
Kinetic Monte Carlo Simulations of Perovskite

Crystal Growth with Long Range Coulomb

Interactions

A thesis submitted in partial ful�llment of the requirement
for the degree of Bachelor of Science with Honors in

Physics from the College of William and Mary in Virginia,

by

Thomas J. Walls

Accepted for
(Honors, High Honors or Highest Honors)

Advisor: Dr. Shiwei Zhang

Williamsburg, Virginia
May 1999

Abstract

Computer simulations of crystal growth can provide valuable insights into the physical

processes involved in actual crystal growth. These insights can then be used in theory and

experiment to improve both our understanding of and our ability to create high quality

crystals. Kinetic Monte Carlo methods have been developed which facilitate such computer

simulations, but the models cannot be applied in all cases because of the assumptions made

about the nature of the crystals. The standard computational model cannot be applied

to the growth of perovskite crystals because long-range Coulomb interactions, which have

been shown to greatly a�ect the structure of the crystal, are not included. In this thesis

we propose a modi�cation to the standard model which explicitly includes the long-range

electrostatic interactions between the ions and develop the necessary mathematical and

computational techniques required to implement our model. We generate some promising

preliminary results from perovskite growth simulations and analyze the implications of these

results.

Acknowledgments

I would sincerely like to thank my advisor, Dr. Shiwei Zhang, for his guidance on this

project. His patience and insight were key elements in the completion of the work presented.

I would also like to thank professor Henry Krakauer for his helpful insights and generously

allowing the use of his o�ce space and computers. Finally, I would like to thank the

Physics and Applied Science departments of the College of William and Mary for providing

the training and resources necessary to complete this work and all the members of my

committee for their time and e�ort in evaluating this thesis.

Contents

1 Introduction and Background 3

1.1 Introduction to Growth Simulations . 3

1.2 Background on Perovskite Alloys . 5

1.3 Background on Monte Carlo Methods . 7

1.4 Introduction to the Ising Model . 9

2 The Standard Kinetic Monte Carlo Model 12

2.1 Development of the Basic Model . 12

2.2 Analytical Models . 16

3 Simulation of the Standard Kinetic Monte Carlo Model 19

3.1 Improving the Algorithms . 19

3.2 Results of the Standard KMC Model . 22

3.3 Unexplored Modi�cations . 24

4 Long-Range Interactions 28

4.1 Perovskite Alloys Revisited . 28

4.2 The New Conceptual Model . 30

4.3 Computational Model with Long-Range Interactions 31

1

5 The Ewald Summation for Finite Height {Mathematical Development 33

5.1 Introduction . 33

5.2 The Reciprocal Space Sum . 36

5.3 Converging the Sum . 39

5.4 The Total Potential . 39

5.5 Evaluating the Integral . 40

6 The Ewald Summation {Implementation and Results 43

6.1 Advantages of the Ewald Sum . 43

6.2 Results of the Ewald Method . 45

7 Simulation Results and Conclusions 48

7.1 Surface of the Advanced Model . 48

7.2 Conclusions . 49

A De�nition of Selected Terms 51

B Kinetic Growth Code 52

C Ewald Summation Code 61

2

Chapter 1

Introduction and Background

1.1 Introduction to Growth Simulations

Crystal structure has received much attention in the history of materials science. Crystals

are used in nearly every branch of applied research, from high quality semi-conductor fabri-

cation to military radar applications. While the art of manufacturing high-quality crystals

is now well developed, our scienti�c understanding of their growth mechanisms is still lack-

ing. Currently, theory, experiment and computer simulations are collaborating to better

understand the underlying mechanisms behind crystal growth.

Computer simulations are often used to verify theoretical approaches or to help guide

experimental procedures[1]. In turn, new experimental results or theoretical advances are

then used to improve simulation models. Computer simulations can provide insights about

the nature of crystal growth which are unobtainable through theory or experiment. The

observations serve to advance our understanding of the growth processes involved. Most

simulations we are aware of, however, are restricted in their usefulness because they as-

sume overly simpli�ed behavior of the molecules in the crystal. Although these models are

restricted to simpli�ed conditions, they have been able to demonstrate many properties

3

exhibited by real life crystals.

One way to do such simulations is the Kinetic Monte Carlo (KMC) method. KMC mod-

els are used to simulate the relaxation processes of systems away from equilibrium. KMC

methods have proven very successful at simulating dynamic properties of non-equilibrium

systems[2, 3]. The restriction of the KMC method is that only nearest neighbor molecular

bonding inside the crystal is considered. In this paper we will implement the KMC method

and demonstrate the agreement of these computational simulations with analytical theories.

We will then present a model of growth which is not restricted to local interactions,

but which allows for long-range electrostatic interactions. This is motivated by the recent

development of relaxor ferroelectric single crystals which exhibited tremendous technolog-

ical potential[4]. Subsequent theoretical modeling of the structure of these crystal showed

that the ion-ion long-range Coulomb potential is the dominating term in determining their

structure. Since our goal is to model the growth processes of these single crystals to help

guide experimentalists, these long-range interactions must be considered to obtain valid

simulation results.

We will develop the necessary computational techniques to implement this kinetic growth

model and use it to demonstrate properties of actual experimental crystals which were

previously unobtainable. With further study, this model could prove to be a valuable tool

in the understanding of more complex crystal structures.

4

1.2 Background on Perovskite Alloys

Electromechanical actuators are devices which convert electrical energy into mechanical

energy and vice-versa. Actuators are used for a wide range of purposes varying from keep-

ing time in a wrist watch to interpreting signals for cellular phone calls. Generally, these

actuators use perovskite alloys because of their extraordinary dielectric and piezoelectric

properties. Perovskite alloys are common compounds usually containing a mixture of al-

kaline earth metals and transition metals. These compounds were �rst studied because of

their super-conducting properties.

Recently, a \new" class of relaxor ferroelectric crystals have been developed at Pennsyl-

vania State University for actuator applications [4]. The class of single crystal ferroelectrics

includes Pb(Zn1=3Nb2=3)O3 - PbTiO3 (PZN-PT) and Pb(Mg2=3Nb2=3)O3 - PbTiO3 (PMN-

PT). These relaxor ferroelectric crystals have come to the forefront of research due to their

unique piezoelectric properties.

When evaluating crystals for electromechanical actuator applications, the most impor-

tant property is their strain versus electric �eld ratio. These new crystals have demonstrated

strain versus electric �eld ratios one order of magnitude higher than those obtained from

previous ceramic crystals. The piezoelectric properties of these crystals are critically depen-

dent on the composition and orientation of the crystal[4]. At the present time, the mecha-

nisms which regulate the crystallographic orientation observed in experimental crystals are

not well understood. The underlying atomic structure and its e�ect on the piezoelectric

properties of the new crystals is also not well understood.

Motivated to better understand the growth processes of perovskite crystals, we will

5

employ KMC techniques using long-range interactions. With an improved understanding

of the growth processes of the crystals, we can assist experimentalists in determining what

conditions provide crystals of the highest quality, the largest size, and the best growth rate.

To our knowledge, this is the �rst model to explicitly include the long-range interactions in

kinetic processes.

Eventually, this model could be used in conjunction with �rst principles calculations

[6] and experimental data to further our understanding of the nature of these crystals.

Simulations of this kind have proved valuable because they are often easier to manipulate,

easier to analyze, and are often faster to perform. Once a model for the growth of the

relaxor crystals has been fully developed, it can be used to compliment experimental data

and guide experimental decisions about parameter modi�cations. This information will

then provide important information on ways to maximize crystal quality and size for use in

actuator applications.

The crystals are produced by the
ux technique[4]. The crystal is grown by placing

highly puri�ed powders of the various desired components into a crucible, heating the

powders into a melt phase and then allowing the melt to slowly cool into crystalline form.

This method of growth has already been shown to be reproduced very well with standard

KMC techniques. But the ionic nature of the new relaxor crystals plays a key role in

their growth. The ionic interactions are not negligible, even at very long distances, thus

the standard kinetic model does not provide valid results for perovskite crystal growth[6].

Understanding this in�nite-range Coulomb interaction is a key element in motivating a new

model.

6

1.3 Background on Monte Carlo Methods

Computational physics has come to the forefront of scienti�c research. The Monte Carlo

approach has emerged as a key method in this rapidly evolving �eld. Many books have

emerged which give a comprehensive introduction to this technique[2, 3]. Monte Carlo is

a general method by which a probability (terms in bold-face are de�ned in Appendix

A) is determined by repeated measurements of random points within a state space. This

probability is then used to de�ne an interval estimate for an actual value we wish to measure.

In the limit that every point in the state space is measured, the value can be determined

exactly. The value can be either deterministic or stochastic in nature. This freedom

embodies a very profound idea; that real life systems, which are completely deterministic

in nature can be simulated and reproduced using stochastic models.

To illustrate the basic Monte Carlo method, we show a simple example of the calculation

of the fundamental constant �. Consider a unit circle inscribed inside a square (see �g. 1.1).

Figure 1.1: Random points generated in a square for the
calculation of �

If we de�ne event A as a randomly generated point in the upper right quadrant of the

7

square that falls inside the circle, then we can write:

Pr(A) = area of circle
area of square =

� x2

4
x2 = �

4

Consequently, we can write � = 4 � Pr(A). In our sample experiment we have generated

thirty three points in the square (see �g 1.1). Twenty �ve of these points fall inside the

circle, so we would calculate � = 4 � 25
33 = 3:03. Obviously, the more points we generate in

the quadrant, the better our estimate for � is going to be. More exactly, from the Central

Limit Theorem, the error in our estimate decreases as the square root of the number of

samples. In the limit that the number of points approaches in�nity, our answer becomes

exact. This is known as the law of large numbers, and is a fundamental concept behind any

Monte Carlo simulation.

As computational physics has become algorithmically more sophisticated, so have Monte

Carlo techniques. Today, Monte Carlo methods are used to calculate everything from N di-

mensional integrals to determining the fractal order of various systems. The power of Monte

Carlo techniques lies in the general principle that the computed interval estimate always

converges to the actual answer as 1p
N
, regardless of the dimensionality of the system. Monte

Carlo calculations have also been shown to accurately simulate kinetic non-equilibrium re-

laxation phenomenon. Bortz, Kalos and Lebowitz [7] have developed an e�ective algorithm

for dealing with kinetic processes. The simulation of kinetic processes with KMC will be

the backbone to our growth simulation.

8

1.4 Introduction to the Ising Model

The �rst computational model to successfully reproduce a system exhibiting a �rst order

phase transition was the Ising model[5]. It is a model of the ferromagnetic properties of iron.

It assumes that iron can be simulated by a discrete lattice of spin magnetic moments which

can either be aligned up or down. In order to avoid boundary e�ects, periodic boundary

conditions are imposed. This means that as you leave one side of the lattice, you reappear

on the opposite side. The result of this condition (assuming your basic lattice is not TOO

small) is that with �nite size scaling and/or other analysis and extrapolation schemes, we

can approach lattices of in�nite length and width. We then de�ne a set of rules by which

the spins will `
ip' with a given probability from the state of neighboring spins and the

temperature of the system based on the Metropolis algorithm[1]. The system is deemed in

a ferromagnetic state based on the correlation of the spin alignments. After scanning the

system for spin
ips many times, we determine if the system is in a ferromagnetic state.

It is interesting to note that even though ferromagnetism is a purely quantum mechanical

result, the model still captures the essence of the physics involved without the required

quantum mechanical calculations. A generalized version of the Ising model is the starting

point for building KMC simulation models.

1.4.1 The Generation of Random Numbers

The accurate generation of uncorrelated random numbers is a key component for valid

Monte Carlo results. As an extreme example, in our calculation of �, if the random points

were skewed in such a way that they all fell inside the circle, we would calculate a value of

9

� = 4. Thus we are faced with the issue of how to accurately generate random numbers.

There are many random number generators in use, some of which are statistically
awed.

Our discussion here will be limited to a basic overview of \good" random number generation.

For a comprehensive review of modern random number generators and the principles behind

the generation of good random numbers see Park and Miller [8]. An ideal random number

generator would produce a stream of numbers between 0.0 and 1.0 which are equally likely

to occur and are reproducible.

To achieve this goal, we will use a pseudo random number generation program based on

a variation of the Lehmer Generator, written and extensively tested by Park [9]. The basic

algorithm for the number stream is:

xi+1 = a � xi mod m

Where a and m are constants and xi is the ith value in the number stream. A very natural

choice for the m value is 231 � 1 because it is the largest value that can �t into a single

register on a 32 bit computer. We must be very careful about our choice of a to ensure

that we generate all values between 1 and 231 � 1, otherwise our number stream will start

repeating with a frequency that is lower than maximal. There are several appropriate values

that can be chosen for a, of which we will choose a = 48271[9]. We can now forget the topic

of random numbers altogether and focus on the details of the model at hand.

1.4.2 Equipment

All calculations done in this paper were performed on an Intel 300 MHz Pentium II proces-

sor. The programs were run in the Red Hat Linux environment and compiled using the SGI

10

compiler with maximum level of optimization. All computations performed were written

either in C or C-C++ mixtures of code using standard math and Unix libraries. Appendix

B and C contain the code used to generate the results presented in this thesis.

1.4.3 Goals of the Thesis

The remainder of this thesis will be dedicated to the development of a novel computational

model for perovskite growth simulations. We begin by implementing the standard model

for Kinetic Monte Carlo. We will review the mathematical speci�cations of the standard

model and we will implement the model to generate data from a KMC simulation. This

basic model will provide a good starting point for advancement. We will then motivate what

modi�cations need to be made to the basic model to simulate perovskite crystals. We will

discuss the current understanding of these crystals and show how this understanding can be

used as a guide for our modi�cations. Speci�cally, the exact nature of the Coulomb forces

within the crystal and how they need to be treated. We will then present some preliminary

results obtained from our modi�ed model and compare these results to those obtained from

the standard model. We will also discuss the implication of these results to our model for

perovskite crystal growth.

11

Chapter 2

The Standard Kinetic Monte Carlo Model

In this chapter we will review the concepts and implementation issues involved in standard

kinetic growth simulations. We will discuss the basic assumptions made, present the equa-

tions of growth and discuss the comparison between approximate analytical solutions and

computational results.

2.1 Development of the Basic Model

This section will be devoted to motivating the standard KMC model we will use for growth

simulations. We will �rst de�ne the model on a conceptual level, and examine what param-

eters need to be speci�ed in order to properly evaluate growth kinetics.

2.1.1 The Conceptual Model

We want to start with the most basic conception of crystal growth. We will start by

imagining a crystal surface at the front of a liquid-solid interface. The solid surface itself is

an in�nite plane of molecules locally bonded to each other. The surface is initially
at, a

boundary condition we will impose. The liquid interface is a super-cooled region of the melt

12

phase of the solid. It has been suggested that during growth from a liquid, the molecules

form a pre-crystalline order in the liquid at the interface, before impinging on the crystal

surface [10]. We will assume these pre-crystalline molecules impinge with equal probability

across the surface at random intervals (see �g 2.1).

Figure 2.1: Drawing of pre-crystalline molecules near the
crystal surface.

For simplicity we will assume that the surface at the interface is a crystalline arrangement

of molecules which can only exist on discrete sites. In order to remove the e�ects of the

edge of the lattice, we will impose periodic boundary conditions. For now, we assume only

two possible events at the surface. The �rst is a molecule leaving the liquid interface and

attaching itself to the crystal surface (adsorption). The other possibility is that internal

energies within the crystal (ie thermal
uctuations or electrostatic potentials) provide a

surface molecule enough energy to remove itself and enter the liquid phase (evaporation).

The discrete sites can now be seen as \stacks" of crystal molecules which will either grow or

shrink by one every time an event occurs. It is easy to see that this model is simply a two

dimensional version of the Ising spin model discussed in section 1.4. By evolving the system

with time, we can examine the kinetic growth properties exhibited by the advancement of

13

the surface of the crystal.

2.1.2 Speci�cations of the Model

We now need to de�ne the exact rules by which events occur. The idea is to use a Monte

Carlo approach to measure the probability that the system is in a given con�guration and

relate that probability to the growth kinetics. The basic model we will advance here was

�rst introduced by G. Gilmer and P. Bennema [11, 12]. The notation and derivation in this

section will follow closely the treatment by Saito [13].

We will assume a square lattice of L discrete lattice stacks per row or column. We

will denote the number of molecules in stack i as h(i) and the con�guration of all stacks

as fhg � h(1); � � � ; h(N), where N = L2 is the number of lattice stacks. h0(i) will denote

a stack that di�ers from h(i) by one unit and fhgi will denote a con�guration the di�ers

from fhg by 1 unit at stack i. We are interested in studying the probability P () that the

system is in a certain con�guration. We can write the probability that the system is in any

con�guration at time t+�t as:

P (fhg; t +�t) =

P (fhg; t) �
NX
i=1

w(h(i) ! h0(i))P (fhg; t)�t +
NX
i=1

w(h0(i)! h(i))P (fhgi ; t)�t (2.1)

Where w(h(i) ! h0(i)) is the rate of transition from h(i) to h0(i), and w(h0(i) ! h(i)) is

the rate of transition from h0(i) to h(i). If we look at the continuous time limit as �t! 0

we obtain the master equation of the probability:

@P (fhg; t)
@t

= �
NX
i=1

w(h(i) ! h0(i))P (fhg; t) +
NX
i=1

w(h0(i)! h(i))P (fhgi ; t) (2.2)

14

In order to verify that the system reaches thermodynamic equilibrium (as t!1), the

Boltzmann distribution should be a solution to the master equation:

Peq = Z�1
exp

�
�H(fhg)

kBT

�

Where H(fhg) is the Hamiltonian of the system de�ned as:

H(fhg) = �
X
<ij>

jh(i) � h(j)j +��
X
i

h(i) = E(fhg) + ��
X
i

h(i) (2.3)

Where � is the strength of the bond between neighboring sites, and �� = �s � �l is the

potential energy gained by one molecule crossing the interface. The summation over < ij >

is the summation over all nearest neighbor pairs.

When the system is in equilibrium, the rate of growth is zero. This implies that in

equilibrium the adsorption rate w(h(i)! h(i)+1) must equal the evaporation rate w(h(i)!

h(i) � 1). The transition rates must then satisfy the detailed balance condition:

w(h(i) ! h0(i))
w(h0(i)! h(i))

=
Peq(fhgi)
Peq(fhg) = exp

�
�H(fhgi)�H(fhg)

kBT

�
(2.4)

We will choose the adsorption rate to be constant and de�ne:

w(h(i)! h(i) + 1) = e
��
kBT (2.5)

Given this value for the adsorption rate, we can determine the evaporation rate from

the detailed balance condition by:

w(h(i)! h(i) � 1) =
Peq(h(i) � 1)

Peq(h(i))
w(h(i) � 1! h(i)) (2.6)

= exp

2
4 [E(fhgi�) + ��(

P
i
h(i) � 1)]� [Efhgi +��

P
i
h(i)]

kBT

3
5 e ��

kBT

= exp

�
E(h(i) � 1)�E(h(i))

kBT

�

w(h(i)! h(i) � 1) = e
� �E
kBT (2.7)

15

Here �E is the energy cost to lower site i and is written as:

�E = �2�(n� z

2
) (2.8)

where n is the number of neighbors to site i and z is the maximum number of neighbors i

can have.

Now that we have de�ned rates for both events of interest, we are ready to examine the

time evolution of the system.

2.2 Analytical Models

While an analytical solution to the master equation 2.2 is ideal, one does not exist at the

present time. Various approximate solutions have been proposed[15]. We will examine one

such approximate approach in section 2.2.2.

2.2.1 Ideal Phase Transition

In this section we will use thermodynamics results derived by L.D. Landau[14]. According

to the second law of thermodynamics, for a given p and T , the equilibrium state of a system

is determined such that the Gibbs free energy of the system is minimized. If we examine

a plot of the isobaric free energy versus temperature, it is easy to see how this state is

selected.

It is readily apparent from �gure 2.2 that as you lower the temperature of the system

below TM , it is energetically favorable for the system to be in the solid phase.

Using this basic relationship, and the relationships between the Gibbs free energy and

16

TM T

µ1

µ2

µ

Figure 2.2: Isobaric variations of the chemical potential as a
function of temperature for the solid and liquid phases.

the entropy, Saito[13] derives the following expression for ideal growth from the melt. Saito

de�nes the growth rate R in terms of the atomic height a and the lattice vibrations �. The

lattice vibration is the relative motion of the crystal molecule around an average lattice

position. The growth rate of a crystal from the melt phase can be written as:

R = a�e
� Ed
kBT

�
1� e

� ��
kBT

�
(2.9)

Where Ed the energetic barrier opposing evaporation and �� represents the di�erence in

the chemical potentials of the solid and liquid states. While equation 2.9 is a theoretical

expression for growth rate, its usefulness is limited because it only speaks to the average

growth rate of the crystal.

2.2.2 Two Rate Model

An approximate solution to equation 2.2, proposed by Weeks, Gilmer and Jackson[15], has

proven to model well the growth rate in regions of reasonable deposition rates. Again, the

reader should refer to the derivation of the theory from these authors. They derived an

17

expression for the growth rate to be:

R

k+
=

2 sinh(��
kBT

)

e
��
kBT + cosh(� �

kBT
)

(2.10)

Where � is an empirically determined value of 1.33 and k+ is the probability of ad-

sorption of a molecule. The authors choose � to best match equation 2.10 other simulation

data, and we divide by the k+ term for normalization purposes. This model is advantageous

because it is analytic in nature, however, equation 2.10 is limited to simple crystals within

well behaved domains of high temperatures and high deposition rates. We will use equation

2.10 as a computational benchmark for our standard model.

18

Chapter 3

Simulation of the Standard Kinetic Monte

Carlo Model

In this chapter we will examine the exact procedures by which Kinetic Monte Carlo simu-

lations are performed. We will open with the basic implementation issues of the standard

KMC model, then examine results obtained by running simulations of the standard KMC

model. We will close the chapter with a discussion of yet unexplored topics in characterizing

the standard KMC model.

3.1 Improving the Algorithms

The question now is, how do we actually use the transition rates, described in section 2.1.2,

to simulate a dynamic system. As discussed in Chapter 1, we are taking a Monte Carlo

approach. We are going to convert the derived transition rates into relative probabilities

and see how the system evolves with increased sampling of the state space. We will de�ne

our lattice as an L x L matrix of integers. The integers will represent the current height

of the stack. We now want to create a general algorithm for increasing and decreasing

19

the height of the stacks. We have to consider two events in our simulation, adsorption

and evaporation. With many realizations of these two events, we will be able to study the

advancement of the crystal surface.

We want to convert the transition rates derived in section 2.1.2 into true probabilities.

To help with notation, we will use SEi
to represent the transition rate of event Ei at a

stack in the lattice (eg E1 = adsorption and E2 = evaporation). SMAX will then represent

a largest possible rate of any event to be used for normalization. An obvious algorithm to

run the simulation is described by Levi and Kortla[1]:

� Choose a possible event (Ei) which can occur in configuration fhg

� Define SMAX to be the largest possible rate for selected event Ei

� Calculate the probability of event Ei, PEi
=

SEi
SMAX

� Generate a random number r � [0; 1)

� If r � PEi
then generate new configuration fhgi from event Ei

Although intuitive, this algorithm is also extremely slow. The reason is that the rate

di�erence between selected events can often be orders of magnitude, so you can get many

failed attempts at a con�guration change before you have a success.

A much more e�cient algorithm, was proposed by Bortz, Kalos, and Lebowitz[7]. It uti-

lizes a method of importance sampling, whereby an event list containing all possible events

is created, and at each time step, events are selected based on their relative importance.

This approach greatly improves computational time by eliminating nearly all possible time

when nothing happens.

20

Now, we will de�ne SMAX as the sum of the largest rate for each possible event. In our

model SMAX = S+ + S� = e
��
kBT + e

z�
kBT because the adsorption rate is constant, and the

maximum value w(h(i) ! h(i) � 1) can have is e
z�
kB . This will allow us to generate a list

of events which can be selected can be selected with one realization of a random number.

We can then de�ne the probability of an event PEi
in relation to this absolute maximum

SMAX. The algorithm can then proceed as:

� Randomly select a stack (i) on the lattice square

� Generate list of possible events at stack i

� Define PE = SE
SMAX

� Generate a random number r�[0; 1) and choose the first event Es

such that
sP
i
PEi

� r

� Generate new configuration fhgi from event Es

The selection processes can be enumerated as follows. If random number r is less than

the probability of the �rst event in the list (order is not important), then that event is

selected. If not, then if r is less than the �rst event plus the second event, then the second

event is selected. In this way, events from the event list are selected. After attempting

N events, each site has been visited, on average, one time. We de�ne this as one Monte

Carlo Step. Monte Carlo Steps will represent the units of relative time in our model. For

calculational simplicity, we will de�ne kBT = 1. Since we are not studying the system as a

function of temperature (which can done [16, 15, 13]), the temperature term serves only as

a constant scaling factor which can ignored in the current discussion.

21

3.2 Results of the Standard KMC Model

Lattice sizes L = 10, L = 20 and L = 40 were studied, all of which produced data with error

ranges within statistical acceptability. To obtain good statistics, the system was allowed to

grow for 1000 Monte Carlo Steps per simulation. Each simulation was then run 5 times and

an average value was calculated. A typical simulation would require approximately 5-10

hours to complete on a dedicated processor, depending on lattice size chosen. To verify the

validity of the basic model, we will compare the calculated Monte Carlo growth rates from

the L = 20 lattice to that de�ned in section 2.2.2. We will de�ne the growth rate R to be

the average number of layers grown divided by the number of Monte Carlo steps. Since the

maximum possible rate of growth depends on the adsorption probability, we will plot the

rate of growth divided by the adsorption probability to normalize the range. The results

for a wide range �� and � are presented in �gure 3.1.

According to the assumptions made to derive equation 2.10, we expect the greatest

agreement in regions of high temperature and high deposition rates[15]. In our model,

the temperature serves as a uniform scaling factor of the Hamiltonian. Thus, regions of

high temperatures correspond to low chemical potentials. Therefore we expect the best

agreement in the upper left portion of a graph of R versus chemical potential. Figure 3.1

veri�es this expectation.

Using the standard KMC computational model we have been able to demonstrate the

proper growth rate kinetics. Our basic model also produces surface con�gurations which

obey the expected temperature behavior (see section 3.2.1). In light of these success we can

now make the necessary modi�cations to investigate the desired type of growth.

22

0 2 4 6 8
chemical potential (∆µ)

0

0.2

0.4

0.6

0.8

1

 R
\k

+

:φ = .666
:φ = 2.0
:φ = 1.5
:φ = 3.0
:φ = 4.0

Figure 3.1: Growth rate versus chemical potential (��) for various
bond strengths (�) at kBT = 1. The points are KMC results and the
solid lines are theoretical results.

3.2.1 Surface Con�gurations of the Standard KMC Model

One major success of the standard KMCmodel was the ability to demonstrate the transition

of the surface structure between two types of growth. At low temperatures, the surface grows

largely by full layers. At any point in time, the surface looks like a converging collection

of large islands. This is referred to as nucleated growth. At high temperatures however,

molecules are much more likely to evaporate, and the surface grows with many di�erent

layers simultaneously. This is referred to as layered growth[1].

A typical surface con�guration from a kinetic growth simulation at low temperatures

(or high chemical potential and bond strength) is shown in �gure 3.2, while �gure 3.3

demonstrates a typical surface at high temperatures. The transition between these two

23

types of growth is a �rst order phase transition. One of the primary uses of the standard

KMC model was the calculation of the exact point where the roughening transition occurs.

At the transition point, the fundamental mechanism of growth at the surface changes, a

fact which should be re
ected by our model. Our basic model clearly demonstrates this

roughening behavior, as demonstrated by �gures 3.2 and 3.3.

Figure 3.2: Typical surface con�guration
at low temperatures for a 10 x 10 surface.

Figure 3.3: Typical surface con�guration
at high temperatures for a 10 x 10 sur-
face.

3.3 Unexplored Modi�cations

In this section we will discuss components of the model which will not be fully explored in

this paper, but which could have interesting e�ects on the simulated growth. We will discuss

the assumptions made for the purposes of our modeling, explain the reasoning behind these

24

assumptions and explore possible methods by which the assumptions could be changed.

3.3.1 The Solid-on-Solid Restriction

Until now, we have implicitly assumed one very subtle but important point. We have

assumed that each crystalline molecule will always exist above another crystalline molecule.

This means that a particle adsorbing at site k in �gure 3.4 is not allowed.

k

Figure 3.4: Site 'k' not allowed for molecule
adsorption.

This has come to be referred to as the Kossel model or the Solid-on-Solid (SOS) restric-

tion [17]. This restriction implies that there can be no vacancies or defects within the bulk

of the crystal lattice. While this assumption is valid in regions of slow growth (ie small ��)

it may not be realistic for other growth regions.

Because non-SOS models have received very little attention in literature and thus are

not very well characterized, we have chosen to maintain the SOS assumption. For the

purposes of perovskite alloys, the actual method of growth is such that there is little chance

for bulk defects within the crystal[4]. It has been suggested, however, that whatever defects

do appear, could play a vital role in determining quality factors of the crystal[18]. The

study of such defect phenomena could therefore provide very useful insights for increased

25

crystal quality.

In order to implement a model which includes bulk defects, changes need to be made to

the basic algorithm. We propose two possible changes in implementation of the standard

KMC model which may prove useful in the study of bulk vacancies for this type of growth.

As a �rst approach, we can view the �rst step in the basic algorithm (random selection

of a stack) as a random selection from two sets. The �rst is the set of sites available for

adsorption and the second is the set of sites available for evaporation. In the Kossel model,

these two sets are the same; the set of all surface atoms. One way to include vacancies,

therefore, is to maintain separately a list of all sites available for adsorption (include all

'k' sites). The downside of this approach is that the list of sites available for adsorption

becomes very di�cult to maintain correctly, and if not implemented cleverly carries a large

increase in computational time.

A second approach would utilize a local search method. Select a stack at random as

in the original algorithm, then scan the sites above the surface molecule to see if they are

available for adsorption and select from this list of sites as appropriate. This approach

carries with it a uniform increase in computational time, and could be very e�ective in

implementing this model.

3.3.2 Surface Di�usion

We have also assumed that once a crystalline molecule adsorbs, it stays where it is. In real

systems molecules tend to travel along the surface of the crystal until becoming bonded

to two or more other molecules. This process is referred to as surface di�usion and as

in previous studies, we have ignored it. Although surface di�usion is critical to growth

26

processes, it has been shown that the inclusion of di�usion with the SOS restriction serves

only to scale the results of the standard KMC model in a constant manner. An interesting

future topic is to study the e�ect of surface di�usion in our long-range model.

27

Chapter 4

Long-Range Interactions

While the standard model has achieved great success in some areas, it is still overly sim-

pli�ed. Depending on the application, various improvements to the standard model are

necessary. In our case, as we will demonstrate below, we will need to account for the ionic

long-range interactions. In this chapter we will examine recent studies which have outlined

the importance of long-range interactions in perovskite crystals[19]. We will develop the

required modi�cations to the standard model to include these interactions in our Kinetic

Monte Carlo simulations.

4.1 Perovskite Alloys Revisited

As mentioned in section 1.2, perovskite alloys are well known oxide compounds usually

containing a mixture of alkaline and transition metals. The composition of these alloys can

be described most generally by the chemical formula ABO3, where A is a usually a �xed

Group II metal, and B has fractional compositional freedom containing metals from Groups

II - VII. The crystal's symmetry is cubic, with element A occupying the body of the unit

cell (see �g 4.1).

28

= Oxygen atom

B

= B site atom

= A site atom

B

Figure 4.1: Unit cell of typical perovskite al-
loy.

One phenomenon not fully understood at present is the ordering within the crystals of

the B sites. This ordering has proven to have a critical e�ect on the piezoelectric properties

of the crystal[23]. B atom ordering has been observed to be very sensitive to composition

and temperature and can dominate the nature of the crystal. Because the basic properties

of the crystal are inherently dependent on this ordering, this feature must be a direct result

of any model developed. Advanced theoretical models have emerged which explain the

ordering of the B site with limited success[24]. These theories generally employ a method

of cluster expansion about short range electrostatic forces.

Recent computational work, however, has taken a much di�erent approach. Bellaiche

and Vanderbilt have proposed a model which explicitly includes the long-range electrostatic

interactions between ions[19]. The idea is that by directly calculating the in�nite-range

Coulomb interactions within the crystal, we can reproduce the ordering observed within

di�erent systems. While even the authors expected only limited success, the model has

provided accurate predictions of the ordering experimentally measured in various di�er-

ent perovskite systems[19]. With this in�nite-range sum in mind, will need to change a

fundamental assumption of our basic KMC model.

29

4.2 The New Conceptual Model

We have to revise our fundamental conception of the crystal structure. Instead of distinct

molecules covalently bonding to their neighbors, we will now view the crystal as a structure

of ionic spheres arranged in a valence electron sea. No longer is a molecule simply a�ected

by its neighbors, but now it sees a potential from the all the ions in the lattice. This

conceptual change will a�ect a number of components in our model. First, we will need to

rede�ne the Hamiltonian of the system. Secondly, we will need to rede�ne the normalization

constant and evaporation rates for the system. Finally, since perovskite crystals are multi-

species systems, we will need a slight modi�cation of our implementation to account for the

di�erent species.

Bellaiche and Vanderbilt demonstrated, that if you write the energy of the system in

terms of a variation on the average ionic charge of the B site, then you can reduce the

system to the sub-lattice of B sites. Since this approach greatly simpli�es computations, we

will only consider the B sub-lattice in our simulation. We then de�ne the new Hamiltonian

as a slightly modi�ed version of the Bellaiche and Vanderbilt expression for the energy of

the system[19]:

H(fhg) = C
X
(ij)

 1X
l=1

�qi�qj

j~rij � ~Rlj

!
+
X
i

��h(i) (4.1)

Where C contains all necessary constants, �qi represents the variation of site i from the

average B site charge, the sum (i; j) is the sum over all lattice pairs and the sum l is over

all lattice vectors and Rl is the lattice vector.

30

4.3 Computational Model with Long-Range Interactions

In this section we will derive the new speci�cations and implementation of the standard

model including long-range interactions.

4.3.1 Speci�cations

Since the energy contribution from the chemical potential term has remained unchanged,

the only term we need to reconsider is the summation over lattice pairs. From the detailed

balance condition (Eq 2.4) and the constant adsorption rate (Eq 2.5), the evaporation rate

can now be written as:

w(h(i) ! h(i) � 1) =
Peq(h(i) � 1)

Peq(h(i))
w(h(i) � 1! h(i)) (4.2)

= exp

2
66664
C

 P
(ij)�

1P
l=1

�qi�qj

j~rij�~Rlj
� P

(ij)

1P
i=1

�qi�qj

j~rij�~Rlj

!
���

kBT

3
77775 e

��
kB

w(h(i) ! h(i) � 1) = C�qo exp

"X
i

(
1X
l=1

�qi

j~rio � ~Rlj
)

#
(4.3)

Where �qo represents the charge of the currently selected site and �qi is the charge at

site i. Once again we have evaluated rates for the two events of interest.

4.3.2 Implementation

Implementation of the algorithm will remain similar to the standard KMC model. Now,

since we need to keep track of multiple species, we will abandon the two dimensional integer

lattice for a three dimensional lattice. One major technical issue remains to be addresses

before any computations can be done. The problem lies in the summation of all lattice

31

vectors for the (1~r) potential. This summation converges very slowly and convergence is not

always guaranteed. For the moment lets assume the (1~r) sum can be computed in constant

time, we will still need to calculate this potential for each occupied site, so we have increased

our algorithm complexity from O(N) to O(N2). Unfortunately, however, the (1~r) sum can

not be done in constant time using brute force methods. Moreover, the rate of convergence

of the sum is never known before the calculation is done. Since the accurate calculation of

the long range term is a key element of our model, we cannot use brute force methods to

calculate the potential. In the next chapter we will develop a method of doing in�nite (1~r)

summations in constant time.

32

Chapter 5

The Ewald Summation for Finite Height

{Mathematical Development

5.1 Introduction

The problem of lattice summations of long range interactions has received much attention in

the history of condensed matter physics and computational science. This type of summation

plays a key role in many areas of computational physics. The problem was �rst considered

by P. P. Ewald[22]. The Ewald method was generalized by B. Nijober and F. de Wette to any

N dimensional case[20]; their results have been used successfully in many applications[21].

We cannot use any previously developed method because we are calculating the potential

between a particle in a plane and a particle that has a vector component perpendicular to

the plane. In addition we cannot apply any periodic conditions to the plane of the surface

because individual crystal layers have compositional variation.

In this chapter, we will develop the Ewald method for any dimensionality between two

and three. Although the derivation in this section is restricted to this speci�c situation, it

should be trivial to generalize it to a con�guration of any dimensionality. It has already

33

been demonstrated that results from this chapter reduce to the two dimensional case when

the perpendicular component equals zero [27].

The di�culty with the summation is that the standard formulas for the Ewald sum-

mation are inherently dependent on expanding the direct vector between two sites in all

dimensions. We must develop a general method by which the particle's height above the

plane can be accounted for in the Ewald method. We have essentially committed ourselves

to calculating an out of plane potential with in�nite contributions (see �g 5.1). In this chap-

ter we will derive our own formulation of the Ewald method and demonstrate its usefulness

in computer simulations.

h

r

ρ

R

B

A

Figure 5.1: Vectors connecting ions A and B plus the periodic
image charges due to B.

We want to calculate the Coulomb potential between charged particles A and B plus

all the periodic image charges of B in the plane of B. The particles are assumed to reside

34

on a lattice of �xed sites, where ~R represents the size of the lattice vector, ~h represents the

height of particle A above the plane of B and ~� represent the vector from A to B. ~r will then

be the vector connecting A's image in the plane of B to site B (see �g 5.1). For simplicity

we will assume A exists at the origin and assume B is a positive distance from A.

The basic idea behind the Ewald method is to replace the slowly converging sum (1~r)

with a combination of two rapidly converging complimentary sums. For a good introduction

to general Ewald techniques, see Allen and Tildesley[25].

To begin, we will multiply the 1
~r term by the sum of the Incomplete Gamma and Com-

plementary Incomplete Gamma functions. As their names suggest, the addition of these

two functions equals unity. We can now represent the Coulomb potential of one single pair

(not including any periodic images) as:

F (�) = C[
1

�
(P (

1

2
; ��2) +Q(

1

2
; ��2))] (5.1)

Where C contains all necessary constants, � denotes some tunable parameter, � denotes the

length of ~�, P () denotes the Incomplete Gamma function and Q() denotes the Complemen-

tary Incomplete Gamma function. To reduce equation clutter, we will factor the constant

term out of the rest of the derivation, making sure to put it back into the main simulation.

We now want to sum the contribution of all periodic images of B, to get a total potential

energy for particle A. The total Coulomb potential (including images) is then:

�+(~�) =
X
�

F (j~�� ~R�j) =
X
�

f(j~�� ~R�j) +
X
�

f(j~�� ~R�j)
(5.2)

where

35

f(x) =
1

x
Q(

1

2
; �x2) (5.3)

f(x) =
1

x
P (

1

2
; �x2) (5.4)

Here we notice that
P

f converges very rapidly, while
P

f converges inversely propor-

tional to
P

f . Since '
at' functions correspond to sharp peaks in reciprocal space, if we

perform the
P

f in reciprocal space, it will converge very rapidly. The parameter � can then

be viewed as a point in the
P 1

r where the real space summation ends and the reciprocal

space summation begins (see �g 5.2).

α

Figure 5.2: Graph of 1
r convergence and � cuto� of real space

summation.

5.2 The Reciprocal Space Sum

The idea is to perform a Fourier transform of
P
�
f(j~�� ~R�j). Let's start by de�ning g(~k) as

follows:

g(~k) �
Z
dr e�i~k�~r

0
f(r0) dr0 (5.5)

36

Now, we will multiply both sides by 1
L2 e

i~k�~r and sum both sides over the entire reciprocal

space.

1

L2

X
�

ei
~k��~rg(~k) =

Z
1

L2

X
�

ei
~k��(~r�~r0)f(r0) dr0 (5.6)

Now, we will use the relation 1
L2
P
�
ei

~k��~r =
P
�
�(j~r� ~R�j)[14, 20]. With this relation, we can

write:

1

L2

X
�

ei
~k��~rg(~k) =

Z X
�

�(j~r0 � ~r � ~R�j)f(r0) dr0

1

L2

X
�

ei
~k��~rg(~k) =

X
�

f(j~r � ~R�j) (5.7)

With this relation, we have expressed the slow converging real space summation as a

summation in reciprocal space. In the following section we will derive g(~k) into a form that

is computationally meaningful.

5.2.1 Derivation of the g(k) Term

Again, to avoid equation clutter, we will let r = j~rj, k = j~kj, h = j~hj, and � = j~�j. Plugging

equation 5.4 into equation 5.5, we obtain:

g(~k) =

Z
dr e�i~k�~r

1

�

1

�(12)

�(r2+h2)Z
0

e�tt�
1
2 dt (5.8)

let t = k2(r2+h2)
4y , then y = k2(r2+h2)

4t

g(~k) =
1

�(12)

Z
dr e�i~k�~r

1p
(r2 + h2)

k2

4�Z
1

e
� k2(r2+h2)

4y

0
@k

2

s
r2 + h2

x

1
A
�1

�k2(r2 + h2)

4y2

!
dy

Extracting terms from the dy integral gets:

37

�
k
p
r2+h2

2

��1 ��k2(r2+h2)
4

� k2

4�R
1

e
�k2(r2+h2)

4y 1

y
3
2
dy

Consolidating all terms and simplifying, we can now the the g(~k) integral as:

g(~k) =
1

�(12)

1p
(r2 + h2)

�
2

k
p
r2 + h2

� �k2(r2 + h2)

4

!Z
d~r e�i~k�~r

k2

4�Z
1

e
�k2(r2+h2)

4y

y
3
2

dy

g(~k) =
1

�(12)

1Z
k2

4�

k

2y
3
2

Z
e
�k2(r2+h2)

4y
�i~k�~r

d~r dy (5.9)

We choose to do the inside integral �rst. We will start by adding and subtracting
�

k~r
2
p
y

�2
in the exponential:

Z
e
�(k2(r2+h2)

4y
+i~k�~r)

d~r =

Z
e
�
��

k~r
2
p
y

�2
+ k2h2

4y
+i~k�~r+

�
i
p
y

k
~k

�2
+y

�
d~r

=

Z
e
�
��

k~r
2
p
y

�2
+i~k�~r+

�
i
p
y

k
~k

�2�
�y� k2h2

4y

d~r

=

Z
e
�
�

k~r
2
p
y
+i

p
y

k
~k

�2
d~r � e� k2h2

4y
�y

= �

�
2
p
y

k

�2
e
� k2h2

4y
�y

(5.10)

Where we have used the de�nition of a 2 dimensional Gaussian integral over all space to

evaluate the integral. Putting equation 5.10 into equation 5.9, we obtain:

g(~k) =
k

�(12)

1Z
k2

4�

1

2y
3
2

�

�
2
p
y

k

�2
e
� k2h2

4y
�y
!
dy (5.11)

Simplifying, we obtain the �nal result:

g(j~kj) = 2�

k�(12)

1Z
k2

4�

y�
1
2 e
� k2h2

4y
�y

dy (5.12)

38

5.3 Converging the Sum

So far we have considered only one set of ionic nuclear charge in our model. Implicit in

this argument is that this ionic lattice is a sub-lattice in an overall charge neutral system.

If it were not, we should get an in�nite potential at site A for a lattice of in�nite charged

particles! In order to guarantee the converge of the summation, we will subtract a constant

term from one sub-lattice and add the same term back into the second sub-lattice.

On a conceptual level, this term has can be thought as a free electron contribution or

the interaction of site A with its own images[21]. For our purposes, we will view this term

as nothing more than a mathematical trick to allow us to do the computation.

We can now write the contribution to be subtracted from the ionic charge as:

X
�

F (j~R� + ~hj) =
X
�

f(j ~R� + ~hj) +
X
�

f(j ~R� + ~hj)� 1

�(12)h

�h2Z
0

e�tt�
1
2 dt (5.13)

The last term accounts for the inherent inclusion of the R = 0 term in the reciprocal space

portion of the sum. Since this term corresponds to an in�nity in real space, we need to

remove it from the computation. For computation, we will also need to evaluate the last

term at h = 0. The limit of the last term as h! 0 is:

lim
h!0

0
B@ 1

�(12)h

�h2Z
0

e�tt�
1
2 dt

1
CA = 2

r
�

�
(5.14)

5.4 The Total Potential

We can now write the total potential of the site pair plus images, including equation 5.13

as:

39

�tot = �+(~�)�
P
�6=0

F (j~R� + ~hj)

�tot(~�) =
X
�

f(j~�� ~R�j)�
X
� 6=0

f(j~R� + ~hj) +
X
�6=0

f(j~k�j)(ei~k��~r � 1) +
1

�(12)

1

h

�h2Z
0

e�tt�
1
2 dt

where

f(x) =
1

x
erfc(

p
�x) (5.15)

f(x) =
1

j~Rj2
2�

x�(12)

1Z
x2

4�

t�
1
2 e�(

x2h2

4t
+t) dt (5.16)

5.5 Evaluating the Integral

Now that we have an expression for the potential energy of the pair, we are left to evaluate

the terms. Numerical evaluation of the erfc is accomplished using a standard algorithm

from Press et. al[28]. The f(x) integral, however has no closed form solution and is not

a standard computational term. General numerical steepest descent methods are available

to evaluate such integrals[26], but these methods are complicated to implement, so we

will develop a straightforward analytic method for evaluating this term. Since � is a free

parameter, we will assume that we can choose � to be small. Since � can be chosen small,

the lower limit of the integral will be large, which in turn will correspond to small values of

x2h2

4t in the exponential. With this in mind, we will do a Taylor expansion of e�
x2h2

4t about

0. Let � = �x2h2

4 , then we can re-write the integral in f(x) as:

1Z
a

t�
1
2 e�te

�
t dt (5.17)

40

After a Taylor expansion about 0, we can express the integral as:

1Z
a

f(t) dt =
NX
i=0

�i

i!

1Z
a

t�i�
1
2 e�t dt (5.18)

We are now left to evaluate any integral of the general form:

1Z
a

t�
n
2 e�t dt (5.19)

where n = 1; 3; 5:::

We will now attempt to solve this integral with an integration by parts, after one iteration

we obtain:

1R
a
e�tt�1

n
2 = 1

1�n
2
e�tt1�

n
2 j1a + 1

1�n
2

1R
a
e�tt1�

n
2 dt

After n�1
2 iterations, we will arrive at the Complementary Incomplete Gamma function Q(),

which can be readily computed using standard algorithms from Press et al[28]. The integral

is then equal to:

1Z
a

e�tt�
n
2 = �e�aa�n

2

n�1
2X

i=1

iY

k=1

1

k � n
2

!
ai +

n�1
2Y

i=1

1

i� n
2

!�
Q(a;�1

2
) � �(1

2
)

�
(5.20)

Plugging equation 5.20 back into equation 5.18 we �nd that the integration in the f(x)

term can be computed as:

1Z
a

f(t) dt =
NX
i=0

��i
i!

e�aa�
n
2

n�1
2X

i=1

iY

k=1

1

k � n
2

!
ai +

n�1
2Y

i=1

1

i� n
2

!�
Q(a;�1

2
)�(

1

2
)

�

Figure 5.3 demonstrates the convergence of the value of the computed integral as a function

of the number of terms included in the Taylor expansion.

41

0 5 10 15 20
Terms in expansion

0

1e−06

2e−06

3e−06

4e−06

5e−06

V
a

lu
e

 o
f
in

te
g

ra
l

Convergence of Integral
k = (2,2); h = 4; α = 2π/(L

2
)

Figure 5.3: Convergence of computed value to actual value
with increasing number of expansion terms.

5.5.1 Computing the Imaginary Term

The only term left to evaluate is
P
�6=0

(ei
~k��~r� 1), and then we will freely be able to calculate

the potential for the site pair. We will re-write the exponential term as:

ei
~k�~r = cos(~k � ~r) + i sin(~k � ~r) (5.21)

We will assume that we are summing over a complete set for all lattice vectors, and using

the identity sin(�x) = � sin(x), the sin(x) terms cancel. We can then write the summation

as a function of only real terms:

X
�6=0

(ei
~k��~r � 1) =

X
�6=0

(cos(~k� � ~r)� 1) (5.22)

See Appendix C for the exact code used implement equation 5.22. We are now ready to

compute the potential energy for any site pair on in the lattice space.

42

Chapter 6

The Ewald Summation {Implementation

and Results

In this chapter we will analyze the computational improvements made by developing the

Ewald method. We will demonstrate that without developing this method, performing the

required calculations for the growth simulation would not have been possible.

6.1 Advantages of the Ewald Sum

As mentioned above, the choice of � is not arbitrary. As you decrease � you increase the

number of terms needed in the real space sum. Notice that in the limit of � approaching 0,

you recover the strict brute force summation. We have chosen alpha to be

�
�

8j~Rj2

�
, which

is partially empirically chosen to balance the number of terms necessary in the real space

term and the necessity to keep � small. We were able to implement straightforwardly the

computations discussed above. With this choice of � we have been able to demonstrate fast

and accurate calculations for the potential energy of the in�nite-range sum. The convergence

of the brute force summation to the value calculated by Ewald method is shown in �gure 6.1.

43

The computation time for the brute force term was approximately 5 hours. The computation

time for all possible 64 site pairs using the Ewald method required under 1 second. The

important thing to note here is that in order to increase the brute force accuracy by an order

of magnitude, you need exponentially increasing time. This increase is also demonstrated by

�gure 6.1. Since the rate of convergence for the brute force summation is never guaranteed,

a brute force approach is not computationally feasible.

0 2e+04 4e+04 6e+04 8e+04 1e+05
Terms in summation

0.2646

0.26462

0.26464

0.26466

0.26468

0.2647

0.26472

0.26474

P
o

te
n

ti
a

l
(1

/r
)

Convergence of Brute Force Sum
L = 8; site = (3,4,2)

Figure 6.1: Convergence of brute force method to Ewald sum-
mation method.

Table 6.1 shows the absolute (ie time active in system) computation times for our brute

force summation to produce the equivalent of table 6.2 as a function of system size. The

brute force summation included 5000 terms. Again the convergence rate for each term in

the brute force varies, but on average the terms are accurate to 10�4. To demonstrate the

44

Lattice Vector (L) Computation Time For All Pairs (hh:mm:ss)

4 00:11:40

6 00:31:07

8 01:04:50

10 01:56:43

12 03:10:38

14 04:50:30

16 07:00:13

18 09:43:37

20 13:04:39

Table 6.1: Brute force total computational
time for all possible site pairs (with 5000
terms).

relative accuracy of these brute force tables, 5000 terms represents the second data point

from the origin in �gure 6.1. Since the 8 x 8 calculation required over an hour for 5000

terms (see table 6.2), the computational increase associated with improving the answers for

even an 8 x 8 by an order of magnitude is extremely large.

6.2 Results of the Ewald Method

In this section will provide some more general data concerning the Ewald summation

method. We will examine the energy as a function of lattice size and present the potential

terms for an 8 x 8 lattice.

6.2.1 Characterizing the Lattice

Because the Ewald summation calculates a sum to in�nity of all lattice vectors, we would

like to get a sense that the total energy of our system does not change with lattice size. To

demonstrate this point, we will examine a 2 dimensional lattice with all sites occupied by

45

a +1 charge. A plot of the average energy per pair as a function of lattice size is shown in

�gure 6.2.

0 200 400 600 800 1000
System Lattice Size

0

1

2

3

4

5

E
n

e
rg

y
 p

e
r

p
a

ir

Figure 6.2: Average energy per pair plotted versus lattice
size.

As we had expected, for reasonably large system sizes, the average energy per pair

remains unchanged.

6.2.2 Ewald Summation Data

Because the calculation of long-range potentials is of such general applicability, we will

include a table for all possible site pairs in a 8 x 8 x 8 lattice, disregarding the constant

term. It is important to note here, that due to the periodic requirement, we only needed to

calculate bonds for up to half the lattice vector in any given direction. Also, the table shown

is the potential between a site at (0; 0; 0) and site (i; j; k) away. Because of translational

invariance, the choice of the origin is arbitrary. Table 6.2 then describes every possible

situation in the lattice.

46

Distance (x,y,z) Potential

(0,0,1) 1.000000000000

(0,0,2) 0.500000000000

(0,0,3) 0.333333333333

(0,0,4) 0.250000000000

(0,1,0) 1.004489711297

(0,1,1) 0.711418857478

(0,1,2) 0.451049546723

(0,1,3) 0.319424385300

(0,1,4) 0.245069564385

(0,2,0) 0.518940145984

(0,2,1) 0.465339784006

(0,2,2) 0.369527117693
(0,2,3) 0.290496674772

(0,2,4) 0.233897759260

(0,3,0) 0.379966540102

(0,3,1) 0.360549195848

(0,3,2) 0.315714410737

(0,3,3) 0.266567709263

(0,3,4) 0.223640622847

(0,4,0) 0.344737958438

(0,4,1) 0.331421567987

(0,4,2) 0.298140023461

(0,4,3) 0.257787634510

(0,4,4) 0.219629740765

(1,1,0) 0.715789186607

(1,1,1) 0.585695672920

(1,1,2) 0.415688760333

(1,1,3) 0.307731802530

(1,1,4) 0.240651599158

(1,2,0) 0.469424986952

(1,2,1) 0.429547316092
(1,2,2) 0.352205581585

(1,2,3) 0.282912741838

(1,2,4) 0.230573680339

(1,3,0) 0.364353577568

(1,3,1) 0.347369970899

(1,3,2) 0.307234269073

Distance (x,y,z) Potential

(1,3,3) 0.261883918469

(1,3,4) 0.221239739445

(1,4,0) 0.335110872777

(1,4,1) 0.322889737723

(1,4,2) 0.292040048310

(1,4,3) 0.254057744745

(1,4,4) 0.217569021221

(2,2,0) 0.386561698881

(2,2,1) 0.365039592679

(2,2,2) 0.316901073980

(2,2,3) 0.266101888138

(2,2,4) 0.222869696858
(2,3,0) 0.331439074071

(2,3,1) 0.319068022010

(2,3,2) 0.288318839367

(2,3,3) 0.251082876492

(2,3,4) 0.215583314225

(2,4,0) 0.313330929686

(2,4,1) 0.303466411831

(2,4,2) 0.277949158399

(2,4,3) 0.245308533662

(2,4,4) 0.212677885545

(3,3,0) 0.303693247101

(3,3,1) 0.294698853564

(3,3,2) 0.271275160979

(3,3,3) 0.240932289316

(3,3,4) 0.210114549824

(3,4,0) 0.293379278507

(3,4,1) 0.285528717997

(3,4,2) 0.264684572296

(3,4,3) 0.236901180514
(3,4,4) 0.207901518436

(4,4,0) 0.285590254400

(4,4,1) 0.278489057927

(4,4,2) 0.259412999436

(4,4,3) 0.233513527001

(4,4,4) 0.205955612669

Table 6.2: Possible potential terms for an 8 x 8 x 8 lattice.

47

Chapter 7

Simulation Results and Conclusions

In this chapter we will discuss some preliminary results from our simulation model. We will

then compare these results to those obtained with the standard model.

7.1 Surface of the Advanced Model

While full analysis of results from our advanced model has not yet been possible, preliminary

results are very promising. Figure 7.1 demonstrates a calculated surface con�guration from

our advanced model for values chosen near equilibrium for a B site sub-lattice with 2 possible

species, �q1 = +1 and �q2 = �2. A 10 x 10 x 30 lattice was run for 300 Monte Carlo

steps. The the adsorption probabilities of each species were weighted to guarantee overall

charge neutrality. Because of the constant term used in the Ewald method, we are able

to calculate the potential at intermediate steps (when the overall charge is not necessarily

neutral), because the overall contribution of this constant term will reduce to 0.

It seems that this region represents growth above the roughening transition, but to make

any more meaningful statements about the con�guration, much further analysis is required.

48

Figure 7.1: Typical surface con�guration from advanced sim-
ulation for values near equilibrium.

7.2 Conclusions

In summary, we have implemented the standard Kinetic Monte Carlo model for the growth

of crystal structures. We demonstrated the agreement of this model to analytic expectations

for growth kinetics. We examined various strengths and weakness of the standard model

and proposed the introduction of long-range terms as a replacement for local interactions.

Motived to calculate the in�nite-range summations, we developed a unique method by which

general calculations of this type can be implemented in reasonable computer time. We

were able to implement our model including long-range terms to produce some preliminary

results. We compared of these results to those produced from the standard model. While

further analyses of this preliminary data is required, we are con�dent that this model can

49

serve as a useful tool to further our understanding of the growth mechanisms in complex

crystal structures.

50

Appendix A

De�nition of Selected Terms

deterministic : An event such that the outcome can be known given the initial conditions.

discrete : Finite or countable by nature.

event : Any sub-set of the state space for an experiment.

event list : A list of possible events from the state space.

probability : Likelihood that an event will occur. Must be a number on the range [0; 1]

and the sum of all complimentary events within a state space must equal unity.

sample : Selection of an event from the event list.

state space : The set of all possible outcomes of an experiment.

stochastic : An event such that the outcome is random by nature.

51

Appendix B

Kinetic Growth Code

/* cr_pt ==

This is a simulation of crystal growth including long range ionic

interactions. This file must me used in conjunction with an external

random number generator and Numerical Recipes routines.

Programmer: TJ Walls

This program will run a simulation of a L x L x H lattice.

It will initialize the lattice by filling in the lattice from 0

to BASE with a random mixture of the desired components. It will

then proceed by repeated realizations of creation and evaporation

events according the probabilities described in a Kinetic Monte Carlo

simulation.

RETURN VALUES:

On successful completion, the simulation return, the simulation will

place the integer heights in an L x L array in file `LRO.height` and

will display the final growth rate on STDOUT. If

the simulation attempts to grow or recede beyond the bounds of the

static array used, it will return an error message on STDERR.

=== */

#include <stdio.h>

#include <string.h>

#include <iomanip.h>

#include <fstream.h>

#include <iostream.h>

#include <stdlib.h>

#include <math.h>

#include "rvgs.h"

#include "rngs.h"

/* Constants ---

Now we will define the required constant terms for the simulation.

-- */

#define RUNS 2 // Number of times to run simulation

#define MC_STEPS 30 // How long to grow crystal

#define kT 500.0 // Boltzmann's const * temp

#define BASE 5 // Minimum number of occupied rows

#define TEST_SOS 0 // Impose sos restriction

52

#define L 10 // Size of base square

#define H 30 // Height of crystal

#define N_SITES (L*L*H) // Number of possible sites in lattice

#define qB 4 // Average B site charge

//--

// These constants are required for the calculation of the potential energies.

#define PI 3.14159265359

#define root2 1.41421356237

#define rootpi (sqrt(PI))

#define unitk (2.0 * PI / (double)L)

#define CUTOFF (pow(10,-15))

#define ALPHA (PI/(8.0*(double)(L*L)))

#define root_A (sqrt(ALPHA))

// Prototypes ==

// Column will contain the information for an L x L array of columns

struct column

{

int stack[H];

long top;

long num_sites;

};

double Initialize(column[][L], double[L/2+1][L/2+1][H/2+1]);

void Ewald25(double[L/2+1][L/2+1][H/2+1]);

long Check_pbc(long, long);

long Conv_coord(long**, long, long);

void Map(long[][N_SITES]);

void MC_step(column[][L], double V_clmb[L/2+1][L/2+1][H/2+1],

double, double, long&, long&);

int Select_site(int);

double Prob_calc(column[][L], double[L/2+1][L/2+1][H/2+1], long, long);

double Sim(double, double&, double[L/2+1][L/2+1][H/2+1]);

double Standard_deviation(double&, double[]);

void Data_dump(column lattice[][L]);

/* main() ---

This is the main control body of the code. It will initialize

the array of all possible potential terms. It then runs

Monte Carlo simulation for a range of chemical potentials

defined in the control loop.

*** This routine includes an extraneous computation of

standard deviation. This is a feature left over from

the standard model, and is intended to be included in

latter versions of the simulation for statistical

calculations.

53

---*/

int main()

{

double prob; //Adsorption probability

double V_clmb[L/2+1][L/2+1][H/2+1]; //Matrix of all possible potentials

double fin_rate; //Final rate of growth

double stor_ans[RUNS], //Storage for computed growth rates

std_dev; //Standard deviation of rates

double i; //Variable for control rates

// Initialize the array of required potentials.

Ewald25(V_clmb);

for (i = 630; i <= 630; i = i + .25)

{

for (int good = 0; good < RUNS; good++)

{

fin_rate = Sim(i, prob, V_clmb);

fin_rate = fin_rate / prob;

stor_ans[good] = fin_rate;

} //end for

std_dev = Standard_deviation(fin_rate, stor_ans);

cout << setprecision(6) << i << '\t' << fin_rate << '\t' << std_dev

<< '\t' << (std_dev / sqrt(RUNS - 1)) << endl;

} //end for

return 0;

} //end main

/* Sim()--

This is the main simulation section of the code. It takes

the chemical potential and returns through the reference parameter

p_adsorb the probability of adsorption. It also takes the

array of Coulomb potentials as an argument.

--*/

double Sim(double chem, //Chemical potential driving force

double &p_adsorb, //Adsorption probability

double V_clmb[L/2+1][L/2+1][H/2+1])

{

//Variable declarations

column lattice[L][L]; //Lattice of crystal sitess

long tot_height; //Total height of crystal

double V_energy, // Energy sum of bonds

distrib, // Re-normalization constant

max_evap; // Maximum evaporation rate

long adsorb; //Number of creation events for elapsed time

long evap; //Number of evaporation events

54

long i, j, k; //Loop variables.

//Initialize Variables

PlantSeeds(123456789);

max_evap = Initialize(lattice, V_clmb);

p_adsorb = exp(chem / kT);

distrib = (p_adsorb + exp(max_evap / kT));

p_adsorb = p_adsorb / distrib;

//Code Body

for (i = 0; i < MC_STEPS; i++) {

for (j = 0; j < (L * L); j++)

MC_step(lattice, V_clmb, p_adsorb, distrib, adsorb, evap);

} //end for

tot_height = 0;

for (i = 0; i < L; i++)

for (j = 0; j < L; j++)

tot_height = tot_height + lattice[i][j].num_sites;

Data_dump(lattice);

return (tot_height - (L*L*BASE)) / (double)(L*L*MC_STEPS);

}

/* Initialize()---

This function will initialize the simulation. It will place

a random distribution of the desired elements into a lattice

positions below BASE. It will return to maximum possible rate

of evaporation to be used in normalization.

--*/

double Initialize(column lattice[][L],

double V_clmb[L/2+1][L/2+1][H/2+1])

{

long i,j,k; // Loop variables

long nx, ny, nz; // Loop variables

double max_evap = 0.0; // Maximum evaporations rate

long **coord; // Array which map numbers 0 to N to

// their relative positions

coord = new (long *)[3];

for (i = 0; i < 3; i++)

coord[i] = new long[N_SITES];

//Initialize coordinate map

Conv_coord(coord,L,H);

for (i = i; i < N_SITES; i++) {

nx = Check_pbc((coord[2][0] - coord[2][i]), L);

55

ny = Check_pbc((coord[1][0] - coord[1][i]), L);

nz = Check_pbc((coord[0][0] - coord[0][i]), H);

if (nx != 0 || ny != 0 || nz != 0)

max_evap = max_evap + V_clmb[nx][ny][nz];

}

max_evap = max_evap * Select_site(1);

for (i = 0; i < 3; i++)

delete(coord[i]);

delete(coord);

for (i = 0; i < L; i++)

for (j = 0; j < L; j++) {

lattice[i][j].top = BASE - 1;

lattice[i][j].num_sites = BASE;

for (k = 0; k < H; k++) {

if (k < BASE) {

lattice[i][j].stack[k] = Select_site(0);

} else

lattice[i][j].stack[k] = -1000;

} //end for

} // end for

return max_evap;

} //end Initialize()

/* Prob_calc()--

This function will return the non-normalized probability

of evaporation for a given configuration.

---*/

double Prob_calc(column lattice[][L],

double V_clmb[L/2+1][L/2+1][H/2+1],

long i,

long j)

{

long nx, ny, nz;

long ni, nj, nk;

double p_evap = 0.0;

for (ni = 0; ni < L; ni++)

for (nj = 0; nj < L; nj++)

for (nk = 0; nk <= lattice[ni][nj].top; nk++) {

nx = Check_pbc((ni - i), L);

ny = Check_pbc((nj - j), L);

nz = Check_pbc((nk - lattice[i][j].top), H);

if (nx != 0 || ny != 0 || nz != 0) {

p_evap = p_evap + (lattice[ni][nj].stack[nk] * V_clmb[nx][ny][nz]);

if (fabs(lattice[ni][nj].stack[nk]) > (float)Select_site(1) + .1) {

56

fprintf(stderr, "(%ld,%ld,%ld)\t%ld\n", ni, nj, nk,

lattice[ni][nj].stack[nk]);

exit(55);

}

}

}

return fabs(p_evap);

} //end Prob_calc

/* MC_step()--

This function will perform 1/Nth of 1 MC step. (here

a MC step is defined as complete when each of the N sites

has had an opportunity to change, on average).

---*/

void MC_step(column lattice[][L], //Lattice of crystal heights

double V_clmb[L/2+1][L/2+1][H/2+1],

double p_adsorb, // Prob of adsorption

double distrib, // Normalization constant

long &adsorb, //Number of sites added to system

long &evap) //Number of sites evaporated from system

{

int type;

long i, j; // Loop variables

double trans_prob, //probability of transition

p_evap, // Prob of evaporation

try_1; //Generated number

SelectStream(1);

i = Equilikely(0, (L - 1));

SelectStream(2);

j = Equilikely(0, (L - 1)); //lattice column to change

type = Select_site(0);

p_evap = Prob_calc(lattice, V_clmb, i, j);

p_evap = exp(p_evap / kT);

p_evap = p_evap / distrib;

trans_prob = p_adsorb + p_evap;

SelectStream(3);

try_1 = Random();

//---------- Range Test

if (lattice[i][j].top == (H-1)) {

cerr << "H = " << H << endl;

cerr << "Error: Grown sites exceed array size!\n";

fprintf(stderr, "Stack (%ld,%ld) crashed\n", i, j);

57

printf("Adsorbed:%ld\tEvaped:%ld\n", adsorb,evap);

exit(57);

} else if (lattice[i][j].top == 0) {

cerr << "Error: Negative growth rate, lost all crystal!\n";

printf("Stack (%ld,%ld) crashed\n", i,j);

printf("Adsorbed:%ld\tEvaped:%ld\n", adsorb,evap);

exit (58);

}

if (lattice[i][j].top >= H || lattice[i][j].top < 0) {

cerr << "THIS SHOULD NOT HAVE HAPPENED!";

exit(59);

}

//---------- Adsorption

if (try_1 < p_adsorb) {

//if (i == 3 && j == 3)

// fprintf(stderr, "(%6.4f,A->%ld)", p_adsorb, lattice[i][j].top+1);

lattice[i][j].top++;

lattice[i][j].stack[lattice[i][j].top] = type;

lattice[i][j].num_sites++;

adsorb++;

return;

}

//----------- Desorption

else if (try_1 < trans_prob) {

//if (i == 3 && j == 3)

// fprintf(stderr, "(%6.4f,D->%ld)", p_evap, lattice[i][j].top-1);

lattice[i][j].stack[lattice[i][j].top] = -1000;

lattice[i][j].top--;

lattice[i][j].num_sites--;

evap++;

return;

}

//------------- Nothing

else

return;

} //end MC_step()

/* Select_site() ---

This function will return the type of site selected based on

compositional probability.

--- */

int Select_site(int flag)

{

if (flag == 1) {

return 2;

} else if (flag == 0) {

58

SelectStream(28);

if (Random() < .3333333333)

return (-2);

else

return 1;

}

}

/* Data_dump()--

This function will output the integer lattice heights to

a L x L integer array in file `LRO.height`

---*/

void Data_dump(column lattice[][L])

{

FILE *fp;

long i, j,k;

long p, m, error;

fp = fopen("LRO.height", "w");

p = 0;

m = 0;

error = 0;

for (i = 0; i < L; i++) {

for (j = 0; j < L; j++) {

fprintf(fp, "%ld\t", lattice[i][j].num_sites);

for (k = 0; k <= lattice[i][j].top; k++) {

if (lattice[i][j].stack[k] == -2) {

m++;

} else if (lattice[i][j].stack[k] == 1) {

p++;

} else {

error++;

}

}

}

fprintf(fp, "\n");

}

fprintf(stdout, "-2 sites: %ld\n1: sites: %ld\n", m, p);

if (error != 0)

fprintf(stdout, "%ld errors!\n", error);

fclose(fp);

}

/* Standard_deviation()---

This code is taken from and modified from "Numerical Recipes in C"

59

Second Edition by Press, Teukolsky, Vetterling, and Flannery.

It will calculate the mean, and standard deviation. The mean is

passed back in the first parameter by reference and the deviation

is returned.

--*/

double Standard_deviation(double& mean, //Mean value of data

double data[]) //Array of data

{

int j; //loop counter

double ep = 0.0, //Storage info

s = 0.0, //Storage info

var; //Variance info

if (RUNS <= 1)

{

cout << "Not enough runs for deviation info!\n";

return 0.0;

} //end if

for (j = 1; j <= RUNS; j++)

s += data[j-1];

mean = s / (float)(RUNS);

for (j = 1; j <= RUNS; j++)

{

s = fabs(data[j-1] - mean);

ep = ep + s;

var = var + (s*s);

} //end for

var = (var - ep * ep / RUNS)/(RUNS-1);

return sqrt(var);

} //end Standard_deviation()

60

Appendix C

Ewald Summation Code

/* Ewald_sum25 ===

This program will calculate the long range potential between

sites on a 3-D lattice of infinite width and finite height using

the method of the Ewald sum. It creates a 3-D table of 1/|r|

potentials from the origin to L/2 (due to pbc).

Programmer: TJ Walls

--

Consider the Coulomb potential between a charged particle at the

origin and one at site i plus all the images of site i due to pbc.

Let p denote the vector connecting the two sites and R be the lattice

vector in the (001) plane of i:

V = sum_R{1/|r-R|} - sum_{R!=0}{1/|R|}

where the latter accounts for a uniform background form the unit cell.

Using the Ewald method we can write the above equation as:

V = sum_R{f(r-R)} - [sum_{R!=0}{f(R)} - (1/z)*erf(sqrt(alpha)*z)]

+ sum_{k!=0}{g(k)*[exp(ik.r)-1]}

+++ NOTE +++ (1/z)*erf(sqrt(alpha)*z) -> 2*sqrt(alpha/pi) as z -> 0

where

f(r) = 1/|r| * erfc(sqrt(alpha) * r)

g(k) = 2*pi/[|k| * L^2 * sqrt(pi)] *

int([x^(-1/2)*exp([-k^2*z^2]/[4*x] - x)],

x = [k^2]/[4*alpha]..infinity)

We have chosen alpha to be pi/[8*L^2]. The choice of alpha is NOT

arbitrary and must be made substantially larger to accommodate for

an expansion made in evaluating the g(k) integral.

+++

A few notes:

-This routine is only applicable in 2.5-D space and can NOT be

used for space with integral dimensionality.

-Ceperley {PRB 18,3126 (1978)} derived general formulas for

the Ewald method in integral dimensionality.

-It is a slight computational waste to loop through all sites

and only perform

-This program must be accompanied by the file int_gk.c which

contains code to perform the g(k) integral.

== */

#include <stdlib.h>

#include <math.h>

61

#include <stdio.h>

#define L 8

#define H 8

#define PI 3.14159265359

#define root2 1.41421356237

#define rootpi (sqrt(PI))

#define unitk (2.0 * PI / (double)L)

#define CUTOFF (pow(10,-15))

#define ALPHA (PI/(8.0*(double)(L*L)))

#define root_A (sqrt(ALPHA))

double Erfcc(double);

long Check_pbc(long);

double Int_gk(double,long,double);

int main()

{

double V_clmb[L/2+1][L/2+1][H/2+1]; // Map of Coulomb potentials

double V_temp; // Temp storage for potential

long kk; // nx^2 + ny^2

long nx, ny; // k vectors for i space

long pi, pj, pk; // Coords of p vector

double x, y = 0.0; // Coords of (p-R) vector

double r, r2; // Lengths of (p-R) vector

double k_dot_r; // Value of k dot r vector

double passk; // Length of k vector

double max; // Current maximum value

long max_r_terms; // max number of real space terms

long max_i_terms; // max number of i space terms

/* ---

First lets initialize the V array.

--- */

for (pi = 0; pi <= L/2; pi++)

for (pj = 0; pj <= L/2; pj++)

for (pk = 0; pk <= H/2; pk++)

V_clmb[pi][pj][pk] = -1.0;

for (pi = 0; pi <= L/2; pi++)

for (pj = pi; pj <= L/2; pj++)

for (pk = 0; pk <= H/2; pk++) {

/* --

Now lets find our cutoff terms for the real and reciprocal

space sums. We will drop all cell series which contribute a maximum

of less than the cutoff value. We are going by full series,

ie (-n->n, -n->n) inclusive.

--- */

max = 1.0;

max_r_terms = 0;

while(max > CUTOFF) {

62

max_r_terms++;

x = (double)(pi+(max_r_terms*L));

y = (double)(pj);

r2 = (x*x)+(y*y)+(double)(pk*pk);

r = sqrt(r2);

max = Erfcc(root_A * r);

}

max = 1.0;

max_i_terms = 0;

while (fabs(max) > CUTOFF) {

max_i_terms++;

passk = max_i_terms*unitk;

max = Int_gk(passk,pk,ALPHA);

}

/* Background Potential --------------------------

Now lets compute the uniform background potential

for each site, including the subtraction of the

over counting term in the reciprocal sum.

--*/

V_temp = 0.0;

for (nx = -1*max_r_terms; nx <= max_r_terms; nx++)

for (ny = -1*max_r_terms; ny <= max_r_terms; ny++) {

if (nx != 0 || ny != 0) {

r2 = (double)((nx*nx)+(ny*ny));

r = sqrt((r2*(double)(L*L))+(double)(pk*pk));

V_temp += 1/r*Erfcc(r * root_A);

}

}

if (pk == 0)

V_temp -= 2.0 * root_A / rootpi;

else

V_temp -= (1.0 - Erfcc(root_A * (double)pk)) / (double)pk;

V_temp = -1.0*V_temp;

/* --

Now we do the f(|r-R|) sum.

-- */

for (nx = -1*max_r_terms; nx <= max_r_terms; nx++) {

for (ny = -1*max_r_terms; ny <= max_r_terms; ny++) {

x = (double)(pi+nx*L);

y = (double)(pj+ny*L);

r2 = (x*x)+(y*y)+(double)(pk*pk);

r = sqrt(r2);

V_temp = V_temp + Erfcc(r * root_A) / r;

} // end for

} // end for

/* ---

Now we'll do the sum k!=0: g(|k|)*(exp(ikr)-1)

63

Notice that since we are only considering full series of

cells that the imaginary parts of exp(ik.r) will cancel

and only the cos() terms will remain if we sum over the

positive half of the cell and multiply by 2.

-- */

for (nx = 0; nx <= max_i_terms; nx++) {

if (nx == 0)

ny = 1;

else

ny = -1*max_i_terms;

for (; ny <= max_i_terms; ny++) {

k_dot_r = (double)((ny*pi)+(nx*pj))*unitk;

passk = sqrt((nx*nx)+(ny*ny))*unitk;

kk = (nx*nx)+(ny*ny);

V_temp = V_temp + (Int_gk(passk, pk, ALPHA)*(2.0*(cos(k_dot_r)-1)))

/ (double)(rootpi * L * sqrt((double)kk));

} //end for(ny < max)

} //end for(nx < max)

V_clmb[pi][pj][pk] = V_temp;

V_clmb[pj][pi][pk] = V_temp;

printf("(%ld,%ld,%ld)\t%9.12f\n", pi, pj,pk, V_temp);

} //end for

return 0;

} //end main

/* Erfcc() --

Complimentary error function (1-erf)

This is taken largely from Numerical recipes, with slight

modification by Prof. Zhang

The fractional error is claimed to be less than 1.2x10^(-7)

EVERYWHERE

---*/

double Erfcc(double x)

{

double z, t;

double ans = 0.0;

z = fabs(x);

t = 1.0 / (1.0 + (z / 2.0));

ans = t * exp((-1*z)*z-1.26551223+t*(1.00002368+t*(.37409196+t

(.09678418+t(-.18628806+t*(.27886807+t*(-1.13520398

+t*(1.48851587+t*(-.82215223+t*.17087277)))))))));

if (ans < 0.0)

ans = 2.0 - ans;

return ans;

} // end Erfcc()

64

/* Check_pbc() --

This function will take the difference between 2 points as

an argument and if that distance is greater than L/2 (therefore

overlapping in the pbc) converts and returns that value as the shortest

possible distance in 1 dimension.

--- */

long Check_pbc(long dist)

{

long temp;

if (dist < 0)

dist = -1*dist;

temp = dist % L;

if (temp > L/2)

return (L - temp);

else

return temp;

} //end Check_pbc

65

Bibliography

[1] A. Levi and M. Kortla, Journal of Physics: Condensed Matter 9, 299 (1997).

[2] K. Binder and D. Heermann Monte Carlo Simulation in Statistical Physics: an intro-

duction. Springer-Verlag, Berlin, 1992.

[3] M. Kalos and P. Whitlock Monte Carlo Methods. J Wiley and Sons, New York, 1986.

[4] S. Park and T. Shrout, Journal of Applied Physics 82, 1804 (1997).

[5] N. Giordano Computational Physics. Prentice Hall, New Jersey, 1997.

[6] S. Zhang and H. Krakauer, Proposal to ONR

[7] A. Bortz, M. Kalos and J. Lebowitz, Journal of Computational Physics 17, 10 (1975) .

[8] S. Park and K. Miller, Communications of the ACM 31, 1192 (1988).

[9] S. Park and L. Leemis Discrete-Event Simulation: A First Course. pre-print edition

1998.

[10] L. Mikheev and A. Chernov, Journal of Crystal Growth 112, 591 (1991).

[11] G. Gilmer and P. Bennema, Journal of Crystal Growth 13/14, 148 (1972).

[12] G. Gilmer and P. Bennema, Journal of Applied Physics 40, 1347 (1972).

66

[13] Y. Saito Statistical Physics of Crystal Growth. World Scienti�c, New Jersey, 1996.

[14] L. Landau and E. Lifshitz Statistical Physics { Part 1. Pergamon Press, New York,

1980.

[15] J. Weeks and G. Gilmer, Advances in Chemical Physics 40, 157 (1979).

[16] H. Leamy, G. Gilmer and K. Jackson in J. Blakeley ed., Surface Physics of Materials

I. Academic Press, New York, 1975.

[17] H. Muller-Krumbhaar in K. Binder ed., Monte Carlo Methods in Statistical Physics.

Springer, Berlin, 1986.

[18] R. Waser and D. Smyth in C. Araujo ed., Ferroelectric Thin Films: Synthesis and

Basic Properties. Gordon and Breach, New Jersey, 1996.

[19] L. Bellaiche and D. Vanderbilt, Physical Review Lettters 81, 1318 (1998).

[20] B. Nijober and F. de Wette, Physica 23, 309 (1957).

[21] D. Ceperley, Physical Review B 18, 3126 (1978).

[22] P. Ewald, Annals de Physik 64, 253 (1921).

[23] N. Setter and L. Cross, Journal of Applied Physics 51, 4356 (1980).

[24] B. Burton and R. Cohen, Physical Review B 52, 792 (1995).

[25] M. Allen and D. TildesleyComputer Simulations of Liquids. Oxford Science, New York,

1987.

67

[26] C. Bender and S. Orszag Advanced Mathematical Methods for Scientists and Engineers.

McGraw-Hill, New York, 1978.

[27] S. Zhang, private communication.

[28] W. Press, S. Teukolsky, W. Vetterling, and B. Flannery Numerical Recipes in C, 2nd

ed. Cambridge Press, New York, 1992.

68

