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Abstract

Field distributions from muon spin rotation experiments are obtained by taking
the Fourier transform of precession data. Several different techniques to carry out
these transforms have been developed and tested using data from single crystals of the
high T, superconductor Y BasCuszO7_s, which had inclusions of non-superconducting
material. These techniques were: cosine transforms carried out as a sum over the data
and a range of frequencies, least-squares fits to cosine amplitudes, least-squares fits to
cosine amplitudes represented as exponentials, and finally with a maximum entropy
technique. All produced similar results. These cosine amplitudes will be used in the

future to study disorder and melting of the vortex lattice.



Introduction

Determining the physical properties of superconductors requires investigating the internal
magnetic field distributions of the material in question. Dr. Kossler and I are analyzing data
taken from the TRIUMF Lab at the University of British Columbia. Using the techniques
of muon spin rotation (uSR), we have produced time-spectrum histograms of muon decay
in the high T, superconductor Y BasCusO;_s; (YBCO) at various fields and temperatures.
Fourier transforms of the asymmetry representations of this data yield the internal magnetic
field probability distributions of the YBCO, and we have performed such transforms in four
different ways. We next review relevant properties of superconductors so as to put the Fourier
analysis results in context. The methodologies and results are then discussed, followed by

comparisons of the various techniques.

Superconductivity

There are two universal parameters used to describe superconducting materials. The first is
known as the penetration depth, A [4, 5]. The penetration depth is a measure of how quickly
the magnetic fields in superconductors decay. The second parameter is the coherence length,
¢. This constant measures the distance at which the local magnetic fields have a significant
effect on the current at some other point. Superconductors are classified into two different
types according to the ratio k = %, where k is known as the Ginzburg-Landau factor. A
Type I superconductor has k < %, whereas a Type II superconductor has k > % Pb,

Sn, and Al are all examples of classic, Type I superconductors. For temperatures below the



critical temperature T, and below some critical field H., the magnetic field behavior curve
will be linear with a slope of 1. That is, a Type I superconductor will completely expel the
magnetic field to which it is being subjected according to the Meissner effect for fields below
H.. When the external magnetic field is made greater than H,, there is an abrupt transition
to the normal conducting state, and the external magnetic field is completely allowed within
the material.

The situation is slightly different for a Type II superconductor, which will have two
critical field values: H.; and H.. For fields below H., the field will be completely expelled
from the superconductor. There is, however, a transitional stage for the region between H
and H.. Here, a mixed state is achieved where the external magnetic field is allowed to
penetrate more as its strength is increased. When the upper limit H, is finally reached, the
field can penetrate the superconductor completely, and the material reverts back to having
its normal conducting properties.

When a material is in the mixed state mentioned above, the magnetic flux penetrates
in units of the flux quantum ® = 2¢ = 2.07-1077G - em?. It has been demonstrated that
a triangular flux line lattice is often the proper one for minimizing the free energy of a
system, and the resulting equilibrium geometry places a flux quantum or vortex at each of
the vertices of the triangles in this lattice.

Using the results of isotropic London theory, one can obtain the equations for theoretically
determining the magnetic field among these vortices. Outside of a singular vortex and

isolated from the effects of other vortices in the aforementioned lattice, one can see that the

magnetic field dies off exponentially as the distance measured from the vortex tends towards



infinity.

The practical case where an array of vortices exists can be described by solving the

equation

b, = A2V x (V x b) = $o8(r — 1) (1)
which yields
b.(7) = 20 Feo(r/A) @)
2T = a2 0 4

where Ky(z) is a zero-order Bessel function of imaginary arguments.

Considering another simplified scenario can lend insight as to the geometry of the mag-
netic fields between the vortices. Taking just two vortices separated by some small distance
with Vi on the left and V5 on the right, the magnetic field would die off exponentially to the

right of V; and to the left of V5: because the distribution is continuous the two fields must

meet at some point.
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Figure 1: The magnetic field distribution between two adjacent vortices. V; is located at the
origin, V5 is located approximately 8.5 kAngstroms away.



There obviously exists some kind of minima between adjacent vortices. Extending this
example to a triangular lattice of flux quanta, one can picture the magnetic field distribution
to be “hilly,” with saddle points and minima and valleys between the vortices. One is referred

to the monogram of Kossler for three-dimensional plots of such distributions.

The Technique of SR

The “R” in the acronym SR can stand for 1) resonance, 2) relaxation, or 3) rotation, among
other "R’s”. Muon spin resonance is so named in analogy to nuclear magnetic resonance
(NMR). In a certain branch of uSR called RF- uSR, a sample is placed in a Radio Frequency
electromagnetic field. This field induces transitions among the hyperfine energy levels of the
muon. When the magnetic field assumes certain values, there is an overall reduction in the
decay asymmetry, which allows for a local determination of the hyperfine energy levels in the
muon’s environment [2]. Muon spin relaxation refers to techniques that measure the spin-
lattice relaxation rate. The acronym most relevant to this discussion is muon spin rotation,
where rotation refers to the precession of the muon’s spin magnetic moment about the local
magnetic field where it sits. This rotation is a result of basic electrodynamics. The muon’s

moment, experiences a torque in a magnetic field:

T =pxB. (3)

T is defined to be the torque, and hence, the spin-angular momentum. So, this 7 will give

rise to a precession of the spin-magnetic moment of the muon in a local magnetic field B.



The magnetic moment of the muon is defined by:

p =18 (4)

where « is the gyromagnetic ratio of the spin in question. Plugging Eq. 4 into Eq. 3 above,

we obtain:

dS

which defines the precession of the moment about the field.

There are several unique characteristics of the muon itself which permit uSR to work.
First, there is a violation of parity in muon production. This motivates the decay of the
muon into a positron in the direction of the muon’s spin. The corresponding neutrinos’ spins
are anti-aligned, and thus the vectors sum to zero. Also of note is the perfect polarization
of the muon’s spin-that is, its spin is perfectly anti-aligned with its momentum. These
features allow for several critical measurements to be determined, and will be discussed in
the following section discussing the basic technique of uSR [2].

Of obvious importance is an accelerator to produce positive pions. Several reactions

between proton beams and target protons yield these particles:

p+p—=p+n+at
p+n—n+n+mt

p+n—>p+n+ma



The accelerator must supply an adequate amount of energy into each particle to create
the desired reaction, in this case it is on the order of 500 MeV per proton. The current of
the beam must also be relatively high, on the average about 100uA (about 1.6 quadrillion
protons/second is on the low end of the requirements)[3]. The incident protons are fired into
a production target (See Figure 2), and pions are produced. A number of these pions are
stopped before reaching the outermost layer of the target. They then decay into muons and

neutrinos according to the following reaction:

=t +y, (6)

Such particles are commonly called ”surface muons” [3]. After a period of approximately

2-10 ps, the muon decays according to the three body reaction:

pt=et+u.+y, (7)

It is now possible to follow the path of the muon into the sample whose properties we wish
to study. The incoming muons follow the beamline until it passes through a thin counter
(denoted M in Figure 2). This event produces a pulse which starts an electronic clock with
time resolution better than 1-107%s. Due to the aforementioned parity violation, the muon
arrives 100% spin polarized. After it decays, it tends to emit a positron (e') preferentially
in the direction of its spin at the moment of decay. That positron is recorded by the e+
counters (marked F, B, L, R in Figure 2). The detection of the positron triggers the stop

time for the clock. The time interval between the initial muon passing through the counter



and the corresponding positron is then recorded, and the count is added to a bin of a time
histogram corresponding to that interval. This procedure is typically repeated for several
million counts. The resulting time spectrum displays an exponential lifetime distribution of
the muon, superimposed upon which is the probability of the positron being emitted in the
direction of that detector. The precession of the muon will cause it to sweep periodically

past the front and back detectors, creating a sinusoidal oscillation in time.
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Figure 2: Counterclockwise from top, a sketch of the ySR apparatus, sample data taken
from two opposing detectors, the asymmetry representation of the data.

There is a certain amount of dead time before the histogram starts recording actual
events. It is during this empty time that the logic of the electronics tries to decide whether
or not it has detected a muon. Generally, this part of the histogram is not displayed, but the
data is used to determine the random background of each detector. This information turns
out to be useful in preparing an asymmetry representation of the paired histogram data (that

is, data combined from, say, the front (1) and back (2) detectors. Being on opposite ends,



the data from 1 and 2 are 180 degrees out of phase, but one can filter out their differences

through the following relation:

(Nl - Bl) — O!(NQ — Bg)
(N1 — Bl) + O!(NQ - .B2

(8)

asy(t) =

where N; and N, are the raw data from the histogram and B; and B, are the backgrounds.
The experimentally determined « is a parameter meant to account for the efficiencies of the
two detectors. Because of the division in the asymmetry function, asy(t) will no longer have

the exponential fall-off associated with the muon’s lifetime.

Fourier Analysis and Its Shortcomings

Given that we have data represented by histograms in the time domain, it turns out to be
useful to translate it to the frequency domain. The link is found in Fourier analysis. The
Fourier Transform of the data in the asymmetry representation is directly proportional to
the internal magnetic field distributions of the material in question. Dr. Kossler and I have
performed such transforms via several different implementations, hoping to find consistency
among them. The methodology of each individual transform is not perfect, however, and
there exist several shortcoming which require further discussion.

The first problem deals with data at time t = 0. This data is not accessible, which intro-
duces problems in the Fourier analysis. The solution in this case is calls for an extrapolation
of the data around t = 0 to create a best fit in that region. A fit to the data can be extended

in the -t direction, creating a best fit at t=0. While this is a satisfactory solution, there



remain other problems that are not as trivial.

A second problem deals with the finite time range of the SR data. Because the data are
collected over a sum of discrete time intervals, the histogrammed plots do not necessarily
go to zero at the endpoints of the time range. Fourier transforms require such behavior
as t approaches infinity. Therefore, some measure must be take to ensure that the data
does in fact tend to zero. The solution here is apodization. Apodization takes a certain
relaxation function, such as a Gaussian, that decays to zero. The convolution of the data
with the relaxation function now tends to zero as well. Depending on how quickly the
relaxation function decays, it is possible to substantially reduce the oscillations that appear
near the endpoints of the original function (such oscillations are known as ”ringing”) [3].
The negative effect of this treatment of the data is a broadening of the distribution in the
frequency spectrum, which is directly proportional to the strength of the apodization.

The final technique to be implemented is a procedure called Maximum Entropy. It is a
search scheme with many other applications, but on our data it produces results similar to

a cosine transform. The technique depends on minimizing the expression:
1 M u
2 U
—x“|u E u,ln — 9
2X [ ] + o 1 U ( )

where U = Zﬁil uy, the u, are the Fourier amplitudes and the second summand is the nega-
tive of the “entropy”. Maximum entropy theoretically gets rid of many of the aforementioned

oscillations, increasing the resolution of the data.
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Data Analysis

The above development leads us to the focus of my project. The material that is the
focus of Dr. Kossler’s research at TRIUMF and my data analysis is the aforementioned
Y BayCu3zO;7 5 (YBCO). The efforts of research conducted at the University of Alabama
and the University of Houston, YBCO was found to exhibit superconducting properties at
a temperature of 92K[6]. This result stirred the scientific community not only because the
highest critical temperature of any previously studied superconductor was on the order of 30-
35K, but because 92K was significantly higher than the boiling point of liquid nitrogen—this
made studying the properties of superconductivity more affordable and accessible.

At TRIUMF, a sample of YBCO was placed in various external magnetic fields and
temperatures, then subjected to a muon beam according to the technique described earlier
in this paper. The raw data from the decay of the muons was then put into the form of
histograms. Dr. Kossler and I have utilized a FORTRAN program, TRI00, which performs
many of the numerical operations necessary to extrapolate the magnetic field distributions
of YBCO from the data.

My analysis was performed on a group of 26 data sets where the YBCO was subjected
to external fields ranging from .5G to 107G, and temperatures ranging from 10K up to
91K, one degree below the critical temperature for YBCO. From this data, the goal was
to produce an asymmetry plot created from two opposing detectors according to Eq. 8.
The internal magnetic field distributions are linked to the asymmetry data via the following

Fourier Transform:

11



asy(t) = /000 diéb) cos(yb - t)dh (10)

Where %,()b) is given by:

dz—[()b) _2 /Ooo asy(t) cos(yb - t)dt (11)

™

It was therefore the object of my work to perform Fourier Transforms on the asymmetry
data taken from the raw histogrammed data from the TRIUMF runs. Dr. Kossler and I did
these four different ways: 1) Using a simple cosine transform, 2) Creating a fit to a group of
coefficients a; which are Fourier fit amplitudes, 3) Acknowledging the fact that the above a;
are components of a probability distribution which cannot go negative, and therefore creating
a fit to e*, 4) using a FORTRAN implementation of a Maximum Entropy technique. The
technical details of each method are described below.

Each of the first three techniques is implemented in the TRIO0 program. This program
first prompts the user for the raw data file to be processed. The user then selects a packing
factor, which determines the number of data points to be placed in each bin. As there
are approximately 7700 points in each run, a packing factor of 15 was chosen to ensure
approximately 500 units on the x-axis of the plots. The user must then select the pair of
detectors (i.e. Front, Back, Left, Right) from which he or she wishes to derive the asymmetry.
After selecting the detector pair, one must then input into TRIO0 the value for alpha which

appears in Eq. 8. This experimentally determined value was found to be 1.2567. The

12



program is now ready to calculate the asymmetry, which is done via the subroutine FF.
While the name implies a Fast Fourier algorithm, it actually is just a simple cosine transform
that produces the same results as the Fast Fourier Transform on real data, but the number of
calculations it requires goes as n? whereas the FFT goes as nlnn. Fortunately, the handling
capacity of the CPUs that we used was great enough that the relative inefficiency of our
algorithm to the FF'T was on the order of a fraction of a second, and therefore negligible.
This subroutine first generates the asymmetry data, and then dumps the asymmetry data
to a file with three columns: time, asymmetry as a function of time, and the error in the

asymmetry. One then must input the range of frequencies over which to perform the cosine

Mrad
s

transform algorithm. For our data, with w measured in , Wstart Was 0, Wepg was 40,
and nw was 80, implying that dw was .5. The algorithm then uses the following formula to

compute the transform:

flw;) = Zcos(wj - t;) - asy(t;) (12)

which is analogous to Eq. 11 above. It should be noted that at this point in the program,
one can manually input a first order phase correction, which for these data sets was found
experimentally to be .5 Mrad. This phase correction is crucial to the absorption spectra.
The second method that was used to calculate the Fourier Transform created a quantity, x?2,

which is shown below:
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(13)

Here, the a; are fit parameters which can be solved for numerically when we minimize
x? by setting % = 0 and solving for the a; . One noticeable aspect of Eq. 13 is that there
is no requirement that the a;s should be positive. Consistent with this observation, plots
of the a;s show negative values at several different points along the t-axis. These negative
values are attributed to the background noise in the experiment. If the signal to noise is
sufficiently large, the value of the a;s can be negative. But, because the field distribution
is a probability distribution, it is important that we have a data set that represents what is
physically allowable, i.e. positive. This forms the motivation for our third Fourier fit: the
exponential fit. The exponential fits take the values of a;’s as starting points, then solve for
a set of similar parameters, «;, which are calculated by:

(aé‘y(tz‘) — D% COS(wj'z'))2

This algorithm keeps the positive values fixed, but forces the negative values to go positive by
placing them in the argument of the exponential. It then uses the fit procedure implemented
via Eq. 13 above to find a better (positive) value.

The Maximum Entropy technique that we used as our fourth way of calculating the
magnetic field distributions of the YBCO was implemented in a FORTRAN program. This

program required data to be in a two-column form, where there were two parameters: time,

14



and some function of time that required data of the form

N(t) = No - exp(=t/7) - (1 + asy(t)) (15)

N(t) above is similar in appearance to the raw histogrammed data initially recorded by the
detectors in the TRIUMF setup: it is a decaying exponential that has a linear combination
of sinusoidal oscillations in time superimposed over it. As the TRIO0 program produced
three-column asymmetry data, a short program was written to convert the asymmetry data
produced by TRIOO into a form that the maximum entropy program could handle. This task
was easily performed by the TRANSVERT program. TRANSVERT would take as its input
the three-column data generated from each run in the TRIOO0 program and would produce
as its output a two-column data file with two parameters: time and N(t) from Eq. 15 above.
This change allowed the maximum entropy program to handle the ySR asymmetry data,
and give us our fourth method of calculating the internal field distributions of the YBCO.

See Figures 9 and 10.

Results and Discussions

The results of the four transforms for two data runs are displayed at the end of this paper.
Run 936 was taken with an applied field of 102.2 G and a temperature of 75K. The applied
field was almost entirely removed for run 947 (taken at .5 G), while the applied temperature
was lowered to 18K. These two runs were picked on the basis of their interesting spectra,

and several conclusions can be drawn from the figures shown below.
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Several noteworthy aspects of the cosine transform can be seen in Fig. 3 and Fig. 4.
After comparison with the other three methods, one notes a smoother shape of the field
distribution, and a slight reduction in resolution. Both of these observations can be traced

to the apodization factor which was introduced for the cosine transform.
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Figure 3: The cosine transform results for run 936
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Figure 4: The cosine transform results for run 947

The fit to the Fourier amplitudes (Fig. 5 and Fig. 6) reveals a similar overall structure
with perhaps higher resolution. For Run 936, this fit suggests the possibility of twin-peaked
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structure which is not immediately apparent from the cosine transform. For Run 947, the
two peaks of the spectra were more obvious initially. Components further away from the

main spectra, however, remain present in both.
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Figure 5: The fits a; to the cosine amplitudes for run 936
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Figure 6: The fits a; to the cosine amplitudes for run 947
The fits to the exponential amplitudes, Figs. 7 and 8, are obviously similar to their
counterparts Figs. 5 and 6. No immediate additional knowledge is imparted from the study
of these plots, although a possible use for the negative values of the original amplitude fits
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is suggested later below.
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Figure 7: The exponential fits to the cosine amplitudes for run 936
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Figure 8: The exponential fits to the cosine amplitudes for run 947

Finally, the Maximum Entropy methods yielded Figs. 9 and 10. The additional structure
between each of these diagrams’ two peaks is indeed interesting. However, one is wary to
conclude definitively that this additional structure exists. One should also note the virtual
elimination of many of the components located further away from the main spectra that
were present in the other three transformations.
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Figure 9: These are the maximum entropy amplitudes for run 936
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Figure 10: These are the maximum entropy amplitudes for run 947
Asymmetry of the Field Distribution and FLL Disorder
The data obtained from the Fourier transforms has several immediate applications. The

first is the parameter «, which can be entirely determined (through its w dependence) and

is defined below:



It is known that o for a well-ordered lattice is large compared to that for a disordered one.
As the longitudinal sections of these vortices stray away from being perfectly aligned, « is
known to decrease. We therefore plan to use o as a means of quantifying the disorder or
melting of the flux line lattice. Various means of obtaining the amplitude are needed to
provide a measure of the systematic error in a.

Note that the negative components visible in the fit to the Fourier amplitudes may
be useful, though unphysical. In calculating moments, the tendency of the poorly-known
amplitudes at high w will tend to cancel. On the other hand the corresonding amplitudes in
the exponential fits and the Maximum Entropy fits all have positive signs.

It is our ultimate goal is to study the interesting and complicated spectra of a BiySroCaCus0g
sample. This high purity sample shows marked narrowing of the field distribution at high
fields. By studying the effects of the disorder through the skewness parameter «, it is hoped
to separate the effects of disorder from the effects of the temperature dependence of the
penetration depth. This latter is thought to reflect the underlying microscopic nature of the

superconductivity.
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