. Figure 4 illustrates a test of

all of the blocks of the LGD, in which several of the blocks were not responding; coloring

indicates the pulse signal size and those without color did not record any energy.

However, the failure of one small portion of the LGD was not signi�cant enough for us

to consider terminating the run and spending valuable time �xing or replacing the faulty

component. As a result, a large percentage of data were taken while at least a few blocks

were dead. Since the shower is spread among many blocks, one is able to obtain much of

the information about the shower despite the missing blocks. However, these missing blocks

result in some slightly smaller estimates of total photon energy. Moreover, the missing block

detracts from the ability to estimate the position of the photon as it struck the LGD since

one has a somewhat inaccurate distribution of shower energy. The position is important to

the experiment as it determines, along with the knowledge of the location of the target, the

momentum vector of the incident photon. Both the energy (E) and the momentum (~p) are

required to determine the photon's 4-vector, which is needed to determine the kinematics

of the event.

1.5 Presented Work

In response to the inaccuracy in determining photon total energy, position, and momentum,

which occurs as a result of malfunctioning lead glass blocks, we present a software correction.

Based on the information we know about the surrounding blocks, within the photon shower

\cluster," we attempt to estimate the energy that would have been measured by a non-faulty

lead glass block.

With an e�ective estimation of the energy that would have been detected, we can calcu-

late more accurately the total energy, position, and the momentum of the incident photon.

1 INTRODUCTION AND MOTIVATION 9

yields a value proportional to the original energy of the photon incident on the front edge

of the LGD. Thus, the total energy of the photon that originally initiated the shower can

be determined [4]. (See Figure 3.)

1.4.2 Dead Blocks

Figure 4: An LGD laser event test for run 8635.

Most of the relevant photon showers spread out across several lead glass blocks, in some

cases, as many as �fteen blocks. Since the detector is comprised of many blocks, often one

of them may malfunction during a run of the experiment. Before each experimental run

and periodically thereafter, a test event called a \Laser Event" is generated. A laser pulse

is disseminated across all of the LGD and each component reads the energy. While the

laser event is not tuned �nely enough to make sure that all blocks record the same energy,

1 INTRODUCTION AND MOTIVATION 8

Figure 3: Clusters in the LGD from a typical event. (event 18, run 8209)

faster than the speed of light for the material, they may produce low-energy photons (visible

or UV light) through a process known as �Cerenkov Radiation. These low-energy photons

can be detected by Photo Multiplier Tubes (PMTs) at the end of the blocks. The blocks

in the LGD are designed to be more than several radiation lengths long (approximately 18

radiation lengths or 45 cm), so that the shower continues until most electrons and positrons

are reduced to speeds slower than the speed of light. At this point, no more �Cerenkov

photons are produced [5].

At the downstream end of the LGD, PMTs convert the incident low-energy photons into

a voltage which is then digitized using analog-to-digital converters (ADCs). The integrated

area of the voltage pulse is proportional to the total energy of all low-energy photons

detected by the PMT. Summing this energy with the energy of all neighboring PMT energies

1 INTRODUCTION AND MOTIVATION 7

Figure 2: The Lead Glass Detector.

lead glass detector in its encasing.

The components of the LGD are used to detect the electromagnetic showers produced by

the incident photons. In the LGD, high energy photons may produce electron-positron pairs.

These charged particles passing near some nucleus in a material may undergo radiative

energy loss called bremsstrahlung. As a result, more photons are produced which, in turn,

may split into more electron-positron pairs. This cascade of photon and electron-positron

pair production is called an electromagnetic \shower" [5].

As charged particles (such as electrons or positrons) pass through the lead glass at speeds

1 INTRODUCTION AND MOTIVATION 6

Figure 1: Detector overview (beam-line is from right to left).

Particle Veto (CPV), is used to eliminate events in which the � meson radiates a charged

particle. Finally, the Lead Glass Detector (LGD) is used to detect the photons that result

from the decay of a � meson and forms the core of the experiment. The present thesis is

focused on improving the performance of this �nal detector.

1.4 The Lead Glass Calorimeter

1.4.1 Description, Speci�cations and Details

The Lead Glass Detector (LGD) is comprised of 620 individual blocks [7]. Each individual

block has a 4 cm by 4 cm front face and extends 45 cm back. There is an 8 cm by 8 cm hole

in the LGD face in the area directly surrounding the beam-line, which allows the portion

of the beam that does not interact with the target to pass through. Figure 2 illustrates the

1 INTRODUCTION AND MOTIVATION 5

three end stations at Je�erson Lab. Hall B is equipped with a mechanism called a Tagger,

which converts the electron beam to a maximum of 5:5 GeV photon beam. Electrons from

the beam pass through a thin piece of material which acts as a radiator. The radiator's

thickness is much less then one radiation length, thus producing photons for some fraction

of the beam electrons, by means of a process called bremsstrahlung radiation. Electrons

passing through the material are slowed down and, since an accelerating charge will radiate,

the lost kinetic energy gives rise to photons. In the present experiment, this mechanism is

used to produce the � meson by the process
p ! �p. Thus, the photon beam is directed

at a solid Be target, which functions as a convenient source of the target protons.

1.3.2 Overall Apparatus

In this experiment, we are interested in decays of the � meson. The production of the �

meson is only one of many possible processes that can result from a photon interacting

with the Be target. In order to screen out events that do not involve the � meson and

events that involve other �-decay modes besides the ones of interest, the experimental

apparatus is somewhat involved. There are six main detectors used in the Radiative Phi

Decay experiment [4] illustrated in Figure 1. The Photon tagger is the �rst detector and

is responsible for identifying photons as they are radiated from the incident electron beam.

Secondly, the Upstream Particle Veto (UPV) detects charged particles before they reach

the target. Since we are only interested in photons interacting with the target, we use

this detector to eliminate events that involve a charged particle in the beam. The third

detector is the Barrel Scintillator detector (BSD), and is responsible for detecting the recoil

proton, after it leaves the target. The Barrel Gamma Veto (BGV) detects photons which are

produced at wide angles. Downstream of the target, the �fth detector, called the Charged

1 INTRODUCTION AND MOTIVATION 4

1 Introduction and Motivation

1.1 Goal of the Experiment

In experiment E-94-016 at the Thomas Je�erson National Accelerator Facility [2], observing

two rare decays of the � meson, � ! f0(980)
 and � ! a0(980)
, is of primary interest.

These decays will help in determining the structure of the f0(980) and a0(980) mesons [2].

The decay rates may help determine whether these mesons are comprised of the standard

quark, anti-quark pair (qq), or, instead, two quarks and two anti-quarks (qqqq) or two

mesons bound together (KK) [3].

1.2 Physical Background

Currently, only two types of quark con�gurations have been de�nitively observed, the qq

pair (meson) and the qqq triplet (baryon). Since these two con�gurations have the lowest

amount of energy, they are frequently observed [3]. There are nine possible qq combinations

of the lightest quarks, the up (u), down (d), and strange (s) quarks. However, the f0(980)

and a0(980) particles have masses and widths, which make them appear to be too small to

be any of these combinations. It has been shown [3] that measuring the branching ratios

can help us determine whether the f0(980) and a0(980) particles are instead comprised of

a KK pair or a four quark, qqqq con�guration.

1.3 Je�erson Lab Experiment E94-016

1.3.1 Background

The Thomas Je�erson National Accelerator Facility supplies the experiment with a contin-

uous 5:5 GeV electron beam. The experiment is located in Experimental Hall B, one of

LIST OF FIGURES 3

A Presented Software 35

A.1 Revised MakeHits . 35
A.2 Additional Level Three Search . 38
A.3 Functional Form Fitting . 41

List of Figures

1 Detector overview (beam-line is from right to left). 6
2 The Lead Glass Detector. 7
3 Clusters in the LGD from a typical event. (event 18, run 8209) 8
4 An LGD laser event test for run 8635. 9
5 Sample e�ect of the simple average method. 18
6 Fitting efi versus rfi for blocks in various clusters. 20
7 Dependence of Shower Shape on Number of Blocks in the Cluster. 21
8 Dependence of shower shape on distance of cluster from beam-line. 22
9 Dependence of shower shape on cluster width. 23
10 Fitting efi versus rfi to Eqn (1). 25
11 Fitting efi versus rfi to Eqn (2). 25
12 Individual parameter values versus cluster width (cm). 26
13 Functional form variations based on cluster width. 27
14 Di�erence between actual and estimated energy. 30
15 Invariant mass M

 histogram for run 8209. 31
16 �0 statistics for each software con�guration. 32

CONTENTS 2

Contents

1 Introduction and Motivation 4

1.1 Goal of the Experiment . 4
1.2 Physical Background . 4
1.3 Je�erson Lab Experiment E94-016 . 4

1.3.1 Background . 4
1.3.2 Overall Apparatus . 5

1.4 The Lead Glass Calorimeter . 6
1.4.1 Description, Speci�cations and Details 6
1.4.2 Dead Blocks . 9

1.5 Presented Work . 10
1.6 Organization . 11

2 Implementation 12

2.1 Software Background . 12
2.2 Clusterizing . 13

2.2.1 Level One Search . 13
2.2.2 Level Two Search . 13
2.2.3 Level Three Search . 14
2.2.4 Determining Cluster Positions . 14

2.3 Overall Structure . 15
2.4 Presented Software Additions . 15

3 Estimating Dead Block Energy 17

3.1 Simple Average Method . 17
3.2 Weighted Average Method . 17
3.3 Fitting Method . 19

3.3.1 Number of Blocks in the Cluster . 21
3.3.2 Distance Between Cluster Center and Beam-line 22
3.3.3 Cluster Width . 23

3.4 Curve-Fit Equation . 23
3.4.1 Functional Forms . 23
3.4.2 Parameter Dependence . 24
3.4.3 Fitting Method Implementation . 24

3.5 Special Considerations . 26
3.5.1 Few-Block Clusters . 26
3.5.2 Detector limitations . 28
3.5.3 Block Sharing . 28

4 Results 29

4.1 Testing E�ectiveness of Techniques . 29
4.1.1 Estimation Comparisons . 29
4.1.2 Improvement in Invariant Mass Determination 29

5 Conclusions 33

References 34

1

Abstract

In the Radiative Phi Decay Experiment (E-94-016) at the Thomas Je�erson National

Accelerator Facility, a Lead Glass Calorimeter is used to detect high-energy photons that

are produced as a result of the decay of the � meson. The calorimeter is comprised of a

grid of lead glass blocks which record the energy from the electromagnetic showers pro-

duced by these photons. A group of neighboring detector blocks are \clusterized" and

combined so that the total energy of the high energy photon incident on the lead glass

calorimeter can be determined. Since the overall detector is comprised of many smaller

components, often the calorimeter remains in use despite malfunctioning components.

We present an addition to the clusterizing software which estimates the amount of en-

ergy that an individual block would have measured if it was performing correctly, based

on the readings of neighboring detectors and a statistical analysis of the electromagnetic

showers.

Software Correction to Account for Dead Blocks

in a Lead Glass Calorimeter

A senior thesis submitted in partial ful�llment of the requirement
for the degree of Bachelor of Science in

Physics from the College of William and Mary in Virginia,

by

Eric J. Koskinen

Advisor: Dr. David Armstrong

Dr. Keith GriÆoen

Williamsburg, Virginia
May 2001

