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Luke Skywalker: “Why are we still moving towards it?”

Han Solo: “We’re caught in a tractor beam; it’s pulling us in.”

-Star Wars: A New Hope1
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I. Abstract

In this paper we explore the theory and practice of laser tweezers. We

examine the forces involved in laser tweezers in order to understand how trapping

occurs. We look at two simplified cases—a totally transmitting sphere and a totally

reflecting sphere. We also propose a geometrical model that gives a value for the

maximum trapping force on a transmitting sphere.

In the experimental section, we describe the construction of our laser

tweezer. We report evidence of trapping, and calibrate the trap strength with

viscous forces.

II. Introduction

Laser tweezers are the next best thing to a tractor beam. Since 1970,

scientists have used single beam traps to manipulate objects ranging from dielectric

spheres2 to sperm cells3 to DNA.4 Laser tweezers have opened exciting avenues of

research, especially in cell biology.

Laser tweezers operate through the radiation pressure of light. Light

carries momentum, equal to h/λ per photon, where h is Planck’s constant and λ is

the wavelength of the light. When light hits an object and is reflected or refracted,

the outgoing light has a different momentum than the incident light. Thus there is a

change in momentum of the light, ∆plight. For momentum to be conserved, there

must be an equal and opposite change in the momentum of the object, so

∆pobj = -∆plight.

In the seventeenth century, Johannes Kepler appealed to radiation pressure

to explain why a comet’s tail points away from the sun.5 Due to the diminutive size

of radiation forces, however, practical applications of radiation forces only came

with the invention of lasers. A. Ashkin first demonstrated trapping with radiation

forces in 1970 using a 1 W cw argon laser and latex spheres about 1 µm in

diameter.2 This work paved the way for atom trapping,6,7 and the realization of a

Bose-Einstein condensate.
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The earliest optical traps used multiple beams8 or an opposing force (such

as gravity9) to construct a stable trap. In 1986, however, A. Ashkin, J.M. Dziedzic,

J.E. Bjorkholm, and S. Chu constructed a three-dimensional trap using a single

laser beam.10 Recent attention has turned to applications of the single beam laser

trap in cell and microbiology.11,12,13 In these applications, and our experiment, the

sample is suspended in liquid, so the principle forces involved are both

gravitational and viscous forces. For example, a sphere with diameter 10 µm

dragged at 20 µm/s through water will feel a force of 2 pN. The force of gravity

on this same sphere is 5 pN. To move the sphere horizontally at 20 µm/s requires

laser power ≥  1.3 mW,14 while vertical translation requires laser power ≥  12.5

mW.14

In the first half of this paper we will derive the trapping forces in the Mie

regime, where the wavelength of light is much smaller than the diameter of the

object. In this regime, we can neglect the wave properties of light and use the Ray-

Optics model. We will also discuss a useful geometrical model that explains the

less intuitive aspects of trapping. Next we will discuss the procedures of building a

laser tweezer, followed by experimental results from calibrating the trapping

forces. To simplify matters in both the theoretical and experimental sections, we

deal only with uniform spheres.

III. Theory

At the most basic level, optical tweezers work by taking advantage of the

momentum of light. Specifically, when a ray of light hits a sphere the momentum

of that ray will change when reflected or refracted. As mentioned above, the

change in momentum of the light causes an equal, but opposite, change in

momentum of the sphere. The radiation force is just the change in momentum of

the sphere per second. Trapping occurs when these forces are balanced over the

sphere to give a net force of zero and a sufficiently deep potential well to hold the

sphere against viscous, thermal and other perturbations. We will discuss the forces

involved in a few simple cases.
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 To see how the optical force can lead to trapping, we will decompose the

optical force into two components, the scattering component and the gradient

component. A. Ashkin14 defines the scattering force as the component of the

radiation force in the direction of propagation of the laser. The gradient force is

then the component of the force perpendicular to the laser’s propagation direction.

For parallel rays of light hitting a sphere, Ashkin14 gives the following

expressions for the gradient and scattering forces of an individual ray:

Fscat = 
n1P
c 








 1 + Rcos(2θ) −
T2[cos(2θ - 2r) + Rcos(2θ)] 

 1 + R2 + 2R cos(2r)             (1.1) 

Fgrad = 
n1P
c 








Rsin(2θ) −
T2[sin(2θ - 2r) + Rsin(2θ)] 

 1 + R2 + 2R cos(2r)  (1.2)

where P is the ray’s power, θ is the angle the incoming ray makes with the normal

to the surface of the sphere, and r is the angle the first transmitted ray makes with

the perpendicular to the normal (see figure 1). R and T are the Fresnel coefficients

of reflection and transmission, with R defined as the fraction of the light intensity

reflected from the surface, and T being the fraction transmitted through the

surface. The term 



n1 P

 c  represents momentum per second carried by light of

power P.

The complexity of these expressions comes from summing over the all the

rays—the reflected ray, the transmitted ray, and all of the internally reflected

rays.14 To simplify matters, we will ignore the higher order terms from the internal

reflections and look only at the forces from the reflected ray and the first

transmitted ray. Further, we consider two cases: a totally reflecting sphere (i.e.,

R = 1 and T = 0) and a totally transmitting sphere (i.e., R = 0 and T = 1). We will

first look at the case of a totally reflecting ball.
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A. Reflecting Sphere

For R = 1and T = 0, equations (1.1) and (1.2) become:

Fscat(R) = 
n1P
c  {cos(2θ) + 1} (1.3)

Fgrad(R) = 
n1P
c  {sin(2θ)}  (1.4)

We can see how equations (1.3) and (1.4) arise by considering the

geometry and conservation of momentum.

θ
θ

Z

 Y

ρ
a

Figure 1 Geometry of a ray hitting a totally reflecting sphere. The solid lines

demarcate the path of the ray and the dotted; dashed lines serve in the geometric

proof. ρ is the perpendicular distance from the ray to the center of the sphere; a is the

radius of the sphere.
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In the Z direction, the momentum of the ray changes from 



n1 P

c   to the resulting

component in the Z direction, 



n1 P

c   cos 2θ, giving us equation (1.3) for the

scattering force. In the Y direction, the ray has no initial momentum so the

momentum imparted to the ball has the same magnitude but opposite sign of the

reflected ray in the Y direction, 



n1 P

c  sin 2θ.

B. Transmitting Sphere

For the totally transmitting case equations (1.1) and (1.2) become

Fscat(T) = 
n1P
c  {1 - cos(2θ - 2r)}            (1.5)

Fscat(T) = 
n1P
c  {sin(2θ - 2r)} (1.6)

  

To see the origin of these forces, we use the same conservation of

momentum arguments, but more complicated geometry, as shown in figure 2.

 r

θ
ψ

ψ
θ

r

180 - θ

Z

Y

A

B
C

D

ρ

Figure 2 Geometry of a ray through a totally transmitting sphere.
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The derivation of the (2θ - 2r) angular dependence proceeds in three steps. In

terms of figure 2, the task is to show ψ + θ  = 2θ - 2r.

1. Triangle ABC is isosceles, therefore ∠ ACB = ∠ CAB = r

2. Looking at triangle DAC, we see ψ = 180 - (180 - θ + r) - r = θ - 2r

3. Thus the change of the ray’s angle with respect to Z is ψ + θ = 2θ - 2r

C. Conservative Forces

        The next step is to write these expressions for reflecting and transmitting

spheres in terms of the perpendicular distance from the ray to the sphere’s center,

ρ. Writing the forces in terms of ρ allows us to show that the gradient force is

conservative14 and to draw closer to showing how a trapping potential well arises.

From the figures 1 and 2 we see that ρ = -a sin θ, taking θ to be positive in the

clockwise direction and the direction of Y as defined in figures 1 and 2. We obtain

the following expressions for the forces:

Fscat(R) = 
n1P
c  {1 - (ρ/a)2} (1.7)

Fgrad(R) = 
n1P
c  (ρ/a){1 - (ρ/a)2} 1/2 (1.8)

Fscat(T) = 
n1P
c  (ρ/a)2 {2 (n1/n2)

2 (ρ/a)2 + 2 (n1/n2) [1 - (ρ/a)2]2 [1 - (n1/n2)
2   (ρ/a)2]2

- (n1/n2)
2 -1}            (1.9)

Fgrad(T) = 
n1P
c   (ρ/a) { [1 - (ρ/a)2]1/2 [1 - 2 (n1/n2)

2 (ρ/a)2 - (n1/n2) [1 - (n1/n2)
2

(ρ/a)2]1/2    (1 - 2 (ρ/a)2) }         (1.10)
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Plotting these expressions in terms of ρ, we get:

Figure 3 Reflecting gradient force, with
incident power P = 5 mW. Distance is in
µm and force is in pN.

Figure 4 Reflecting scattering force,  with
incident power P = 5 mW. Distance is in µm
and force in pN.

Figure 5 Transmitting scattering force,
with incident power P = 5 mW. Distance
is in µm and force is in pN.

 Figure 6 Transmitting gradient force,
with incident power P = 5 mW. Distance
is in µm and force is in pN.

These plots show that only the transmitting gradient force will lead to trapping

with parallel rays. For positive ρ, the transmitting gradient force yields a positive

force which draws the center of the sphere toward the beam until the beam passes

through the center of the sphere, at which point the force is zero.

        In our simplified model up to this point, we have assumed that all of the

power of the laser, P, is delivered to the sphere by a single ray. In actuality,

however, the laser hits the sphere as a laser intensity distributed over a surface.

Therefore, we treat the forces mentioned thus far as differential elements of force
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and the differential power, P, as an intensity, denoted by I. Now, the total force on

the sphere is the differential elements of force integrated over the surface of the

sphere. This integration is a simple matter for scattering forces because they point

in the direction of the incident ray. For the scattering cases we integrate over the

surface of the hemisphere closest to the beam, with θ = 0 along the beam axis.

Thus we integrate from θ = 0 . . π/2, and φ = 0 . . 2 π. We use the substitution

ρ = -a sin θ as seen from figures 1 and 2 to obtain:

Fscat(R,Tot)  = 
n1 I
 c  {II 1-(ρ/a)2} a2 sin θ dθ dφ 

=  
n1 I
 c  {II 1-(-a sin θ/a)2} a2 sin θ dθ dφ

= 
2 n1 I π a2

3 c  = 
n1 I Vsphere

 2 a c  (1.11)

Fscat(T, Tot)  = 
n1 I
 c  {II (ρ/a)2 {2 (n1/n2)

2 (ρ/a)2 + 2 (n1/n2) [1 - (ρ/a)2]1/2 [1 -

(n1/n2)
2   (ρ/a)2]1/2 - (n1/n2)

2 -1} } a2 sin θ dθ dφ

= 
n1 I
 c  {II (-a sin θ/a)2 {2 (n1/n2)

2 (-a sin θ/a)2

     + 2 (n1/n2) [1 - (-a sin θ/a)2]1/2 [1 - (n1/n2)
2   (-

a sin θ/a)2]1/2 - (n1/n2)
2 -1} } a2 sin θ dθ dφ

= 
4 n1 I π a2

15 c (n1/n2)
3  { [2 + (n1/n2)

2 - 3 (n1/n2)
4] 1

1

2

2

− �
��
�
��

n

n
 

- 2 + 5 (n1/n2)
3 - 3 (n1/n2)

5}

= 
n1 I Vsphere

5 a c (n1/n2)
2{ [2 + (n1/n2)

2 - 3 (n1/n2)
4] 1

1

2

2

− �
��
�
��

n

n
 

- 2 + 5 (n1/n2)
3 - 3 (n1/n2)

5} (1.12)

We have pulled the intensity out of the integral in equations (1.11) and (1.12)

because we assume a constant intensity over the hemisphere. For a 5 mW beam
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with a waist of 5 µm (and thus intensity I = 63.7 MW/m2) hitting a polystyrene

sphere (radius a = 5 µm and index of refraction n2 = 1.6) in water (index of

refraction n1 = 1.33) we have Fscat(R, Tot) = 14.8 pN and Fscat(T, Tot) = 3.9 pN. As

shown in figures 4 and 6, these forces from parallel rays will always push the ball

in the direction of the beam’s propagation, and will therefore not lead to trapping

by themselves.

       Unlike the scattering forces, the gradient forces do not point in the same

direction, so we cannot integrate in the same manner. To sidestep this difficulty,

we first convert the force into a scalar potential. Then we integrate this potential

over the surface of the sphere.

Ugrad(R) = - FI grad(R) dρ = 
n1 I π a3

 3 c  = 
n1 I Vsphere

 4 c

    = QR=1 Vsphere 



I

c         (1.13)

Ugrad(T) = - FI grad(T) dρ = 
-n1 I π a3

 60 c  {15 [(n1/n2)
2 - 1]2 ln [(1 + (n1/n2))/

  (1 - (n1/n2)) ] - 24 (n1/n2)
6 + 20 (n1/n2)

4 - 30 (n1/n2)
3 + 34 (n1/n2) }

       = 
-n1 I Vsphere

 80 c  {15 [(n1/n2)
2 - 1]2 ln [(1 + (n1/n2))/(1 - (n1/n2)) ]

 - 24 (n1/n2)
6 + 20 (n1/n2)

4 - 30 (n1/n2)
3 + 34 (n1/n2) }

       = QT=1 Vsphere 



I

c  (1.14)

where we have introduce Q as a quality factor dependent upon n1 and, in the

transmitting case, n2. For polystyrene (n2 = 1.6) in water (n1 = 1.33), we have

QR=1 = 0.33 and QT=1 = 0.20. We notice in equations (1.11), (1.12), (1.13), and

(1.14) that the term I / c is the energy density inside the sphere. Thus, when we

multiply the volume of the sphere by I / c, we obtain the remarkable result that the
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potential well and the restoring force are both proportional to the energy stored in

sphere.

Since both expressions for the potential lack a dependence on the distance

from the center of the sphere perpendicular to the axis of the beam, ρ,

differentiating with respect to ρ gives a force of zero. This result is no surprise due

to the symmetry of the problem. Nevertheless, if the intensity depends on position

(as in a gaussian beam, for example) the potential will also depend on position,

thereby producing a force. Assuming that the change in the intensity is small over

the surface of the sphere, we can write the reflecting and transmitting gradient

potentials by replacing the constant intensity I with I(ρ).

We obtain the gradient force by taking the gradient of the above potentials.

This operation yields a constant related to the physical  characteristics of the

sphere times the gradient of the intensity, hence the name “gradient force.” We are

now ready to write the general expression for the gradient forces for the scattering

and reflecting cases.

Fgrad(R) = 
-n1 QR=1V

 c  ∇I(ρ)       (1.15)

Fgrad(T) = 
-n1 QT=0 V

 c  ∇I(ρ) (1.16)

For the specific case of a gaussian beam intensity I(ρ) = Io exp (-ρ2/w2),

with a 5 mW laser and a beam waist of w = 5 µm we have Io = 63.7 MW / m2.

When this beam hits a ball of diameter 10 µm, equations 1.13 and 1.14 give us the

following potentials:
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From figure 7, we see explicitly that the reflecting gradient force will not trap a

spherical ball.

The transmitting gradient potential, however, displays different behavior.

This potential has the form:

 

As a gauge on the magnitude of this potential well, we note that the

thermal energy of a particle at room temperature is 0.00414 10-18 J. The

transmitting gradient potential seems sufficiently deep to hold a particle against

Figure 7 Gradient potential due to a gaussian beam on a reflecting sphere; ρ is in µm
and potential is in 10-18 J = 1 pW µm.

Figure 8 Gradient potential due to a gaussian beam on a transmitting sphere;

position is in µm and ρ is in 10-18 J = 1 pW µm.
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thermal perturbations. To check against gravitational and viscous forces, we first

compute the magnitude of the maximum restoring force for this well.

From figure 8 we see that the maximum restoring force occurs around

ρ = 3.5 µm, where the slope of the potential is greatest. We have

Fgrad(T) = 5.1 pN—enough to match gravity, as shown on page 4. The restoring

force in the transmitting gradient case is also sufficient to drag a ball through water

at speeds up to 54.1 µm / s. The situation described with the transmitting gradient

force (i.e., trapping forces orthogonal to a parallel beam hitting a sphere) mirrors

early trapping experiments by Ashkin2 and Roosen.8

C. Geometrical Model

Using the principle that light must travel the same route forwards and

backwards in time, we consider the reverse of previous case of parallel rays hitting

a transmitting spherical ball. In our original case, the incoming rays have all of their

momentum in the +Z direction. With the outgoing rays, however, only part of the

momentum is in the +Z direction; the sphere refracts a portion of the momentum

into +Y and -Y. Therefore, the change momentum of the light points in the -Z

direction, giving the ball momentum in the +Z direction (see figure 9).

 plight(i)
 plight(f)

∆pball

Figure 9 Momentum for parallel rays hitting a sphere
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If we reverse the direction of the rays, with focused rays coming in from

the right, and parallel rays emerging, we get a most counterintuitive result.

Although everything else is reversed, the change in the momentum of the ball stays

the same (see figure 10). Therefore, we see how a laser tweezer can pull an object

toward the direction of propagation of the light. We also conclude that the

maximum restoring force for a transmitting sphere is exactly equal to the scattering

transmitting force with parallel rays (see equation (1.12)).

This model also enables a first-pass calculation of the maximum restoring

forces in transverse directions. Our calculation proceeds by considering the energy

required to remove a sphere from the trap. While the climb out of the well is

steeper in some directions than others, the depth of the well is constant and the

work required to remove a sphere from the well is the same regardless of the

direction of removal.

We assume that the maximum restoring force will occur half way up the

potential well where the derivative of the potential is greatest, as was the case in

figure 8. In the Z direction, the work to move the ball ∆z is

Uz = Fz (avg) ∆z (1.17)

We approximate Fz (avg) by summing the maximum and minimum forces on ∆z

and dividing by two. From our geometrical model, we know that Fz (min) is zero

 plight(f)
 plight(i)

∆pball

Figure 10 Momentum for focused rays hitting a sphere
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and occurs when the focus of the laser coincides with the center of the ball

(assuming total transmittance). We also know Fz (max) is equal and opposite to

the scattering transmitting force from parallel rays (Fscat(T) from equation (1.12)).

∆z is the distance between the positions of the minimum and maximum forces. For

our model, ∆z ≈ a, the radius of the sphere. We now have

Uz = 
Fz (max) + Fz (min)

 2  ∆z = 
Fscat (trans, total)

 2  a (1.18)

This value for potential energy will also equal the work required to remove the ball

in the Y or X direction. Again, we know the minimum force occurs at the bottom

of the well and equals zero. From the work relation, we can approximate Fy (max)

and Fx (max) (the two are identical in our model). In the transverse direction,

however, we are moving the ball completely out of the well, not just from the force

minimum to maximum. We know, however, that this distance equals a, because

once the ball has been moved one radius from the trap center (assuming a small

spot size), the ball is free of the trap. We then approximate that Fy (max) occurs at

a distance ½ a from the trap center. We now have

Uy = 
Fy (max) + Fy (min)

 2  ∆y = 
Fy (max)

 2  
a
 2 = Uz (1.19)

and therefore

Fy (max) =  
4 Uz

 a  = 2 Fscat (T, Tot)= (2) (3.9 pN) = 7.8 pN

where we assume the laser has intensity I = 63.7 MW / m2 and use n1 = 1.33 and

n2 = 1.6 in equation (1.12) for a sphere of radius 5 µm. Appealing to the Stokes

drag law, we should be able to pull such a sphere through water at 82.8 µm/s with

this force.
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III. Experimental Methods

As we see from the geometrical model, the main goal in building the laser

tweezer is to maximize the power focused tightly on the ball.

A.  Choosing components

To obtain trapping we need sufficient power to overcome viscous,

gravitational, and thermal forces. The viscous force takes the form of the Stokes

drag force for spheres:

Fd = 6 π η a vc  (1.20)

where η is the viscosity of water, a is the radius of the ball, and vc is the velocity of

the ball. For a ball having radius 5 µm ball moving at 20 µm per second, and taking

η = 10-3 N s / m2, the drag force is 2 pN. Trapping forces can be expressed in the

form

F = Q 
n1 P
 c (1.21)

where Q is the quality factor discussed in the theory section.A typical value that

accounts for both reflection and transmission is Q = 0.25.14 Thus, to drag a ball

with a diameter of 10 µm at 20 µm / s we would need 1.5 mW of power. In order

to allow for loss factors and ensure trapping, we chose a 28 mW laser with a

wavelength of 675 nm and FWHM beam size at the output of 1.9 mm x 0.6 mm.

We chose a wavelength in the red to ensure the visibility of the beam and to

minimize thermal damage to samples. Moreover, a 675 nm laser makes it possible

to explore the theoretically perplexing situation in which the laser wavelength and

the object are of the same size.

The second chief component of the trap is the microscope objective lens.

We can get an idea of the lens parameters required from our geometrical model.
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Parallel rays hitting a sphere 10 µm in diameter will focus the beam 4.65 µm from

the far side of the sphere (see figure 11). We need an objective lens that will mirror

the focusing behavior of the sphere. A useful quantity here is the F/number,

defined as the focal length of a lens over its diameter. Our objective lens should

have an F/number close to that of our sphere, so that triangles ABC and DEC will

remain similar for large values of α. We are concerned with large values of α

because those rays experience the greatest change in momentum the Z direction

when focused through the sphere.

From these considerations, we see that our objective lens should have an

F/number = 0.465. In microscopy, however, objective lenses are characterized by

the numerical aperture, NA, where NA = n sin α, with n being the index of

refraction of the medium, and α being the half-angle of the focused cone of light,

as in figure 11. Our calculated F/number corresponds to NA≈ 1.1. We use a Leitz

Wetzlar oil immersion objective with NA = 1.3. In terms of intensity gradients (as

in equations (1.15) and (1.16)), using a high NA lens maximizes the intensity

gradient and thus the gradient forces.

α

h

θ
r

α
 fball

γ
r

θ fobj

objective lens

A

B

C D

E

Z

Figure 11 Geometry for determining  the F/number. From figure 2, we know a = 2θ -
2r. We notice γ = 2r - θ, making h =  sin γ. Finally, fball = h / tan α. Notice triangles
ABC and DEC are similar.
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The final component question is what size balls to use. Duke Scientific

offers silica microspheres ranging from 0.5 µm to 1.6µm in diameter. Bangs

Laboratories carries polystyrene balls with diameters from 0.5 µm to 25 µm. We

chose 10 µm polystyrene balls for ease of viewing and trapping.

B.  Optics Setup

The job of the optics is to deliver the light from the laser module to the

back of the objective lens so that the beam fills the objective lens and hits the

objective at the appropriate angle to minimize the spot size. Please refer to figure

12 for our optics layout. If the beam waist at the objective, dobj, is less than the

diameter of the objective lens, Dobj, the angle subtended by the focused light cone

will be smaller that if dobj = Dobj, thereby decreasing the NA, and increasing the

spot size according to eq (1.22). If dobj > Dobj, the NA will be optimized, but the

light outside of Dobj can contribute nothing to the trap, and is lost.

The first step, however, is to align the mirrors to deliver the light to the

objective lens (see fig. 12). Mirrors M1 and M2 are useful as beam steerers, while

M5 is a dichroic mirror which reflects red light at 45°, but transmits all other light.

With the mirrors in place, we choose appropriate lenses (detailed below) and

realign the system. If the beam is hitting the lenses in the center and if the lenses

meet the beam at right angles, the beam will not be diverted.

Our laser’s smaller FWHM waist is 0.9mm, so to fill our objective lens

(Dobj ≈ 2 mm ), we must double the beam waist. We expand the beam using lenses

L1 and L2, where f1 = 50.8 mm and f2 = 101.6 mm . The lenses are spaced a

distance d = f1 + f2  apart, so we have magnification M = -f2 / f1 = -2, which gives

us a collimated beam after L2 with diameter Dobj.

The next step is to focus the beam to fill the objective lens and hit the lens

at an angle that minimizes spherical aberrations. When filling a lens with light, the

thin lens approximation breaks down for the rays near the perimeter of the lens.

The focal length near the perimeter is less than in the center, so the rays near the

perimeter focus to a different point than the rays near the center. This effect, called
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spherical abberation, increases the spot size, and thus decreases the amount of

power delivered to the microsphere. To counter this effect, we send in diverging,

rather than parallel rays. Specifically, we use lens L3 to focus our collimated beam

to a spot 17 cm from the objective, so that the light hitting the objective subtends

the best angle to minimize spherical aberrations. For our microscope, this means L3

must have a focal length f3 = 85 mm.

Laser

M2

M2

L1L2

M3

L3

M4

M5- Dichroic

Objective lens

Microscope stage

Condenser lens

Condenser lamp

Mi

Li

CCD
Camera

Microscope body

Figure 12 Laser tweezer set-up
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If we treat the focal point of L3 as an object to be imaged through the objective,

we can calculate the location of the trap using the Lens Equation. With

do = f3 = 85 mm and fobj = 2.0 mm, di = 2.05 mm gives the position of the trap

focus.

 Once the basic optics are set up (see figure 12), we make sure everything

is aligned correctly. To check that the lenses are perpendicular to the beam, we

pass the beam through a pinhole before the lens and align the reflected light from

the lens surface back through the pinhole opening.

 

C.  Imaging System

We use a Schumberger CCD camera connected with BNC cables to a

monitor-VCR system to observe and record trapping. But first, we need the

imaging system to be focused in the same plane as the laser. The simplest way to

match these focal planes is to think of the imaging system as the trap in reverse.

Thus the object is now the trap itself, which is imaged a distance 85 mm from the

objective lens (see fig. 13). To look at the microspheres in the plane of the trap, we

need to image onto the spot 85 mm from the objective lens. With a 195.6 mm focal

length lens, we position the lens approximately 517 mm from the objective lens; we

place the CCD camera about 936 mm behind the imaging lens, as dictated by the

ray-tracing diagram in figure 13.
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IV.  Results

We now turn to testing our trap, and characterizing the potential well.

A.  Evidence of Trapping

The first step in checking for trapping is to locate the laser in the field of

view. With a dichroic mirror matched exactly to the wavelength and angle of

incidence, we would not see the laser through the CCD camera. Our dichroic

Objective lens

Im aging lens

 fob j =  2 mm

Note: not
drawn  to scale

do =  2.05 m m

d i =  85 m m

 f im =  195.6 mm

do =  432 mm

d i =  936 mm

Figure 13 Ray-tracing diagram of imaging system
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mirror, however, does not match the wavelength and angle of incidence perfectly,

so we can see the laser’s reflection in our camera. Once we find where the laser’s

focus reflects off the top cover slip, we have a good sense of where the trap will

be. After moving the laser further into the sample, we start to look for trapping.

The best manner of determining if a ball is trapped is to move the

translational stage of the microscope slowly. If the trapping candidate stays still

but the other balls move with the stage, then the ball has been trapped in two

dimensions. To test for three dimensional trapping, we move the stage up and

down. If a ball is trapped vertically, it will stay in focus while the other balls move

into and out of focus.

We have achieved consistent trapping in the two dimensions orthogonal to

the laser beam (see figure 14).

trapped ball

untrapped ball

stage motion

trapped ball

untrapped ball

stage motion

      

trapped ball

untrapped ball

stage motion
              

trapped ball

untrapped ball

stage motion

Figure 14 Demonstration of trapping perpendicular to the beam
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B.  Measurement of the Trapping Forces

We measure the maximum transverse trapping force by trapping a sphere

and then translating the stage at an increasing velocity until the ball breaks free of

the trap. The velocity just before the ball breaks from the trap is the escape

velocity, which we can use in the Stokes drag force (equation 1.19). We record the

escapes on a VHS tape in SP record mode, giving us a capture rate of

30 frames per second. Using Intel Smart Video Recorder Pro software, we transfer

the footage to an “.avi” file. We then use an Excel program written by W.E. Cooke

to track the velocity of the trapped ball. To calculate the velocity, we plot the

position of the ball as a function of time and fit the plot to a quadratic.

We obtain the error plots by subtracting the measured position from the

calculated position given by the fit. When the error plot shows a significant trend

near the point of escape, we calculate another fit, using only those points included

in the trend.
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 Fit 1 (x direct ion)
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Figure 15 Position measurements and fit from data set 1; position is in the X direction
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Figure 16 Error in set 1

Fit 2 (x direct ion)
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Figure 17 Position measurements and fit for data set 2; position is in  the X direction
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Figure 18 Error in set 2
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Fit 3 (x direct ion)
v(escape) = -25.7 um/s
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Figure 19 Position measurements and fit for data set 3; position is in X direction
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Figure 20 Error in set 3
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Figure 21 Position and fit for data set 3a, consisting of the last 6 points of set 3
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Figure 22 Error in set 3a
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Fit 4 (y direct ion)
v(escape) = 22.4 um/s
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Figure 23 Position measurements and fit for data set 4; position is in Y direction
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Figure 24 Error in set 4

Fit 5 ( y direct ion)
v(escape) = 23.3 um/s
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Figure 25 Position measurements and fit for data set 5; position is in the Y direction
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Figure 26 Error in set 5
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 Fit 6 (x direct ion)
v(escape) = -32.4 um/s
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Figure 27 Position measurements and fit for data set 6; position is in the X direction
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Figure 28 Error in set 6

Fit 7 (y direct ion)
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Figure 29 Position measurements and fit for data set 7; position is in the Y direction
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Figure 30 Error in set 7
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Fit 8 (x direct ion)
v(escape) = -32.5 um/s
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Figure 31 Position measurements and fit for data set 8; position is in the X direction
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Figure 32 Error in set 8

Fit 9 (y direct ion)
v(escape) = 29.0 um/s
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Figure 33 Position measurements and fit for data set 9; position in the Y direction
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Figure 34 Error in set 9

Fit 10 (y direct ion)
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Figure 35 Position measurements and fit for data set 10; position is in the Y direction
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Figure 36 Error in set 10
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From these plots, we have the following measurements for escape

velocities  and maximum trapping forces in the X and Y directions:

Data Set v (um/s) Fd (pN)
1 37.9 3.571991
2 40.9 3.854734
3 -34.9 -3.28925
6 -32.4 -3.05363
8 -32.5 -3.06305

Figure 37 Escape velocity and maximum
trapping force in X direction

Data Set v (um/s) Fd (pN)
4 22.4 2.11115
5 23.2 2.186548

10 23.5 2.214823
9 29.0 2.733186
7 -23.8 -2.2431

Figure 38 Escape velocity and maximum
trapping force in Y direction

That the trap is almost twice as strong in the X direction as in the Y direction is

probably due to the asymmetry of the beam entering the objective lens. The beam

is highly oblate (recall fwhm diameter = 1.9 mm x 0.6 mm), so in adjusting the

beam diameter at the objective we straddle the two related problems. Either we

underfill the objective along the short axis, thus decreasing the focusing angle, α

(see figure 11) or we overfill along the long axis, thus wasting power in that

direction. A fix to this problem would be to insert a cylindrical lens to give a more

circular beam profile.

V.  Future Work

 A few improvements to the current set-up hold promise to improve

trap performance and data. Besides the cylindrical lens mentioned above, we could

reduce loss by eliminating mirrors M1, M2, M3, and one additional mirror before

lens L3 not shown in figure 12. We could also replace the first surface mirrors used

(which reflect about 70% of incident light) with dielectric mirrors (which reflect

about 99% of incident light). To illustrate the extent of the power loss through our

set-up, we drop from 27 mW at the laser to 7.4 mW before the objective lens.

 Another problem was the non-constant acceleration of the microscope

stage during escape velocity measurements, as evidenced by figures 15 through 36.
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A motorized stage would provide constant acceleration, thus improving the

quadratic fits to the position as a function of time.

 Although we have consistently demonstrated two-dimensional trapping,

three-dimensional trapping should be possible with our set-up. We once witnessed

three dimensional trapping, but we were unable to reproduce the event on film.

 

VI.  Conclusion

 We have analyzed simplified models of laser trapping in the Mie regime

and proposed a geometrical model for calculating the maximum trapping force.

While our model yields forces larger than what we observed, it proved useful in

understanding three-dimensional trapping and in determining what optics to use.

 Moreover, when we take into account that a significant fraction of laser

power was lost due to the oblate shape of the beam, our result becomes more

realistic. Our observations indicate that shape causes about one half of the laser

power just before the objective to be lost. Our maximum force in the X and Y

directions then becomes 5.8 pN, rather than the 7.8 pN we had calculated for an

incident beam of 5 mW (we also use our measured laser power before the

objective of P = 7.4 mW).

 The remaining difference from the measured trapping forces most likely

arises from the idealizations used in the model. We assumed the thin lens

approximation in saying that the parallel incident light would focus to a point (see

figure 9). For rays away from the center of the sphere, though, spherical

aberrations factor in, giving different focal lengths for different values of the

perpendicular distance from the ray to the center of the sphere. In reverse (see

figure 10), this effect means that not all of the light hitting the sphere from a single

focus point will emerge collimated. The change in momentum from these non-

parallel rays will be less than in the ideal case, so we expect a smaller value for the

restoring force.

We have both achieved trapping in two-dimensions and characterized the

maximum trapping forces of the trap.
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Appendix A: Photograph of Laser Tweezer Set-Up

diode laser

Figure 39 Digital photograph of our set-up
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