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Abstract: 
 The hypothesis presented by Kaufman et al. is that there is resonance between an 
equatorially trapped Yanai mode and a coastal Kelvin mode in the Gulf of Guinea.  The 
TOPEX/POSEIDON merged geophysical data records are the data set proposed to be 
used to observe the eastern Atlantic region in consideration.  Using satellite altimetry data 
to observe this propagating waves presents several interesting data analysis challenges.  
This paper deals with the issues of the maximum bandwidth, minimum signal to noise 
ratio, maximum sparsity, and smallest sample size allowed to created statistically 
significant evidence of signal propagation in the ocean.  To create a controlled 
experiment, a model Yanai wave will be used as the wave field for this analysis.  
 
1.  Introduction: 
 The problem presented is one of observation.  Can propagating signals be 
detected using sparsely sampled data?  Can causality be maintained using auto-
correlation functions of discrete sets in space and time?  These questions are of particular 
relevance to the physical problem at hand.  The hypothesis under consideration (Kaufman 
et al.) is that there is resonance between an equatorially trapped Yanai wave and a coastal 
Kelvin wave in the Gulf of Guinea (see figure 1.1). 

 
Figure 1.1: The Gulf of Guinea with an eastward propagating Yanai mode and a 

westward propagating Kelvin mode (Kaufman et al.). 
The ocean’s vast expanse prevents the present day observer from obtaining a complete 
data set, with high spacial and temporal resolution.  Due to this limitation, various 
methods have been developed to track the circulation, temperature, wind fields, and many 
other useful observables for the study of the fluid dynamics involved with our earth’s 
oceans.  One of the most promising techniques for acquiring more complete and 
uniformly sampled data sets is satellite altimetry.  Using radar, laser range finders, and 
the global positioning satellite network,  radar altimeters can calculate the surface height 



 5

of the ocean to a precision of the order of one centimeter.  This level of precision is 
actually not only due to the hardware, but is imposed by the sophisticated set of data flags 
and correction factors that are applied to the raw data in the calculation.   

Of particular interest is the TOPEX/POSEIDON satellite, a joint effort of NASA, 
the French Space Agency, Jet Propulsion Laboratories (JPL), and NOAA.  The 
TOPEX/POSEIDON satellite uses a dual band radar altimeter (Ku and C band radar, 13.6 
GHz and 5.3 GHz respectively). The satellite has been in its observation phase since 
February of 1993.  The satellite emits RF radiation toward the earth’s surface.  It then 
receives and processes the back-scattered radiation.  The onboard computer then has  “the 
height above the earth’s surface (pulse transmit time), ocean significant wave height (via 
return pulse shape characteristics), and surface radar backscatter coefficient (via received 
energy)” as raw data for its calculations (Brooks et al).  Its average altitude is 1339 km, 
which provides a sampled footprint with a radius of 11.0 km.  The ground track velocity 
of the satellite is 5.8 km/s and the groundtrack pattern repeats within ±1 km every 9.92 
days creating a grid of 254 groundtracks on the earth’s surface.   

 The difficulty in using satellite data to study wave motion becomes evident in 
figure 1.2. 

 
Figure 1.2: Graphic mapping of sea surface height data from the 

TOPEX/POSEIDON satellite 
In figure 1.2 the diagonal colored lines are the satellite ground tracks.  The gray 

spaces in between these lines reveal the incompleteness of the collected data.   This 
spacing produces a less than ideal resolution in the data.  For instance, the section of the 
Atlantic Ocean that is proposed to have resonance between coastal Kelvin modes and 
equatorially trapped Yanai modes in Kaufman et al., is the Gulf of Guinea.  
Comparing figure 1.1 to figure 1.2, it becomes obvious that only a total of ≈ 20 ground 
tracks lie in the area of interest.  So for any given latitude, there will only be on the order 
of 20 data points.  This, needless to say, does not even begin to approach the size of a 
data set needed to perform a Fourier transformation to confirm the dispersion relations of 
the two wave modes and calculate their phase speeds and time lags to prove the 
hypothesis of resonance between the two (Kaufman et al).  Therefore, an alternative 
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method of data analysis must be used in order to obtain a meaningful result using satellite 
altimetry.   
 The proposed alternative technique for data analysis is to use the 
TOPEX/POSEIDON sea surface height data as a displacement field in space and time.  
Using statistical methods presented in the paper by Sciremamano, auto-correlation 
functions will be found independently in space and time to determine the separation in 
space and time between statistically independent data points.  Once this decorrelation 
time and distance are found, correlation functions can be found for space and time lags 
together.  It is the object of this study to use a model wave signal to test the limits of this 
analysis process.  Through examination of the correlation functions produced, the ability 
to detect a wave propagating, the maximum bandwidth that is still detectable, and the 
minimum signal to noise ratio and data sample needed for detection will be estimated. 
 
2.  Background: 

Kaufman et al. presents a hypothesis that there is resonance between the Kelvin 
mode propagating westward along the coast of the Gulf of Guinea and the incoming 
(eastward propagating) mixed-Rossby gravity mode (Yanai).  The theory is developed 
using β-plane and f -plane models (see Appendix 1) for the Yanai mode and Kelvin 
mode respectively.  These models are developed using the shallow water approximation.  
This approximation is valid because the wavelength of the waves involved and the length 
scale of the Atlantic Ocean are large with respect to the depth of the ocean.  Table 2.1 
provides a general idea of the depths of the oceans covering the Earth. 

TABLE 2.1 

 
The physics involved will be dealt with more thoroughly in a moment.  Theoretical 
considerations suggest that the wavelength of the resonant modes is on the order of 100 
kilometers, at least one order of magnitude greater than the maximum depth of the 
Atlantic Ocean.   

The essential equations of any fluid motion are two conservation laws: 
conservation of mass and conservation of momentum.  In a fluid continuum, conservation 
of mass is 
∂ρ
∂t

+ ∇ ⋅ ρu( ) = 0          (2.1) 

where ρ is the density of the fluid and u  is the velocity field.  Conservation of 
momentum in a fluid is, 

ρ du
dt

+ 2Ω × u 
 

 
 

+ ∇p + ρ∇Φ = 0 ,       (2.2) 

the sum of external forces with ∇p as the pressure gradient force, ρ∇Φ is the body force 
with Φ as the gravitational potential energy per unit mass, and Ω = 2π 24hours  is the 
rotational frequency of the earth.  It is of note that at these scales of motion, viscous 

Ocean Mean Depth (km) Maximum Depth (km)

Pacific 3.94 11.022

Atlantic 3.575 8.605

Indian 3.84 7.45

Arctic 1.117 4.6
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effects are negligible.  Fluids are also subject to conservation of energy and the first and 
second laws of thermodynamics, but these will not play significant roles in this 
discussion. 
 With the conservation equations in place we are interested in developing the 
mathematics of the Kelvin and Yanai modes.  There are two length scales that will 
determine whether or not shallow water theory is a valid approximation for these two 
modes: the Rossby radii of the two modes 
 Re = c β( )1 2

         (2.3) 

(where the Coriolis parameter of the β-plane approximation is f y( ) ≡ βyand c = ′ g H( )1 2
 

is the wave speed in terms of the reduced gravity ′ g ≡ ∆ρ ρ( )g with ∆ρ equal to the 

change in density over the thermocline (Kaufman et al.)(see Appendix 1)) and  

 δ =
D
L

          (2.4) 

with D as the characteristic depth and L as the characteristic length scale. 
As it turns out, the Rossby radius of the Kelvin mode is ≈ 70km  and of the Yanai mode is 
≈ 190km .  Both of these are at least one order of magnitude larger than the mean depth of 
the Atlantic Ocean (3.575km).  This fulfils the first condition for the shallow water 
approximation to be valid; the second is that δ = D L << 1.  With a depth scale of 3.575 
kilometers and a length scale on the order of 1000 kilometers, the Atlantic Ocean 
obviously fulfills δ = D L << 1. 
Seeing that these two conditions are met, the shallow water approximation can be used to 
model the Kelvin and Yanai modes in the Gulf of Guinea.  For the purpose of this 
discussion, six assumptions will be made to simplify the shallow water equations: 
• The fluid is incompressible: ∇ ⋅u = 0. 
• The fluid has constant and uniform density.  This eliminates internal waves and 

restricts the theory to a description of thermocline dynamics.  Although the equations 
presented are derived for a simple shallow water system, they can be used to describe 
the dynamics of the thermocline under the rigid lid approximation. 

• The fluid is shallow.  Described above, this is the essential condition on which this 
theory is based. 

• W ≤ O δU( ).  The vertical scale of the velocity field, W, is much smaller than the 

horizontal scale of the velocity field, U, by a factor on the order of δ << 1. 
• For this solution,  there is no background fluid flow.  In other words, the perturbation 

will be about a rest state. 
• A columnar model of the ocean is assumed where the pressure, p, at any point in the 

field is  
p = ρg h − z( )+ p0           (2.6) 

where p0  is the pressure at the surface atmospheric pressure, and h is the height of the 

surface from some reference level below the seafloor.  Note that this equation for 
pressure establishes the independence of the vertical and horizontal pressure gradient: 
∂p
∂x

= ρg
∂h
∂x

         (2.7a) 

∂p
∂y

= ρg
∂h
∂y

         (2.7b) 
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This also establishes that the horizontal accelerations must be independent of z.  This 
means that it is consistent to say that the horizontal velocities remain z-independent if 
they initially are so.   
 

 With these six assumptions in place, we are interested in deriving the dispersion 
relations of the Kelvin and Yanai modes.  To do this we will manipulate the momentum 
equation (2.2).  The linearized forms of the momentum equations for shallow water 
theory with no background flow disregard any quadratic terms in u,v,η (see Appendix 1 
for a more complete derivation of shallow water equations). 
∂u
∂t

− fv = −g
∂η
∂x

         (2.8a) 

∂v
∂t

+ fu = −g
∂η
∂y

         (2.8b) 

∂η
∂t

+
∂
∂x

uH0( )+
∂
∂y

vH0( )= 0        (2.8c) 

where H0  is the constant depth about which the perturbation is created.  These three 

equations can then be manipulated to obtain an equation in one variable 
∂
∂t

∂2

∂t 2 + f 2 
 
  

 
η− ∇ ⋅ C0

2∇η( ) 

  
 

  
− gfJ H0 ,η( )= 0      (2.9) 

where J is the Jacobian of two functions 

J(A,B) ≡
∂A
∂x

∂B
∂y

−
∂A
∂y

∂B
∂x

        (2.10) 

and the squared phase velocity of the wave is  
C0

2 = gH0 .          (2.11)  

 The eigenvalue relation that arises from imposing the boundary condition (in y) of an 
infinite (in x) channel of width L is 

ω2 − f 2( )ω2 − C0
2k2( )sin ω2 − f 2

C0
2 − k2 

 
  

 
 L

 

  
 

  
= 0      (2.12) 

Taking the second factor of this relation and assuming a local boundary in the horizontal 
plane of motion gives us the Kelvin mode with the dispersion relation 

k = −
ω
C0

          (2.13) 

This result will be seen to be particularly interesting because the dispersion relation for 
the Yanai mode (Kaufman et al.) is 

k =
ω
C

−
β
ω

          (2.14) 

where β is the comes from the Coriolis parameter in the β-plane approximation 
f y( ) = βy           (2.15) 

From these two dispersion relations comes the claim that resonance between Kelvin and 
Yanai modes is possible.  The two dispersion curves intersect at a well-defined frequency 
and wavenumber; there is resonance (see figure 2.1) (Kaufman et al.). 
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Figure 2.1: The intersection of the Kelvin and Yanai dispersion relations in dimensionless 

form.  The curves cross at ωR βc( )
1

2 = 2
− 1

2 ,kR c β( )
1

2 = −2
− 1

2  (Kaufman et al.). 

Looking back at figure 1.1 it is seen that the two modes are travelling in opposite 
directions.  This is because the group velocity of the two modes propagate in opposite 
directions.  Returning to figure 2.1, it may be seen that Kelvin and Yanai dispersion 
relations have opposite slope (group velocity) but intersect at a well defined wave 
number and frequency with phase speed in the same direction. 
 Finally there are a couple of numbers that will be useful in later discussions: 
The Rossby Deformation Radius is  

R =
C0

2Ω
          (2.16) 

and is the distance over which the gravitational tendency to flatten the fluid surface is 
balanced by the Coriolis acceleration to deform the surface (Pedlosky). 

• The Rossby number is a dimensionless number which is the ratio of inertial force to 
geostrophic force and is used to determine if a motion is large scale 

ε =
U

2ΩL
          (2.17) 

with U equal to the horizontal velocity scale and L equal to the horizontal length 
scale. 

 
3.  The Model: 

For the purposes of this discussion, we are only going to develop a model Yanai 
wave, not a Kelvin wave.  This is because the Yanai mode is dispersive and therefore 
harder to detect.  
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The equation used to build the model wave field is  
Ψ = a j

j
∑ cos(k jx −ωj t + φj ) .        (3.1) 

The amplitude of the j-th mode is 

a j = e−( j − j d ) 2 / σ 2

         (3.2) 
and varies between zero and one with jd  as the index of the dominant mode (amplitude 

one).  The wavenumber of the j-th mode is 

k j ≡
−2πj

L
          (3.3) 

with L as the characteristic length scale, the Rossby radius of the resonant mode, 365km.  
The frequency of the Yanai mode of the j-th term is derived from the dispersion relation 
to be 

ωj =
1
2

k jC0 +
1
2

k j
2C0

2 + 4βC0 .       (3.4) 

φj  is a random phase between 0 and 2π .  It is of note that (3.1) will be expanded in odd 

values of j about jd . 

  The model Yanai wave field is constructed using code developed in C++ (see 
appendix 2) to create two dimensional (space and time), double-precision arrays.  The 
arrays are created by sampling the wave field at 
xi = iL 100.0           (3.5) 

t k =
2πk

100.0ω jd

          (3.6) 

This process creates an array with indices i and k which are related to the position and 
time by the above scale factors.  Figure 3.1 is an example of a model Yanai mode. 
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Figure 3.1: A model Yanai wave field in the second quadrant (negative space, positive 

time) 
 
 The end in mind is to create a model Yanai wave signal that can be manipulated 
to test the limits of the space-time correlation method of data analysis.  This model allows 
us to test the four essential limits on this data analysis technique: the size of the data 
sample, the maximum allowed bandwidth, the minimum signal to noise ratio, and the 
sparsity in space and time of the data samples allowed to detect a propagating signal.  
 
4.  Limits: 

The ability to detect a wave will be tested by using a single j-term expansion of 
the wave at j=15 (an arbitrary value).  The test for the size of the data set will be 
discussed further in the section on statistical methods.  However, it may be seen that the 
size of the array [i,k] may be varied.  The maximum allowed bandwidth will be tested by 
varying the σ2  term in the power spectrum and then including all significant j-terms in 
the expansion of (3.1).  Finally, the minimum signal to noise ratio will be tested by 
creating gaussian noise with a variable RMS (see appendix 3) and then calculating the 
RMS of the wave field.  This done, the two may be superimposed and used as a new 
wave field to be tested using the data analysis techniques described in the next section. 
 
5.  Statistics: 



 12

 The question at hand is one of interpretation and analysis by statistical methods.  
The technique used to discern waves propagating in a data field is space-time correlation.  
The basic idea being that if a signal is propagating at some velocity 

v =
∆x
∆t

          (5.1) 

significant correlations should be found between data sets sampled from points in space 
and time that are separated by space and time lags whose ratio returns the propagation 
velocity plus or minus some bin width.  In other words, space-time correlations will be 
shown to reveal a signal propagating at velocity v within some confidence level (bin 
width). 
 The correlation coefficient relating two data samples x and y  
x = xi{ }= x1,x2 ,x3 ,...xn( )
y = y i{ }= y1, y2 , y3,...yn( )

        (5.2) 

is defined as 

R =
n xi

i =0

n−1

∑ yi

 
 
  

 
− xi

i =0

n −1

∑
 
 
  

 
yi

i =0

n−1

∑
 
 
  

 

n xi
i =0

n−1

∑
2 

 
  

 
 − x i

i =0

n −1

∑  
  

 

2

n yi
i =0

n−1

∑
2 

 
  

 
 − yi

i =0

n−1

∑ 
 
  

 

2
     (5.3) 

where n is the number of statistically independent points in each set.  The first extension 
from this is to create an auto-correlation function.  Assume that x = x t( ) then the 
autocorrelation function of that data set in time would be defined as 

R(∆t) =
n ∑ x t( )x t + ∆t( )( )− ∑ x t( )( ) ∑ x t + ∆t( )( )

n ∑ x t( )2( )− ∑x t( )( )2
n ∑x t + ∆t( )2( )− ∑x t + ∆t( )( )2

   (5.4) 

This autocorrelation function is a function of the time lag between the first sample from 
the data set x and the second sample.  Just as in the calculation of the correlation 
coefficient R, the size of the two samples must be the same (the summations must have 
the same limits).  The autocorrelation function can also be calculated as a function of 
space-lag.  This function is interesting because it allows the observer to determine what 
statistically independent samples are in space and time.  Two statistically independent 
points in space-time are separated by at least the significant decorrelation time and space.  
Although autocorrelation functions in space or time independently will not be used in the 
analysis of the wave model, they are essential in analyzing data sets from satellite 
altimetry (Sciremamano). 
 From this point the derivation of a space-time correlation function is somewhat 
elementary.  Instead of only having x as a function of t, now x = x(z,t)  where z is a 
spatial coordinate.  Then the space-time correlation function is defined as 

R(∆z,∆t) =
n ∑ x z,t( )x z + ∆z, t + ∆t( )( )− ∑ x z, t( )( ) ∑ x z + ∆z,t + ∆t( )( )

n ∑ x z, t( )2( )− ∑ x z,t( )( )2 n ∑ x z + ∆z,t + ∆t( )2( )− ∑ x z + ∆z,t + ∆t( )( )2
 

           (5.5) 
and is a function of the space-lag and time-lag separating the two samples of the data set 
x.  For the purpose of detecting a propagating signal, one would expect to see a peak in 
the correlation function when 
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∆z
∆t

≈ C0           (5.6) 

Once again turning to the physical problem at hand, x is actually a discrete data set, not a 
continuous function.  With this in mind, x z,t( )→ x l, m  where l is the space index and m is 

the time index used in (3.6) and (3.7) to sample the model wave.  With the data set now 
in matrix form, R ∆z,∆t( )→ Ri ,k and is defined as 

Ri ,k =
n xl, m

l ,m
∑ xl + i,m + k

 
 
  

 
 − x l,m

l, m
∑

 
 
  

 
 x l+ i, m+ k

l, m
∑

 
 
  

 
 

n x l,m
l, m
∑

2 

 
  

 
 − xl, m

l ,m
∑

 

 
  

 
 

2

n x l+ i, m+ k
l,m
∑

2 

 
  

 
 − xl + i ,m +k

l ,m
∑

 

 
  

 
 

2
   (5.7) 

where i and k are offsets to the space and time indices respectively.  This correlation 
function creates a two-dimensional array of correlation coefficients with the offsets as 
indices.  This allows the observer to see patterns that will be directly related to space and 
time lag and therefore be able to detect a propagating signal with velocity 

C0 − ε ≤
∆z
∆t

≤ C0 + ε         (5.8) 

where 2ε  is a bin width of wave speeds. 
 Having established the correlation functions and a general concept of the method 
of detection of signals, we turn to a discussion of the methods used in discovering a 
significant correlation indicative of a propagating signal.  For the purposes of this paper, 
visual analysis of correlation functions will be sufficient to recognize evidence of 
propagating signals.  However, before actual data handling can take place, further 
exploration of numerical methods to derive wave speed is needed.  
 
6.  Results: 
 Visual analysis of the wave and correlation fields yields conceptual results, 
although it will take a great deal more analysis to achieve numerical results.  There are 
six essential results that will be estimated in this section, the effects of: bandwidth, noise, 
bandwidth and noise, sparse sampling, sparse sampling of a broadband, noisy field, and 
coarse sampling on the ability of an observer to detect a propagating signal. 
 
 Broadening the bandwidth did not appear to have a significant effect on the ability 
to observe a propagating signal (see Appendix 2 for C++ code used to construct 
broadband wave fields).  Figures 6.1 and 6.2 illustrate the effects of broadening the 
bandwidth.  Although the figures are not showing the widest bandwidth, the beat 
frequency of the 25 modes can be seen to have positive slope where the wave itself has 
negative slope.  This difference in sign is to be expected from figure 2.1 where it is seen 
that the phase speed is negative, but the slope of the dispersion relation is positive.  This 
implies that the beat frequency seen in 6.1 and 6.2 is somehow linked to the phase 
velocity of the wave detected. 
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Figure 6.1:  Yanai wave field expanded in 25 terms about j=25 with σ2 = 100.0 in the 

power spectrum 
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Figure 6.2:  Correlation field of a Yanai wave expanded in 25 terms about j=25 with 

σ2 = 100.0 in the power spectrum 
 
 The second limiting factor to be added is noise.  For the purposes of this model, 
Gaussian noise was generated and superposed on the wave field (see Appendix 3).  To 
maintain a controlled experiment, the wave used is a single mode Yanai wave expanded 
about j=15.  The RMS of the wave field used (figure 6.3) is 0.707.  The maximum signal 
to noise ratio of a wave still visibly detectable in the correlation function was found to be 
0.035 where the noise has an RMS value of 20.0.  This result can be seen in figures 6.4 
and 6.5.  With the RMS of the noise at 20.0, the wave is essentially indistinguishable in 
figure 6.4.  However, the signal reappears in the correlation function in figure 6.5.  The 
conclusion to be drawn from this is that using correlation fields to detect waves allows 
for a significant amount of noise in the signal. 
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Figure 6.3:  A single mode Yanai wave at j=15 
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Figure 6.4:  A single mode Yanai wave with RMS 0.707 at j=15 with Gaussian noise of 

RMS=20.0 superposed (signal to noise ratio is 0.035). 
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Figure 6.5:  Correlation field of a single mode Yanai wave with RMS 0.707 at j=15 with 

Gaussian noise of RMS=20.0 superposed (signal to noise ratio is 0.035). 
 

The obvious next step is to take the previous two alteration to the data and 
combine them to test the limits of observation in a noisy broadband wave field.  For this 
result a 100 mode Yanai wave expanded about j=100 with σ2 = 1000.0  in the power 
spectrum (figure 6.6) will be used with Gaussian noise of RMS equal to 10.0 (figure 6.7).  
Although the signal to noise ratio is higher, the ability to detect the wave is more 
challenging.  This is because the wave pattern to be found in the noise is more complex.  
Once again, though, the correlation field (figure 6.8) brings out the signal for visual 
analysis. 
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Figure 6.6:  A 100 mode Yanai wave expanded about j=100 with σ2 = 1000.0  in the 

power spectrum. 
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Figure 6.7:  A 100 mode Yanai wave expanded about j=100 with σ2 = 1000.0  in the 

power spectrum superposed on Gaussian noise of RMS = 10.0. 
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Figure 6.8:  Correlation field of a 100 mode Yanai wave expanded about j=100 with 

σ2 = 1000.0  in the power spectrum superposed on Gaussian noise with an RMS=10.0. 
 
 

Having estimated limits on the bandwidth and signal to noise ratio, sparse data 
sampling is the next result to be considered.  For the purposes of this paper, sparse data 
sampling means that a wavefield is created and then in calculating the correlation 
function, only every n-th x value and m-th t value are used (with n and m being 
integers)(see Appendix 7).  This means that with n and m equal to one a correlation field 
similar to those previously calculated will be constructed.  The outside limit for detecting 
a propagating signal is found when n=10 and m=10 (figure 6.9).  The interesting question 
in this limit is how to establish a causal link between one time series in space and the next 
time series in space.  The answer comes from the hypothesis being tested.  We are only 
interested in finding a wave of a given velocity (in this case -0.85 m/s).  Therefore, we 
simply need to establish how far the wave travels in each time increment and then it 
becomes obvious which correlations are linked by this signal and which are not (the 
green line in figure 6.9).  The more challenging question arises when there is discrete 
sampling in both time and space.  This is the ultimate question to be answered in this 
research before satellite data will be useful in discovering a propagating signal. 
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Figure 6.9:  Correlation function of single mode Yanai wave at j=15 sampled on a grid of 

n=10 and m=10.  The green line represents the wave velocity 0.85 m/s. 
 
 As previously, we are interested in combining the effects of sparse sampling with 
noise and bandwidth.  A 25 mode Yanai wave expanded around j=25, with σ2 = 100.0  in 
the power spectrum, is superposed on Gaussian noise with a signal-to-noise ratio of 
0.2877 and will be sampled on a grid of n=5 and m=5.  The correlation function seen in 
Figure 5.10 is the result.  As expected, the dominant wave velocity is harder to see in this 
result because of the combined effects of bandwidth, noise, and sparse sampling.  
However, in comparing the sparsely sampled correlation function (left) with the regularly 
sampled correlation function (right), the wave velocity becomes apparent.  In the case of 
actual observation, a complete correlation function like the one seen on the right in figure 
5.10 is not available.  However, having done this preliminary analysis on the model 
wave, interpretation of the sparsely sampled wave field is now possible. 
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Figure 6.10:  The correlation function of a 25 mode Yanai wave expanded around j=25 
with σ2 = 100.0  in the power spectrum superposed on Gaussian noise with a signal-to-

noise ratio of 0.287717  sampled on a grid of n=5 and m=5 (left) as compared to the same 
correlation function sampled on a grid of n=1 and m=1 (right). 

 
The final result to be discussed is the effect of coarse sampling (see Appendix 6).  

The TOPEX/POSEIDON satellite samples the ocean on a discrete time and space grid. 
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The hypothesis presented in Kaufman et al. is that there is resonance in the Gulf of 
Guinea.  Geographically, the Gulf of Guinea lies between 339.4515 and 12.0499 degrees 
longitude.  This defines the area of interest for this discussion.  Over the course of 
29.7468 days, the TOPEX/POSEIDON satellite completes three cycles, recording 72 
points in space-time along the equator in the area of interest (see figure 5.11).   
 

 
Figure 6.11:  Superposition of TOPEX/POSEIDON satellite sampling in the geographical 

region of interest on a single mode Yanai wave at j=15. 
 

The blue points seen in the figure represent a total distance of 3628.7974 kilometers 
observed over a total of 40642.96 minutes.  This means that the satellite (as seen in the 
figure) has the opportunity to observe 9.9419 modes in space and 1.2271 modes in time 
because the resonant length scale of the Yanai wave is 365 kilometers and the resonant 
period is 33120 minutes.  With the analysis of the model wave in mind, it may be seen 
that the regular grid of space and time lags of the TOPEX/POSEIDON data, will 
facilitate observation of a propagating signal in the Gulf of Guinea.  This conclusion is 
based on the fact that if all the space-time lags between sets of two points are considered 
there are on the order of 40 pairs of data points collected by TOPEX/POSEIDON along 
the equator that are separated in space-time by 0.85 m/s ±0.1m / s . 
 
7.  Conclusion: 
 Space-time correlation functions are an essential aspect of data analysis when the 
samples are not continuous in space and time.  Even from this simple visual analysis of 
the model Yanai wave it may be seen that a broadband, low signal-to-noise ratio, sparsely 
sampled data set can be used to observe a propagating signal.  The ability to sift through 
the raw data and retrieve a significant result lies in the statistical methods described in 
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Sciremammano and this paper.  Further research needs  to be pursued to develop 
numerical results.  However, the evidence of the power of these statistical methods is 
apparent even in a cursory visual analysis of the presented results. 
 
Appendix 1 – Derivation of the eigenvalue relation: 
 
Having established that the horizontal velocity field is independent of z, the momentum 
equation (2.2) broken down into components becomes  
∂u
∂t

+ u
∂u
∂x

+ v
∂v
∂y

− fv = −g
∂h
∂x

       (A.1a) 

∂v
∂t

+ u
∂u
∂x

+ v
∂v
∂y

+ fu = −g
∂h
∂y

       (A.1b) 

where f = 2Ω .  Still utilizing the z-independence of u and v, (2.6) can be integrated and 
solved with a rigid bottom boundary so that the equation for mass conservation in this 
approximation becomes 
∂H
∂t

+
∂
∂x

uH( ) +
∂
∂y

vH( ) = 0         (A.2) 

where H = h − hB  with hB  as the height of the rigid bottom from some reference depth.  
Now let the thickness of the fluid layer in the absence of motion be H0 x,y( ).  Then with 

motion included as a small perturbation about this thickness 
H x, y, t( ) = H0 x, y( ) +η x, y,t( )       (A.3) 

is the thickness of the fluid layer as it evolves in time. 
 The linearized forms of (A.1) and (A.2) disregard any quadratic terms in u,v,η 
and become 
∂u
∂t

− fv = −g
∂η
∂x

         (A.4a) 

∂v
∂t

+ fu = −g
∂η
∂y

         (A.4b) 

∂η
∂t

+
∂
∂x

uH0( )+
∂
∂y

vH0( )= 0        (A.4c) 

which can be manipulated to obtain an equation in one variable 
∂
∂t

∂2

∂t 2 + f 2 
 
  

 
η− ∇ ⋅ C0

2∇η( ) 

  
 

  
− gfJ H0 ,η( )= 0      (A.5) 

where J is the Jacobian of two functions 

J(A,B) ≡
∂A
∂x

∂B
∂y

−
∂A
∂y

∂B
∂x

        (A.6) 

and C0
2 = gH0 .  This equation can then be used to derive two differential equations to 

solve for the velocity field 
∂2

∂t 2 + f 2
 

 
  

 

 
  u = −g

∂2η
∂x∂t

+ f
∂η
∂y

 

 
  

 

 
         (A.7a) 

∂2

∂t 2 + f 2
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 
  

 

 
  v = −g

∂2η
∂y∂t

− f
∂η
∂x

 

 
  

 

 
         (A.7b) 
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We now explore the more particular case of wave motion in a bounded channel to derive 
the Kelvin mode. 
Imposing this boundary condition requires that the velocity in the y-direction disappear at 

the rigid walls.  This implies (in view of (A.7)) that 
∂2η
∂y∂t

− f
∂η
∂x

= 0;y = 0,L         (A.8) 

Therefore, substituting in wave solutions that are periodic in x and t of the form 
η= Reη y( )ei kx−ω t( )         (A.9) 

we obtain an eigenvalue problem for the complex amplitude that varies in the y-direction 
across the channel, η y( ). 

d2η 
dy2 +

ω2 − f 2

C0
2 − k 2

 

 
  

 

 
  η = 0                   (A.10a) 

dη 
dy

+ f
k
ω

η = 0; y = 0, L                   (A.10b) 

Solving these yields the eigenvalue relation 

ω2 − f 2( )ω2 − C0
2k2( )sin

ω2 − f 2

C0
2 − k2

 

 
  

 

 
  L

 

 
 
 

 

 
 
 = 0      (A.11) 

 
Appendix 2 – Wave field construction (C++): 
 
//BROADBAND WAVE MATRIX GENERATOR 
#include<iostream.h> 
#include<fstream.h> 
#include<math.h> 
 
int main() 
{ 
double Pi=3.141592654; 
double TwoPi=2.0*Pi; 
double RP[1000]; 
double beta, L, c; 
double t[500]={0.0}; 
double x[500]={0.0}; 
double wave_array[501][1001]={0.0}; 
double out_array[501][1001]={0.0}; 
double power_array[1000]={0.0}; 

y

L

x

Figure 2.1 - Infinite Channel of Width L
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double omega[1000]={0.0}; 
double k[1000]={0.0}; 
double sigsqr=0.0; 
int numberofterms=1; 
 
extern float ran1(long *); 
long seed=-1; 
long *seedpoint=&seed; 
ran1(seedpoint); 
 
fstream outfile; 
char outfilename[200]; 
 
cout << "Please Enter the Output File Name:" << endl; 
cin >> outfilename; 
 
cout << "Please Enter an ODD Number of Terms for the Expansion (up to 
999):" << endl; 
cin >> numberofterms;  
while(numberofterms%2==0) 
  { 
    cout << "That was not an ODD number of terms!" << endl; 
    cout << "Please Enter an ODD Number of Terms for the Expansion:" << 
endl; 
    cin >> numberofterms; 
  } 
cout << "Please enter sigma squared for the power term:"<< endl; 
cin >> sigsqr; 
 
 
for (int rancounter=0;rancounter != numberofterms+2;rancounter++) 
  { 
    RP[rancounter]=TwoPi*ran1(seedpoint); 
 
  } 
 
 
double omegadominant; 
int jdominant=0; 
cout << "Please Enter a value for J-dominant:" << endl; 
cin >> jdominant; 
 
c=0.85; 
beta=2.3E-11; 
L=3.65E5; 
 
omegadominant=0.5*(-TwoPi*jdominant/L)*c+0.5*sqrt(pow((-
TwoPi*jdominant/L),2.0)*pow(c,2.0)+4*beta*c); 
 
cout << "jdominant = " << jdominant << endl; 
cout << "omegadominant = " << omegadominant << endl; 
cout << " c = " << c << endl; 
cout << " beta = " << beta << endl; 
cout << " L = " << L << endl; 
 
 



 28

for(int s=jdominant-((numberofterms-1)/2);s!=jdominant+((numberofterms-
1)/2)+1;s++) 
  { 
     k[s]=(-TwoPi*s)/L; 
     
omega[s]=((0.5*k[s]*c)+(0.5*sqrt((pow(k[s],2.0)*pow(c,2.0))+(4*beta*c)))
); 
     //omega[s]=k[s]; 
     power_array[jdominant-((numberofterms-1)/2)-1]=0.0; 
     power_array[s]=exp(-(pow((s-jdominant),2))/(sigsqr)); 
     cout << "the j= " << s << " k = " << k[s] << endl; 
     cout << "the j= " << s << " omega = " << omega[s] << endl; 
     cout << "the j= " << s << " power spectrum coef = " << 
power_array[s] << endl; 
  } 
 
int j,i,m,q,r; 
for(j=jdominant-((numberofterms-1)/2);j!=jdominant+((numberofterms-
1)/2)+1;j++) 
  { 
    for(i=0;i!=500;i++) 
      { 
 for(m=0;m!=1000;m++) 
   { 
     x[i]=L*i*1.0/1000.0; 
     //    t[m]=L*m*1.0/10.0; 
     t[m]=(TwoPi/omegadominant)*(m*1.0/200.0); 
     
wave_array[i][m]=wave_array[i][m]+(power_array[j]*cos((k[j]*x[i])-
(omega[j]*t[m])+RP[j])); 
     if(j==jdominant+((numberofterms-1)/2)) 
       out_array[i][m]=wave_array[i][m]; 
   } 
      } 
  } 
 
outfile.open(outfilename, ios::out); 
for(q=0;q!=500;q++) 
  { 
    for(r=0;r!=1000;r++) 
      { 
 outfile << out_array[q][r] << "\t" ; 
      } 
    outfile << endl; 
  } 
 
return 0; 
} 
 
 
Appendix 3 – Gaussian noise and Wave field constructor (C++): 
 
//BROADBAND and NOISE WAVE MATRIX GENERATOR 
#include<iostream.h> 
#include<fstream.h> 
#include<math.h> 
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int main() 
{ 
double Pi=3.141592654; 
double TwoPi=2.0*Pi; 
double RP[1000]; 
double beta, L, c; 
double t[500]={0.0}; 
double x[500]={0.0}; 
double wave_array[501][1001]={0.0}; 
double out_array[501][1001]={0.0}; 
double power_array[1000]={0.0}; 
double omega[1000]={0.0}; 
double k[1000]={0.0}; 
double sigsqr=0.0; 
int numberofterms=1; 
 
extern float ran1(long *); 
long seed=-1; 
long *seedpoint=&seed; 
ran1(seedpoint); 
 
fstream outfile; 
char outfilename[200]; 
 
cout << "Please Enter the Output File Name:" << endl; 
cin >> outfilename; 
 
cout << "Please Enter an ODD Number of Terms for the Expansion (up to 
999):" << endl; 
cin >> numberofterms;  
while(numberofterms%2==0) 
  { 
    cout << "That was not an ODD number of terms!" << endl; 
    cout << "Please Enter an ODD Number of Terms for the Expansion:" << 
endl; 
    cin >> numberofterms; 
  } 
cout << "Please enter sigma squared for the power term:"<< endl; 
cin >> sigsqr; 
 
 
for (int rancounter=0;rancounter != numberofterms+2;rancounter++) 
  { 
    RP[rancounter]=TwoPi*ran1(seedpoint); 
 
  } 
 
 
double omegadominant; 
int jdominant=0; 
cout << "Please Enter a value for J-dominant:" << endl; 
cin >> jdominant; 
 
c=0.85; 
beta=2.3E-11; 
L=3.65E5; 
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omegadominant=0.5*(-TwoPi*jdominant/L)*c+0.5*sqrt(pow((-
TwoPi*jdominant/L),2.0)*pow(c,2.0)+4*beta*c); 
 
cout << "jdominant = " << jdominant << endl; 
cout << "omegadominant = " << omegadominant << endl; 
cout << " c = " << c << endl; 
cout << " beta = " << beta << endl; 
cout << " L = " << L << endl; 
 
 
for(int s=jdominant-((numberofterms-1)/2);s!=jdominant+((numberofterms-
1)/2)+1;s++) 
  { 
     k[s]=(-TwoPi*s)/L; 
     
omega[s]=((0.5*k[s]*c)+(0.5*sqrt((pow(k[s],2.0)*pow(c,2.0))+(4*beta*c)))
); 
     //omega[s]=k[s]; 
     power_array[jdominant-((numberofterms-1)/2)-1]=0.0; 
     power_array[s]=exp(-(pow((s-jdominant),2))/(sigsqr)); 
     cout << "the j= " << s << " k = " << k[s] << endl; 
     cout << "the j= " << s << " omega = " << omega[s] << endl; 
     cout << "the j= " << s << " power spectrum coef = " << 
power_array[s] << endl; 
  } 
 
double WaveSum=0.0; 
int j,i,m,q,r; 
 
for(j=jdominant-((numberofterms-1)/2);j!=jdominant+((numberofterms-
1)/2)+1;j++) 
  { 
    for(i=0;i!=500;i++) 
      { 
 for(m=0;m!=1000;m++) 
   { 
     x[i]=L*i*1.0/1000.0; 
     //    t[m]=L*m*1.0/10.0; 
     t[m]=(TwoPi/omegadominant)*(m*1.0/200.0); 
     
wave_array[i][m]=wave_array[i][m]+(power_array[j]*cos((k[j]*x[i])-
(omega[j]*t[m])+RP[j])); 
     if(j==jdominant+((numberofterms-1)/2)) 
       { 
  out_array[i][m]=wave_array[i][m]; 
  WaveSum+=(wave_array[i][m]*wave_array[i][m]); 
       } 
   } 
      } 
 
  } 
cout << "Wave RMS is " << sqrt(WaveSum/500000)<< endl; 
double sigma,a,b; 
cout << "Enter the RMS of the noise:" <<endl; 
cin >> sigma; 
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outfile.open(outfilename, ios::out); 
for(q=0;q!=500;q++) 
  { 
    for(r=0;r!=1000;r++) 
      { 
 a = ran1(seedpoint); 
 b = ran1(seedpoint); 
 outfile << out_array[q][r]+ sigma*sqrt(-
2.0*log(a))*cos(2.0*M_PI*b) << "\t" ; 
 
      } 
    outfile << endl; 
  } 
 
return 0; 
} 
 
 
Appendix 4 – Space-Time Correlation (C++): 
 
//CORRELATION FIELD CONSTRUCTOR 
 
#include <iostream.h> 
#include <fstream.h> 
#include <math.h> 
 
int main() 
{ 
  double data[501][1001]={0.0}; 
  double r_array[400][900]={0.0}; 
  double r_sum=0.0; 
  double r_max=0.0; 
  double r_minusmax=0.0; 
  double sx, sy, sxy, sx2, sy2; 
  fstream infile; 
  fstream outfile; 
  char outfilename[200]; 
  char infilename[200]; 
  cout << "Enter input filename:" << endl; 
  cin >> infilename; 
  cout << "Enter output filename:" << endl; 
  cin >> outfilename; 
  int N=10000; 
  int i,j,n,k,s,r; 
  cout << "Reading in data......" << endl; 
  cout << "Please Wait" << endl; 
 
  infile.open(infilename, ios::in); 
  for(int l=0;l!=500;l++) 
    { 
      for(int m=0;m!=1000;m++) 
 { 
   infile >> data[l][m]; 
 } 
    } 
  infile.close(); 
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  cout << "Computing Correlations...... " << endl; 
 
  for(i=399;i!= -1;i--) 
    { 
      cout << "-" << endl; 
      for(j=0;j!= 900;j++) 
 { 
   sx = 0.0; 
   sy = 0.0; 
   sxy = 0.0; 
   sx2 = 0.0; 
   sy2 = 0.0; 
   for(n =499;n!= 399;n--) 
     { 
       for(k=0;k!= 100;k++) 
  { 
    sx += data[n][k]; 
    sy += data[n-i][k+j]; 
    sxy += (data[n][k]*data[n-i][k+j]); 
    sx2 += (data[n][k]*data[n][k]); 
    sy2 += (data[n-i][k+j]*data[n-i][k+j]); 
  } 
     } 
 
     r_array[i][j] = ((N*1.0*sxy)-(sx*sy))/(sqrt((N*1.0*sx2)-
(sx*sx))*sqrt((N*1.0*sy2)-(sy*sy))); 
        
    if((N*1.0*sx2)-(sx*sx)<=0 && (N*1.0*sy2)-(sy*sy)<=0) 
      { 
        cout << "exception by means of x and y" << endl; 
        goto myLabel; 
      } 
    if((N*1.0*sx2)-(sx*sx)<=0) 
      { 
        cout << "exception by means of x" << endl; 
        goto myLabel; 
      } 
    if((N*1.0*sy2)-(sy*sy)<=0) 
      { 
        cout << "exception by means of y" << endl; 
        goto myLabel; 
      } 
   r_sum+=r_array[i][j]; 
   if(r_array[i][j]>r_max && (i!=0 && j!=0)) 
     r_max=r_array[i][j]; 
   if(r_array[i][j]<r_minusmax && (i!=0 && j!=0)) 
     r_minusmax=r_array[i][j]; 
 } 
    } 
 
  
cout << "Creating output file....." << endl; 
 
myLabel:     
  cout << " Writing output file...." << endl; 
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outfile.open(outfilename, ios::out); 
    for(s = 0; s != 400 ; s++) 
      { 
 for(r = 0; r != 900 ; r++) 
   { 
     outfile << r_array[s][r] << "\t";// << endl; 
   } 
 outfile << endl; 
      } 
outfile.close(); 
 
    cout << "r_max = " << r_max << endl; 
    cout << "r_sum = " << r_sum << endl; 
    cout << "r_minusmax = " << r_minusmax << endl; 
 
return 0; 
} 
 
Appendix 5 – Histogram Binning of Correlation Function (C++): 
//HISTOGRAM BINNING 
 
#include <iostream.h> 
#include <fstream.h> 
#include <math.h> 
 
int main() 
{ 
  double data[501][1001]={0.0}; 
  double r_array[400][900]={0.0}; 
  double out_array[400][900]={0.0}; 
  double r_sum=0.0; 
  double r_max=0.0; 
  double r_minusmax=0.0; 
  double sx, sy, sxy, sx2, sy2; 
  fstream infile; 
  fstream outfile; 
  char outfilename[200]; 
  char infilename[200]; 
  cout << "Enter input filename:" << endl; 
  cin >> infilename; 
  cout << "Enter output filename:" << endl; 
  cin >> outfilename; 
  int N=10000; 
  int i,j,n,k,s,r; 
  int counttwo,countone; 
 
  unsigned long int counterzero=0; 
  unsigned long int counterone=0; 
  unsigned long int countertwo=0; 
  unsigned long int counterthree=0; 
  unsigned long int counterfour=0; 
 
  cout << "Reading in data......" << endl; 
  cout << "Please Wait" << endl; 
 
  infile.open(infilename, ios::in); 
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  for(int l=0;l!=500;l++) 
    { 
      for(int m=0;m!=1000;m++) 
 { 
   infile >> data[l][m]; 
 } 
    } 
  infile.close(); 
 
  cout << "Computing Correlations...... " << endl; 
 
  for(i=399;i!= -1;i--) 
    { 
      cout << "-" << endl; 
      for(j=0;j!= 900;j++) 
 { 
   sx = 0.0; 
   sy = 0.0; 
   sxy = 0.0; 
   sx2 = 0.0; 
   sy2 = 0.0; 
   for(n =499;n!= 399;n--) 
     { 
       for(k=0;k!= 100;k++) 
  { 
    sx += data[n][k]; 
    sy += data[n-i][k+j]; 
    sxy += (data[n][k]*data[n-i][k+j]); 
    sx2 += (data[n][k]*data[n][k]); 
    sy2 += (data[n-i][k+j]*data[n-i][k+j]); 
  } 
     } 
 
     r_array[i][j] = ((N*1.0*sxy)-(sx*sy))/(sqrt((N*1.0*sx2)-
(sx*sx))*sqrt((N*1.0*sy2)-(sy*sy))); 
        
    if((N*1.0*sx2)-(sx*sx)<=0 && (N*1.0*sy2)-(sy*sy)<=0) 
      { 
        cout << "exception by means of x and y" << endl; 
        goto myLabel; 
      } 
    if((N*1.0*sx2)-(sx*sx)<=0) 
      { 
        cout << "exception by means of x" << endl; 
        goto myLabel; 
      } 
    if((N*1.0*sy2)-(sy*sy)<=0) 
      { 
        cout << "exception by means of y" << endl; 
        goto myLabel; 
      } 
   r_sum+=r_array[i][j]; 
   if(r_array[i][j]>r_max && (i!=0 && j!=0)) 
     r_max=r_array[i][j]; 
   if(r_array[i][j]<r_minusmax && (i!=0 && j!=0)) 
     r_minusmax=r_array[i][j]; 
 } 
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    } 
 
 
cout << "Creating output file....." << endl; 
 
for(counttwo = 0; counttwo != 400 ; counttwo++) 
  { 
    for(countone = 0; countone != 900 ; countone++) 
      { 
 if(r_array[counttwo][countone] <= r_max-((4.0/5.0)*r_max)) 
   { 
     out_array[counttwo][countone]=1.0; 
     counterone++; 
   } 
 if( r_minusmax-((1.0/5.0)*r_minusmax) > 
r_array[counttwo][countone]) 
   { 
     out_array[counttwo][countone]=9.0; 
     countertwo++; 
   } 
 if( r_minusmax-((1.0/5.0)*r_minusmax) < 
r_array[counttwo][countone] &&r_array[counttwo][countone] > r_max-
((4.0/5.0)*r_max))  
   { 
     out_array[counttwo][countone]=5.0; 
     counterthree++; 
   } 
 if(counttwo==countone) 
   { 
     out_array[counttwo][countone]=13.0; 
     counterfour++; 
   } 
      } 
  } 
myLabel:     
  cout << " Writing output file...." << endl; 
 
outfile.open(outfilename, ios::out); 
    for(s = 0; s != 400 ; s++) 
      { 
 for(r = 0; r != 900 ; r++) 
   { 
     if(out_array[s][r]==0.0) 
       counterzero++; 
     outfile << r_array[s][r] << "\t";// << endl; 
   } 
 outfile << endl; 
      } 
outfile.close(); 
 
cout << "no. in 0 = " << counterzero << endl; 
cout << "no. in 1 = " << counterone << endl; 
cout << "no. in 2 = " << countertwo << endl; 
cout << "no. in 3 = " << counterthree << endl; 
cout << "no. in 4 = " << counterfour << endl; 
cout << "r_max = " << r_max << endl; 
cout << "r_sum = " << r_sum << endl; 
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cout << "r_minusmax = " << r_minusmax << endl; 
 
return 0; 
} 
Appendix 6 – Coarse Sampling – TOPEX/POSEIDON equator crossings in space-time: 
Appendix 7 – Sparse Sampling (C++): 
Distance (km) Time  Lag (min)

37787.5859 10736.938

37945.45928 5733.8623

38103.12115 730.7866

38260.99452 10006.1516

38418.65639 5003.076

38576.52977 0.0003

38734.19164 9275.3653

38892.07615 4272.2896

39049.73801 13547.6547

39207.62252 8544.579

39365.28439 3541.5033

39523.1689 12816.8684

39680.83077 7813.7926

39838.71528 2810.717

39996.37715 12086.082

40154.26165 7083.0063

40311.92352 2079.9306

40469.80803 11355.2957

40627.4699 6352.22

40785.35441 1349.1443

40943.00514 10624.5093

41100.88965 5621.4336

41258.55152 618.358

41416.4249 9893.723

37787.5859 25015.379

37945.45928 20012.3033

38103.12115 15009.2276

38260.99452 24284.5926

38418.65639 19281.517

38576.52977 14278.4413

38734.19164 23553.8063

38892.07615 18550.7306

39049.73801 27826.0957

39207.62252 22823.02

39365.28439 17819.9443

39523.1689 27095.3094

39680.83077 22092.2336

39838.71528 17089.158

39996.37715 26364.523

40154.26165 21361.4473

40311.92352 16358.3716

40469.80803 25633.7367

40627.4699 20630.661

40785.35441 15627.5853

40943.00514 24902.9503

41100.88965 19899.8746

41258.55152 14896.799

41416.4249 24172.164

37787.5859 39293.82

37945.45928 34290.7443

38103.12115 29287.6686

38260.99452 38563.0336

38418.65639 33559.958

38576.52977 28556.8823

38734.19164 37832.2473

38892.07615 32829.1716

39049.73801 42104.5367

39207.62252 37101.461

39365.28439 32098.3853

39523.1689 41373.7504

39680.83077 36370.6746

39838.71528 31367.599

39996.37715 40642.964

40154.26165 35639.8883

40311.92352 30636.8126

40469.80803 39912.1777

40627.4699 34909.102

40785.35441 29906.0263

40943.00514 39181.3913

41100.88965 34178.3156

41258.55152 29175.24
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//CORRELATION FIELD CONSTRUCTOR SPARSE SAMPLING 
 
#include <iostream.h> 
#include <fstream.h> 
#include <math.h> 
 
int main() 
{ 
  double data[501][1001]={0.0}; 
  double r_array[400][900]={0.0}; 
  double r_sum=0.0; 
  double r_max=0.0; 
  double r_minusmax=0.0; 
  double sx, sy, sxy, sx2, sy2; 
  int samplespace=0; 
  int sampletime=0; 
  fstream infile; 
  fstream outfile; 
  char outfilename[200]; 
  char infilename[200]; 
  cout << "Enter input filename:" << endl; 
  cin >> infilename; 
  cout << "Enter output filename:" << endl; 
  cin >> outfilename; 
  cout << "Enter a time sparsity index:" << endl; 
  cin >> sampletime; 
  cout << "Enter a space sparsity index:" << endl; 
  cin >> samplespace; 
 
 
  int N=10000; 
  int i,j,n,k,s,r,l,m; 
  int q=0,t=0; 
  cout << "Reading in data......" << endl; 
  cout << "Please Wait" << endl; 
 
  infile.open(infilename, ios::in); 
  for(l=0;l!=500;l++) 
    { 
      for(m=0;m!=1000;m++) 
 { 
   infile >> data[l][m]; 
 } 
    } 
  infile.close(); 
 
  cout << "Computing Correlations...... " << endl; 
 
  for(i=399;i > -1;i-=samplespace) 
    { 
      cout << "-" << endl; 
      for(j=0;j < 900;j+=sampletime) 
 { 
   sx = 0.0; 
   sy = 0.0; 
   sxy = 0.0; 
   sx2 = 0.0; 
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   sy2 = 0.0; 
   for(n =499;n > 399;n-=samplespace) 
     { 
       for(k=0;k < 100;k+=sampletime) 
  { 
    sx += data[n][k]; 
    sy += data[n-i][k+j]; 
    sxy += (data[n][k]*data[n-i][k+j]); 
    sx2 += (data[n][k]*data[n][k]); 
    sy2 += (data[n-i][k+j]*data[n-i][k+j]); 
  } 
     } 
 
     r_array[q][t] = ((N*1.0*sxy)-(sx*sy))/(sqrt((N*1.0*sx2)-
(sx*sx))*sqrt((N*1.0*sy2)-(sy*sy))); 
        
    if((N*1.0*sx2)-(sx*sx)<=0 && (N*1.0*sy2)-(sy*sy)<=0) 
      { 
        cout << "exception by means of x and y" << endl; 
        goto myLabel; 
      } 
    if((N*1.0*sx2)-(sx*sx)<=0) 
      { 
        cout << "exception by means of x" << endl; 
        goto myLabel; 
      } 
    if((N*1.0*sy2)-(sy*sy)<=0) 
      { 
        cout << "exception by means of y" << endl; 
        goto myLabel; 
      } 
   r_sum+=r_array[q][t]; 
   if(r_array[q][t]>r_max && (i!=0 && j!=0)) 
     r_max=r_array[q][t]; 
   if(r_array[q][t]<r_minusmax && (i!=0 && j!=0)) 
     r_minusmax=r_array[q][t]; 
   t++; 
 } 
      q++; 
    } 
 
  
cout << "Creating output file....." << endl; 
 
myLabel:     
  cout << " Writing output file...." << endl; 
 
outfile.open(outfilename, ios::out); 
    for(s = 0; s != q ; s++) 
      { 
 for(r = 0; r != t ; r++) 
   { 
     outfile << r_array[s][r] << "\t";// << endl; 
   } 
 outfile << endl; 
      } 
outfile.close(); 
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    cout << "r_max = " << r_max << endl; 
    cout << "r_sum = " << r_sum << endl; 
    cout << "r_minusmax = " << r_minusmax << endl; 
 
return 0; 
} 
 
Appendix 8 – Random Number Generator (C++):  
 
#define IA 16807 
#define IM 2147483647 
#define AM (1.0/IM) 
#define IQ 127773 
#define IR 2836 
#define NTAB 32 
#define NDIV (1+(IM-1)/NTAB) 
#define EPS 1.2e-7 
#define RNMX (1.0-EPS) 
 
 
float ran1(long *idum) 
{ 
  int j; 
  long k; 
  static long iy=0; 
  static long iv[NTAB]; 
  float temp; 
 
  if (*idum <= 0 || !iy) 
    { 
      if (-(*idum) < 1) *idum=1; 
      else *idum = -(*idum); 
      for (j=NTAB+7;j>=0;j--) 
 { 
   k=(*idum)/IQ; 
   *idum=IA*(*idum-k*IQ)-IR*k; 
   if (*idum < 0) *idum += IM; 
   if (j < NTAB) iv[j] = *idum; 
 } 
      iy=iv[0]; 
    } 
  k=(*idum)/IQ; 
  *idum=IA*(*idum-k*IQ)-IR*k; 
  if (*idum < 0) *idum += IM; 
  j=iy/NDIV; 
  iy=iv[j]; 
  iv[j] = *idum; 
  if ((temp=AM*iy) > RNMX) return RNMX; 
  else return temp; 
} 
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Software developed by JPL (in C) is provided to decompress and label the data and a 
hard-copy handbook is provided to explain the labels and general organization.  


