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ABSTRACT 

 

Adhesive joints are an alternative to riveted joints in aircraft, but methods are 

needed to nondestructively evaluate their bond strengths.  Photoelastic data can provide 

full-field information about strain distributions and the behavior of these joints in a 

nondestructive manner.  However, these surface measurements must be compared with 

Finite Element Analysis (FEA) to gain an understanding of the behavior within the 

bonds, which cannot be seen on the surface.  A photoelastic coating was applied to 

aluminum lap joints, which were then tested in tension in a hydraulic load frame.  

Photoelastic fringes were observed and compared with computer models.  Surface strain 

locations were the same in experiment and in FEA models. 

 

I. INTRODUCTION 

 
New synthetic polymer adhesives provide a viable alternative to mechanical 

bonding for joints in primary structures.  Increasing use of these adhesives creates the 

need for accurate assessments of the strengths of these bonded joints to ensure safety.  

This analysis must be done in a nondestructive manner, and this inspection requirement is 

one of the most serious limitations to the use of adhesives [1,2].  Photoelastic 

measurements yield strain patterns on the surface of the part [3,4,8], which can then be 

used with finite element models of the strain distributions in the object to gain a better 

understanding of what is happening within the bond.  Photoelastic measurements are 

applied in many areas, including the automotive and aerospace industries, building 

construction, bridges, and engines [3]. 
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II. MOTIVATION 

 
Manufacturers would like to use adhesives rather than rivets or welds in structural 

applications.  Adhesives used in structural applications have the inherent advantage of 

joining similar or dissimilar materials without changing the microstructure of the 

adherents (substrates) as would occur with welding.  They also provide a larger load-

bearing area than do mechanical fasteners, thereby distributing stresses more uniformly 

and reducing stress concentrations, compared to rivets or other mechanical fasteners.  In 

addition, not only simple, but also complex shapes can be joined.  Galvanic and 

electrochemical corrosion between dissimilar materials can also be prevented, and 

altering the properties of the adhesive can control heat transfer and electrical 

conductivity.  Additionally, adhesive bonds can provide environmental sealing and 

vibration damping.  Most importantly, adhesive joints can provide favorable strength-to-

weight ratios and are frequently faster and cheaper to produce than mechanical joints, and 

they are also more reliable [1,2,5]. 

A nondestructive technique is needed to evaluate the strength of adhesive bonds 

for in-service joints.  Photoelasticity is an optical technique that uses a special strain-

sensitive coating on the test object that exhibits fringe patterns when illuminated with 

polarized light. These patterns can be read like a topographic map to visualize the strain 

distribution over the surface o f the test object.  Photoelasticity measures the difference of 

the principal strains and the principal strain directions.  It is non-contact, nondestructive, 

and allows the measurement of strain fields over large areas quickly using images which 

can be digitally archived and enhanced.  This is preferable to the use of strain gages that 
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only provide point information in comparison with the full-field information generated 

with photoelastic measurements [3,4,8]. 

However, photoelasticity can provide only surface information and must be 

combined with computer models to obtain information about strain distributions within a 

bond.  Models are generated because lap joints are too complicated in most cases to allow 

an analytical solution of the continuum mechanics [2].  Once a model has been created, 

the strains in the model can be compared with photoelastic measurements. 

 

III. THEORY 

 
1. Strength of Materials 

Knowledge of the mechanics of materials is necessary to understand the finite 

element models.  Stress is a force per unit area.  In the case of uniaxial stress with 

uniform deformation,  

A
P

avg =σ       (1) 

and  

A
V

avg =τ       (2) 

where avgσ  is the average normal stress, P is the normal force, A is the area over which 

the force is applied, avgτ  is the average shear stress (acting parallel to the face of the 

object), and V is the shear force.  Strain ( ε) is the fractional change in length of an object 

(∆L/L) under stress.  It is often related to the stress by Hooke’s law: εσ E= , where E is 
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Young’s modulus, also called the modulus of elasticity, or stiffness.  Strain is much less 

than unity for infinitesimal deformation.  The relationship between stress and strain can  

 

Figure 1: Stress-strain diagram for materials A and B. 

 

be shown in a diagram, such as in Figure 1, where the initial slope is constant.  For small 

deformation, the linear elastic region, a deformed object will return to its original shape.  

Hooke’s Law governs the behavior in this region.  Plastic deformation begins to occur 

when the curve is no longer linear.  In this regime, a deformed object will not return to its 

original shape.  Finally, the object will fail (break).  The deviation from the linear 

relationship signals the start of the plastic deformation in the materials studied here, 

which can lead to failure.  The material represented by curve A is stronger than that for 

curve B since the latter deviates at a lower stress [9]. 
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2. Adhesive technology 

The primary function of adhesives is to join materials or parts.  The adhesive 

transmits the stresses from one adherent to another such that the stresses are evenly 

distributed.  The adhesive fills the joint and creates bonding forces over the entire area, 

rather than at discrete points, as with fasteners.  Therefore, with lower and more uniform 

stress levels and at a lower cost and weight, adhesives can provide structural load-

carrying capability greater than or equal to conventional fasteners.  They can also be 

faster to manufacture.  The net result is lighter materials and structures [1,2]. 

Additional advantages of adhesives include the minimization or prevention of 

electrochemical or galvanic corrosion between dissimilar materials.  Environmental 

sealing also increases corrosion resistance.  Insulation against heat transfer or electrical 

conductance is provided.  Resistance to fatigue or cyclic loads, mechanical damping and 

absorption of shock loads, and smooth joint contours are additional advantages.  In most 

cases, no reduction of adherent strength occurs because the curing heat of the adhesive is 

usually below the heat needed to affect the adherent (e.g. metal or ceramic).  Flexible 

adhesives can join adherents with different thermal expansion coefficients without the 

damage that might occur with stiff or rigid joints [1,2,6]. 

There are two types of adhesive bonding -- structural and nonstructural.  

Structural adhesive bonds are defined by the strength of the adhesive.  In this case, the 

adhesive is strong enough that the structure can be stressed almost to the yield point of 

the adherents.  The full strength of the adherents can then be utilized, thus allowing high 

joint efficiencies.  In order to fulfill design criteria, the adhesive must be able to transmit 

stresses, within the limits of the design, without losing its integrity.  Generally, structural 
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adhesives are strong in shear but weak in cleavage and peel, Figure 2.  Nonstructural 

adhesives are not designed to carry high loads [2,11]. 

 

Figure 2: (A) lap joint in shear, (B) peel, (C) cleavage. 
(Modified from R.W. Messler, Jr., Joining of advanced materials, 

Butterworth-Heinemann, 1993, p. 125) 
 

Examples of major systems utilizing structural adhesive bonding include the C-5 

military transport and the Lotus Elise.  The transport includes metal-to-metal, 

honeycomb, and fiber-reinforced plastic bonding, as shown in Figure 3 [1,2].  The Elise 

has an epoxy-bonded aluminum chassis which is unique in the automobile industry, 

Figure 4 [5]. 
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Figure 3: Adhesive applications in aircraft. (a) Helicopter components, 
(b) Lockheed C-5A transport plane. 

(Reprinted from D. Hagemaier, “Adhesive -Bonded Joints.” 
ASM Handbook, 1989, 17, p. 611.) 
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Figure 4: Finite element model of the Lotus Elise. 
(Reprinted from “The Lotus Position,” 
http://www.lotuseng.com/chassis.htm 

April 15, 1999) 
 

To understand how adhesive joints fail, it is necessary to understand bonding 

mechanisms.  However, no single mechanism or theory is adequate to explain adhesive 

bonding.  The proposed theories are based on mechanical locking, surface adsorption, 

electrostatic attraction, interdiffusion, and weak boundaries from impurities.  The actual 

process is probably a combination of two or m ore of these, depending on what products 

are being used. 

 

A.  Mechanical Mechanism: 

Mechanical locking or anchoring is responsible for adhesion in this theory.  The 

adhesive must penetrate the microscopic asperities (i.e. hills, valleys, pores, and crevices) 

on the substrate surfaces, and displace any trapped air.  Adhesives work best on abraded 

surfaces, so mechanical abrading or chemical etching is important for obtaining good 

bonds. 
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Several factors may contribute to the effect of abrasion, including enhanced 

mechanical interlocking, creating a clean surface, forming a highly chemically reactive 

surface, and increasing the bonding surface area by roughing the surface.  A combination 

of the increased surface area and chemical reactivity work together to produce the 

stronger bond.  Mechanical bonding is likely involved in most bonds, alone or in 

combination with other mechanisms of adhesion [2]. 

 

B.  Adsorption Mechanism: 

In this theory, molecular contact between adhesive and adherent, with the 

resulting surface forces that develop, is responsible for the adhesive force.  Wetting is the 

process that establishes intimate contact between the adhesive and adherent.  A liquid 

“spontaneously” adheres to and spreads on a solid surface.  It is controlled by the surface 

energy of the liquid-solid interface versus the liquid-vapor and solid-vapor interfaces.  

The surface is completely wet if the angle of contact (θ) between the surface and the 

liquid is zero.  Incomplete wetting occurs at any other angle.  Any contact angle less than 

90 degrees indicates reasonable wetting for bonding.  For proper wetting, the surface 

tension of the adhesive should be lower than that of the adherent.  Good wetting occurs 

when the adhesive fills the microscopic hills and valleys on the surface of the adherent 

while in poor wetting, the adhesive bridges the valleys.  The resulting decrease in the 

actual contact area lowers the joint strength [2,11]. 

After wetting, chemical bonding is theorized to be responsible for the bond 

strength.  The chemical bonds in adhesion or cohesion can be primary (e.g. ionic, 

covalent, or metallic bonds), but are usually secondary (e.g. Van der Waals attractions or 
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permanent dipole moments).  Adhesion occurs when different materials are held together 

by physical and/or chemical valence forces such that work is necessary to separate them.  

Cohesion occurs when primary or secondary chemical valences hold together particles of 

a single substance.  The type of bonding that predominates depends on the material, but 

secondary bonding is theorized to contribute to all bonding [2]. 

 

C.  Electrostatic Theory: 

In this theory, adhesion is due to electrostatic forces between the adhesive and 

adherent at their interface.  A layer of separated charge at the interface holds the adhesive 

and adherent together.  Electrical discharges have been seen when materials were 

separated, supporting this theory.  Permanent dipoles or polar molecules most likely 

account for this type of bonding [2]. 

 

D.  Diffusion Mechanism: 

The interdiffusion of molecules is primarily responsible for adhesion in the 

diffusion theory.  The chances of diffusion occurring increase with similar adhesive and 

adherent, such as when both are polymers.  The long chains may be mobile enough to 

diffuse and entangle.  Entanglement is important in joining polymers, especially 

thermoplastics.  This theory is not as applicable to the adhesive bonding of metals or 

ceramics, and secondary bonding does not play a role here [2]. 
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E.  Weak-Boundary Layer Theory: 

Weak-boundary layer theory explains the failure of joints more than their 

adhesion.  Most bonds fail just next to the interface, suggesting a weak boundary layer 

adjacent to the interface.  This could result from a chemical reaction between adhesive 

and adherent.  Contamination of, or impurity concentrations in, the surface layer could 

also be responsible.  Sources of weak boundary layers are (1) concentrations of low 

molecular weight compounds from separation of adhesive components during bonding, 

(2) oxides, sulfides, and other chemical layers on metals which are weakly bound, and (3) 

air trapped at the interface. 

Bond failures can provide information about the mechanisms by which bonds fail.  

The dominant types of failure are adhesive and cohesive failure.  Adhesive failure is the 

interfacial failure between adhesive and adherent.  It is indicative of a weak-boundary 

layer, often from improper preparation.  In cohesive failure, a fracture occurs and 

adhesive remains on both adherent surfaces.  When the adherent fails before the adhesive, 

the fracture is contained completely within the adherent.  This is known as the cohesive 

failure of the substrate.  Optimal failure is cohesive, because the maximum strength of the 

materials in the joint has been reached, and no questions arise about improper preparation 

or bonding. 

Causes of premature failure are very difficult to determine, especially in bonded 

joints.  Failure could come from incomplete wetting, internal stresses arising from 

adhesive shrinkage during setting, or from different coefficients of thermal expansion.  

Also important are the stresses, their orientation to the bond, and the rate of stress 
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application.  Operating environmental factors can also have significant and synergistic 

adverse effects.  Currently, the best way of determining joint strength is by simulating a 

joint in its operating conditions [2]. 

 Many different types of flaws or discontinuities can occur in adhesive bonds.  

Metal-to-metal voids are the most common flaws.  Interface defects result from errors in 

the preparation of the adherents.  These can be reduced by careful process control, 

adherence to specification requirements, and inspection procedures before continuing in 

the bonding process.  Disbonds can be found with current nondestructive techniques, but 

they cannot easily determine joint strength [1]. 

 

 F.  Surface preparation 

The objective of adhesive bonding is a bond providing maximum strength and 

quality for a combination of adhesive and adherent, usually at minimum cost.  Some 

requirements which must be met include the cleanliness of the adherent surfaces prior to 

bonding, proper wetting, adhesive choice, and joint design. 

Since bonding is a surface phenomenon, joint cleanliness is essential.  Any 

foreign material must be removed.  This includes dirt, grease, cutting coolants and 

lubricants, water, and weak surface scales (e.g. oxides, sulfides).  If they are not removed, 

the adhesive can not adhere and the joint strength is compromised. 

Surface preparation (or pretreatment) usually involves the following steps: solvent 

cleaning, intermediate chemical and mechanical cleaning, and chemical treatment.  

Solvent cleaning is always performed, and the other steps are performed as necessary, 
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though always in the same order.  Priming may be done last, particularly under severe 

environmental conditions [2,3,4,6,10,11]. 

 

3. Photoelasticity 

PhotoStress [3] is a full-field technique for measuring surface strains which then 

can be used to obtain stresses.  This process can be used for static or dynamic testing.  

First a strain-sensitive coating is bonded to a test part which is then loaded.  A reflection 

polariscope, see Figure 5, gives off polarized light, which illuminates the test part, 

producing a fringe pattern for surface strains.  Overall strain distributions and high strain 

areas can be readily identified, an example of which is shown in Figure 6.   

 

Figure 5:  Schematic representation of reflection polariscope. 
(Reprinted from “Introduction to Stress Analysis by the PhotoStress Method,” 

TN-702-1, Measurements Group, Inc., 1992, p. 4.)  
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Figure 6: Surface strain pattern on a test part. 
(Reprinted from “An Introduction to PhotoStress,” 

http://www.measurementsgroup.com/first/psintro.htm, 
April 15, 1999) 

 

The results of the tests can be recorded with photographs or videos.  The 

PhotoStress technique can be used to identify critical areas, peak stresses, stress 

concentrations, and principal stresses and directions anywhere on the surface.  Assembly 

and residual stresses can be identified, as can yielding and redistribution of strains in 

plastic deformation.  Repeated testing can be done to optimize stress distribution for the 

least weight and maximum reliability.  This can be done in varied environments (lab or 

field) with simple or complex shapes.  For complex shapes, a partially polymerized liquid 

plastic is molded to the part.  After the coating is cured, it is bonded to the surface with 

reflective cement.  For plane surfaces, flat sheets are cut to size and bonded. 

Qualitative and quantitative analysis can be done on the test parts.  Overall 

nominal stress/strain magnitudes and gradients can be obtained qualitatively from the 
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full-field fringe patterns.  Quantitative measurements include the directions of principal 

stresses and strains everywhere, as well as the magnitudes and signs of tangential stresses 

along free (unloaded) boundaries and where the stress is uniaxial.  In a biaxial stress 

state, the magnitude and sign of the difference in principal stresses and strains can be 

obtained at any point on the surface. 

Full-field observation of strain distributions allows visual identification of 

overstressed areas.  Fringe orders are designated by color, where there is a relationship 

between fringe order and strain magnitude.  Loads cause stresses throughout the material 

and on the surface.  Intimate contact of the coating and test part allows the transmission 

of strains within the material to the coating. The strains in the coating produce 

isochromatic fringes when viewed with a reflection polariscope which are proportional to 

the strains at the surface [3,4]. 

 

A.  Theory of Photoelasticity 

A polarizing filter selects the component of light parallel to its preferred axis to 

produce plane polarized light.  If a second filter is placed in beam with its axis 

perpendicular to the axes of the polarizing filter, extinction of the light occurs. 

The index of refraction of a material is the quotient of the speeds of light in 

vacuum and in a material, c/v, where v is the speed of light in the material, and the speed 

of light in vacuum, c, is 3x108 m/sec.  The index of refraction depends on the material.  In 

homogenous materials, the index of refraction is constant.  Plastics, including the 

photoelastic coating, are optically isotropic when unstressed, but become optically 

anisotropic when stressed, changing the index of refraction. 
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Figure 7.  Schematic representation of the polarization of light. 
(Reprinted from “Introduction to Stress Analysis by the PhotoStress Method,” 

TN-702-1, Measurements Group, Inc., 1992, p. 2.)  
 

If a beam of polarized light is sent through transparent plastic with thickness t, 

where X and Y are the directions of the principal strains, the light vector splits into two 

polarized beams which propagate along X and Y, as illustrated in Figure 8. 
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Figure 8: Schematic representation of a plane polariscope. 
(Reprinted from “Introduction to Stress Analysis by the PhotoStress Method,” 

TN-702-1, Measurements Group, Inc., 1992, p. 3.)  
 

The strain intensity along X is εx, and εy is the strain intensity along Y.  The speed of light 

along X is vx while vy is the speed of light along Y.  If the time to cross the plate is t/v, the 

relative retardation, δ, is 

( )yx
yx

nnt
v
t

v
t

c −=









−=δ      (3) 

where ni is the ith index of refraction of the material.  Brewster’s Law states that the 

relative change of the index of refraction is proportional to the difference in the principal 

strains: 

( ) ( )yxyx Knn εε −=−      (4) 
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K is the strain-optical coefficient, which is a dimensionless constant depending on the 

material.  Combining equations (1) and (2) yields: 

( )yxtK εεδ −=       (5) 

for transmission, and 

( )yxtK εεδ −= 2       (6) 

for reflection.  The factor of two appears since the light passes through the coating twice.  

The equation for strain measurement in the photoelastic coating is: 

   

   (7) 

The waves propagating along the X and Y directions are no longer in phase due to the 

applied strain causing a relative retardation, δ.  The separated waves are called the 

ordinary and extraordinary.  δ is the phase difference after the ordinary and extraordinary 

waves pass through the analyzer filter.  For a plane polariscope, as in Figure 8, the 

intensity is a function of retardation and the angle between the analyzer and the direction 

of the principal strains (β-α): 

(8) 

 

The angle of the polarizer’s transmission axes is α with respect to the vertical, and β is 

the angle of the principal strain axes with respect to the vertical.  The intensity is zero 

when (β-α)=0, or when the crossed polarizer/analyzer is parallel to direction of principal 

strains.  The plane polariscope is used to obtain the principal strain directions. 

Circularly polarized light is obtained by adding quarter-wave plates (optical 

filters) in the path of propagation of the linearly polarized light, as in Figure 9.   

( )
tKyx 2

δεε =−

λ
πδαβ 222 sin)(2sin −= aI
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Figure 9: Schematic Representation of a circular polariscope. 
(Reprinted from “Introduction to Stress Analysis by the PhotoStress Method,” 

TN-702-1, Measurements Group, Inc., 1992, p. 3.)  
 

With circularly polarized light, the photoelastic image is not affected by the direction of 

principal strains.  The intensity of the light becomes: 

 

(9) 

With a circular polariscope, the light intensity is zero when δ=Nλ, where N is the fringe 

order expressing the size of the relative retardation.  The difference in the principal 

strains is then given by: 

 

(10) 

λ
πδ22 sinaI =

Nf
tK

N
tKyx ===−

22

λδεε
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where f is the fringe value which is comprised only of constants, and N is from 

measurements and Table 1 [3, 12]. 

TABLE 1 
Isochromatic Fringe Characteristics 

 
Approximate Relative 

Retardation 
Color 

nm in x 10-6 

Fringe Order N 

Black 0 0 0.00 
Gray 160 6 0.28 
White 260 10 0.45 
Pale Yellow 345 14 0.60 
Orange 460 18 0.80 
Dull Red 520 20 0.90 
Purple (Tint of Passage) 575 22.7 1.00 
Deep blue 620 24 1.08 
Blue-Green 700 28 1.22 
Green-Yellow 800 32 1.39 
Orange 935 37 1.63 
Rose Red 1050 42 1.82 
Purple (Tint of Passage) 1150 45.4 2.00 
Green 1350 53 2.35 
Green-Yellow 1440 57 2.50 
Red 1520 60 2.65 
Red / Green Transition 1730 68 3.00 
Green 1800 71 3.10 
Pink 2100 83 3.65 
Pink / Green Transition 2300 90.8 4.00 
Green 2400 95 4.15 
 
Table 1: Isochromatic Fringe Characteristics. 

(Reprinted from “Introduction to Stress Analysis by the PhotoStress Method,” 
TN-702-1, Measurements Group, Inc., 1992, p. 6.)  

 

 Fringe generation occurs first at highly stressed points.  New fringes appear with 

increasing load, and older fringes are pushed to lower areas of stress until the maximum 

load is reached.  As the fringes appear, ordinal numbers are assigned to them (first, 

second, third, etc.).  The fringe order is maintained throughout.  The fringes are 

continuous, do not cross, and are always in the same sequence.  Through a circular 

reflection polariscope, the fringe pattern is a set of isochromatics (different colored 

bands).  Each band represents a different degree of birefringence and therefore a different 
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level of strain.  The fringe pattern can be read like a topological map when the fringe 

order is understood. 

 As the light passes through the coating, the light rays undergo relative retardation.  

The photoelastic effect is caused by constructive and destructive interference of these 

phase shifted rays, which happens when the coating is stressed.  With monochromatic 

light,  if the magnitude of the relative retardation is an integral multiple of the wavelength 

(λ, 2λ, 3λ, etc.), cancellation and extinction occur, producing a black band.  When the 

relative retardation is an odd multiple of λ/2 ( λ/2, 3 λ/2, 5 λ/2, etc.), the rays are in phase 

and add to maximum intensity.  Intermediate magnitudes of the relative retardation give 

intermediate intensities of light.  The pattern appears as alternate light and dark f ringes 

since the intensity is a sine-squared function of the relative retardation, see equations (8) 

and (9). 

 White light, with all wavelengths of visible light, is most often used for the full-

field interpretation of the fringe patterns.  When one wavelength of light is extinguished, 

others are still visible.  As each wavelength is extinguished with higher stresses, the 

complementary color is seen.  The complementary colors make up the fringe pattern for 

white light.  These colors are correlated with relative retardations and fringe orders in 

Table 1 [3]. 

 The photoelastic coating is viewed black when a coated, but unloaded, test part is 

observed with a reflection polariscope.  Colors appear as the part is loaded, with the 

highest stressed areas getting color first.  The colors appear in the following order: gray, 

white, yellow (when violet is extinguished), orange (when blue goes), red 

(complementary to green).  Purple appears when yellow is extinguished, and then orange 
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is extinguished producing a blue fringe.  The purple fringe is called the tint of passage.  It 

is easily distinguished from the red and blue on either side of it and is sensitive to small 

changes in the strain.  This fringe is used to designate the order of the fringes (N).  As 

tints of passage appear, the ordinal number increases (N=2, 3, etc.). 

 As the load is increased, the relative retardation increases and red is extinguished 

(leaving blue-green for the fringe).  Eventually the relative retardation is twice the 

wavelength of purple, starting the fringe cycle again.  However, the deep red at the far 

end of the visible spectrum also has a wavelength twice that of violet and thus is 

extinguished for the first time with the second violet extinction.  This leaves a fringe that 

is yellow and green, the complementary colors of red and violet.  As a load is 

progressively applied, the fringe colors cycle, but the colors are not the same as the first 

order since multiple colors are extinguished simultaneously.  Fringe colors become more 

pale and less distinctive.  Due to this effect, fringe orders above about 4 or 5 are not 

distinguishable in white light, however fringe orders above 3 are rarely needed for the 

stress analysis. 

 

B.  Measurement of Stress and Strain Magnitudes: 

 With the fringe orders proportional to the difference in principal strains, 

Nfyx =−εε        (11) 

This can also be written in terms of the shear strain, xyγ : 

Nfxy =γ        (12) 

where xyγ  is the maximum shear strain at any point in the xy plane of the part surface. 
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Hooke’s Law for biaxial stress in mechanically isotropic materials is: 

( )yxx

E
νεε

ν
σ +

−
=

21
     (13) 

( )xyy

E
νεε

ν
σ +

−
=

21
     (14) 

Subtracting equation (14) from equation (13) yields: 

( )yxyx

E εε
ν

σσ −
+

=−
1

     (15) 

Substituting equation (11) into equation (15) gives: 

Nf
E

yx ν
σσ

+
=−

1
      (16) 

where σx and σy are the principal stresses in the surface of the test part, E is the elastic 

modulus (Young’s modulus), and ν is Poisson’s ratio of the test part.  Young’s modulus 

and Poisson’s ratio have been tabulated for many materials. 

To find the magnitude or sign of any individual principal stress, another 

measurement must be made to determine the sum of the principal stresses.  This can be 

added to the sum of the principal stresses to obtain an individual stress.  The sum can be 

found with thermoelasticity [8], oblique measurements, or with a stress-separator gage 

[3,4]. 

Some cases, however, can be determined with just the difference of strains.  

Examples include a uniform shaft in torsion, ( σx/σy=-1), and a thin-walled pressure vessel 

(σx/σy=2).  These relations can be substituted into equation (16) to get the individual 

principal stresses.  When the stress state is uniaxial, σx or σy is zero, and there is only one 

nonzero principal stress in the plane of the surface of the test part.  For example, if σy is 

zero,  
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Nf
E

x ν
σ

+
=

1
       (17) 

Included in cases of one principal stress being zero are all straight members of 

uniform cross s ection which are in axial tension or compression (and bending), far from 

the point of load application.  This is also a good approximation of mildly tapered 

members.  More often, this is used for points on boundaries and free edges of the test part 

[3]. 

 

C.  Reinforcement due to Coating 

 The photoelastic coating can have a reinforcing effect on thin members.  The 

preceding derivations implicitly assume that the strains in the test part are not affected by 

the photoelastic coating.  They also assumed that the strains in the coating are uniform 

through the thickness and are equal to those in the test part.  These assumptions are 

legitimate for most metal castings, forgings, and robust members since Young’s modulus 

of the coating is much less than that of the t est part.  The coating is also generally much 

thinner.  However, corrections for reinforcement effects and nonuniform strain due to 

bending in the coating may be needed for thin sections and/or low-modulus materials.  

This is the case with lap joints since the aluminum substrate is thin. 

 If the coating carries some of the load for the part, the strains in the test object are 

smaller (for the given load) than would occur without the coating.  The reinforcement 

error shows up in the principal strain difference (εx-εy).  For thin members in bending, the 

strain is greater in the surface of the test part, in addition to the reinforcing effects.  This 

occurs since the strain increases linearly with the distance from the neutral axis about 
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which the bending occurs.  Here the observed coating fringes correspond to the average 

strain through the coating thickness (the strain at mid-thickness) [4]. 

 Plane-stress corrections are: 

**1 tECPS +=        (18) 

where CPS is the factor by which the observed fringe order in plane stress must be 

multiplied for the corrected fringe order. 

c

c

E
E

E =*         (19) 

 

E* is the ratio of Young’s modulus of the photoelastic coating to that of the test part, and 

t* is the ratio of the coating thickness to the part thickness: 

s

c

t
t

t =*         (20) 

  

For an applied bending moment, the correction factor is: 

*1

**)*4*6*4(*1 4232

t
tEtttE

CB +
++++=     (21) 

where CB is the factor by which the observed fringe order in bending must be multiplied 

to get the corrected fringe order.  E* and t* are the ratios defined before [4]. 

 The equations derived above are for the cases of pure plane stress and pure 

bending, respectively.  The graph of CPS and CB for various structural materials is shown 

in Figure 10.  After the fringe orders are measured on the coating, the appropriate 

correction factor is read from the graph and applied to get the corrected fringe order.  The 

equations should be used to calculate CPS and CB when the elastic modulus of the coating 
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is different from the values which are used in the graph.  The corrections are more 

complicated for combinations of plane stress and bending [4]. 
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4. Finite Element Analysis 

 A commercial finite element analysis package, COSMOS/M, was chosen 

for its static structural capabilities to analyze the lap joints.  Finite Element Analysis 

(FEA) numerically approximates a continuous calculation by discretizing the problem 

into elements, small units used for analysis.  Each element is connected, directly or 

indirectly, to all of the other elements through common interfaces (nodes, boundary lines, 

and/or surfaces).  Known material properties (including stress/strain relationships) are 

then used to determine the behavior of any node in relation to the others.  The resulting 

equations are best expressed in matrix notation.  For structural problems, usually the 

displacements are calculated at each node and the stresses for each element subject to the 

applied loads of the body.  For example, in nonstructural problems, the nodal unknowns 

may be temperatures due to thermal fluxes.  The goal of FEA is to create a model as 

detailed as possible, given a the resources of the computer. 

Finite element analysis has many inherent advantages: it is easy to model irregular 

shapes, and it is possible to evaluate different materials.  FEA can apply general load 

conditions, and large numbers and kinds of boundary conditions are possible.  Different 

sizes of elements can be used where necessary.  The model can be altered relatively 

cheaply and easily.  Dynamic effects, nonlinear behaviors (from large displacements), 

and nonlinear materials can be examined.  Detection of problems from stress, vibrations, 

and thermal effects can be addressed before construction of a prototype is begun.  Finite 

element analysis can also increase confidence in a prototype and reduce the number of 

prototypes required in the design process [7,13,14]. 

 Steps in the development of a finite element model follow: 
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Step 1: Discretize and choose element types. 

Divide the continuous body into an equivalent set of finite elements and nodes.  

This also involves choosing the most appropriate element type for the problem, which is 

primarily a matter of engineering judgement.  Elements should be small enough to give 

useful information but large enough to reduce computational time and effort to a 

manageable level.  More elements should be used in areas of rapid change, while larger 

(and fewer) elements should be used in areas of constancy.  An example of an area of 

rapid change would be a change in geometry.  The choice of element type depends on the 

makeup of the loaded body and how close the approximation needs to be.  One-, two-, 

and three-dimensional elements are available.  This is one of the most important choices 

the designer makes.  For the lap joint, one inch corresponds to 32 units in the model, and 

the model was scaled appropriately.  The geometry of the lap joint was modeled with 

volumes to form the correct shape. 

The basic line elements are bar (or truss) and beam elements with cross-sectional 

area, but usually represented by line segments.  The area can vary.  Line and beam 

elements are often used to model trusses and frame structures.  Linear elements are the 

simplest with one node at each end.  Quadratic, cubic, etc. elements also exist with three 

or more nodes. 

Two-dimensional (or plane) elements are loaded in their planes.  They are 

triangular or quadrilateral.  The simplest are linear elements which have only corner 

nodes and straight sides.  Quadratic elements have midside nodes and can have curved 

sides.  Elements can have variable thicknesses or can be constant throughout.  A wide 

range of engineering problems can be modeled with these elements. 
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Tetrahedral and hexahedral (or brick) elements are the most common three-

dimensional elements, used when it is necessary to do a three-dimensional stress analysis.  

Again, the basic elements have only corner nodes and straight sides, but higher-order 

elements with midedge and midface nodes may have curved side surfaces.  Tetrahedral 

elements were chosen for the modeled lap joints [13]. 

 

Step 2: Choose a displacement function. 

Choose a displacement function within each element using the nodal values of the 

element.  The most frequent equations are linear, quadratic, and cubic polynomials, but 

trigonometric series can also be used.  The function is used for each element and then 

taken over the whole structure.  The continuous nature of the structure is approximated 

by a set of piecewise-continuous functions defined within each finite element (or domain) 

[13]. 

 

Step 3: Define strain/displacement and stress/strain relationships. 

These are necessary for each element.  For example, a one-dimensional 

deformation in the x direction will give for small strains (εx)  

dx
du

x =ε       (22) 

where u is the displacement.  Defining the material behavior accurately is essential for 

good results.  Hooke’s law is the simplest stress/strain law and is often used in analysis.  

Criteria must be defined to determine where the linear relationship is no longer valid.  

This is discussed in detail in reference [7]. 
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Step 4: Derive the element stiffness matrix and equations. 

The resulting equations are written in the following matrix form: 
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or in compact form: 

{ } [ ]{ }dkf =         (24) 

where {f} is the vector of element nodal forces, [k] is the element stiffness matrix, and 

{d} is the vector of unknown element nodal degrees of freedom or generalized 

displacements, n.  Generalized displacements may include quantities such as actual 

displacements, slopes, or curvatures.  In the lap joint models, the forces were applied to 

surfaces at either end of the model [13]. 

 

Step 5: Generate global or total equations from the element equations and introduce 

boundary conditions. 

Use the direct stiffness method (superposition) to add the individual element 

equations to obtain the global equations for the structure.  Continuity, or compatibility, is 

implicit in the direct stiffness method, which requires that there are no discontinuities and 

that the structure remains together. 

The final matrix form is {F} = [K]{d} where {F} is the vector of global nodal 

forces, [K] is the structure global or total stiffness matrix, and {d} is the vector of known 

and unknown structure nodal degrees o f freedom or generalized displacements.  At this 

stage, [K] is singular because the determinant is zero.  It is necessary to invoke boundary 
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conditions to fix the structure rather than allow it to move as a rigid body.  These 

boundary conditions modify {F}. 

Specification of enough boundary conditions is crucial or the structure will be free 

to move as a rigid body.  In that case the stiffness matrix is singular, so it’s inverse does 

not exist.  The two general types of boundary conditions are homogeneous and 

nonhomogeneous.  Homogeneous boundary conditions are the most common and occur 

at locations completely prevented from moving.  Nonhomogeneous boundary conditions 

are found where finite nonzero displacements are specified [13]. 

 

Step 6: Solve for unknown degrees of freedom (or generalized displacements) 

The equations, modified by boundary conditions, can be expressed by 
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where n is the total number of unknown nodal degrees of freedom.  An elimination 

method (such as Gauss’s) or an iterative method (such as Gauss-Seidel’s) can be used to 

solve the equations.  The d’s are the primary unknowns since they are the first quantities 

to be determined in the stiffness finite element method [13]. 

 

Steps 7 and 8 involve solving for elemental strains and stresses, and 

interpretation of the model [13]. 
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 The lap joints to be tested were modeled with COSMOS.  The X- and Y- axes 

were scaled to the model, while the Z-axis was shortened, see Figure 11.  This was done 

since the strains were uniform along the Z-axis  Geometrical objects were created by the 

computer program using points, surfaces, and volumes.  These were then meshed 

(connected) such that the adhesive areas and those areas of aluminum near the adhesive 

also had denser meshes to accommodate areas of interest.  All rotations of the part were 

fixed at zero, as were the Y- and Z- displacements at both ends of the joint.  The line of 

nodes through the center of the joint was used to fix the center of the lap joint.  Each node 

in this line was fixed.  Loads were applied at each end to simulate the effects of the load 

frame.  The models were then analyzed with the applied loads and the theoretical strains 

were obtained.  Appendix A contains the COSMOS commands used to generate the 

models. 
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Examples of finite element models of lap joints can be found in Figures 11-13.  In 

Figure 11, the mesh is shown.  A dense mesh was used in the area of the adhesive bond 

since that was the area of interest.  This provided more information in the area of the 

bond.  Figure 12 shows the normal stress along the X-axis.  The highest areas of tension 

(in red) were at the overlap corners.  In Figure 13, the high strain concentrations 

correspond to the areas of high stress. 

 

 

IV. EXPERIMENT 

 Aluminum lap joints were fabricated and coated with a polycarbonate photoelastic 

material to test for changes in the surface fringe pattern indicative of plastic deformation.  

The samples were tested in tension in a hydraulic load frame (810 Material Test System), 

shown in Figure 14.  The optical fringes on the surfaces of the joints were observed and 

correlated with the results of a finite element model calculation.  The goal of this was to 

compare the strains derived from the fringes to the strains in the finite element models.  

Comparison verified that the finite element calculations reflected reality. 
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Figure 14: Experimental setup.  Lap joint in hydraulic load frame. 

 

 Sheets of 2024 aluminum alloy were cut into strips approximately 1.5 by 6 inches 

long.  Aluminum 2024 was chosen since it is a good example of an aluminum alloy used 

in the aircraft industry.  The strips were then degreased with acetone, sanded with 

medium (80 grit) and fine (180 grit) sandpaper, cleaned with a commercial alkaline 

cleaner, and cleaned again with acetone to remove any lingering surface contaminants. 

Two thicknesses of aluminum were used in the lap joints.  The aluminum in the first set 
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of eight joints was 0.09 inches thick, while the second set of eight was 0.05 inches thick.  

The list of samples is given in Table 2. 

 

TABLE 2 
 

Sample 
Aluminum 
Thickness (in.) 

Bond Overlap 
(in.) 

Average Bond 
Thickness (in.) 

Coating 
Thickness (in.) 

1 0.09 1 0.0004 0.01 
2 0.09 0.5 0.0004 0.01 
3 0.09 1 0.0004 0.01 
4 0.09 1 0.0006 0.01 
5 0.09 0.5 0.0038 0.01 
6 0.09 0.5 0.0123 0.01 
7 0.09 0.5 0.0029 0.01 
8 0.09 1 0.0023 0.01 
9 0.05 1 0.0029 0.021 
10 0.05 1 0.0046 0.021 
11 0.05 1 0.0029 0.021 
12 0.05 1 0.0030 0.021 
13 0.05 2 0.0043 0.021 
14 0.05 2 0.0050 0.021 
15 0.05 2 0.0047 0.021 
16 0.05 2 0.0056 0.021 
 

Table 2: Lap joint samples. 

 

Lap joints were created with Devcon 2-ton epoxy, a commercial two -part 

adhesive.  Bonds with overlaps of 0.5 inches, 1 inch, and 2 inches were created.  Keeping 

the bond area free of excess adhesive and other contaminants was very difficult.  An early 

set of joints was discarded because adhesive was squeezed from the joint and allowed to 

dry on the aluminum.  This created an extra layer of adhesive at the joint which interfered 

with the placement of the photoelastic coating.  The adhesive could only be removed by 

force, which increased the chances of damaging the joint and introducing unnecessary 

flaws. 
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After the joints were created, a photoelastic coating was added to the top of each 

joint.  Flat coatings are used for flat surfaces, while contoured coatings are available for 

other geometries.  In the present case, a flat PS-1 coating was bonded with a two -part 

adhesive to the lap joints in the region of the overlap and extending toward the ends of 

the sample by approximately 1.5 inches. 

Coating edges needed to be matched with edges adjacent and perpendicular to the 

test part edges.  Holes drilled for bolts, rivets, and test part seams should be located 

between sheets.  This is especially important around holes or discontinuities since they 

exhibit higher stress concentrations.  Holes and seams were not applicable in the present 

research [10]. 

The photoelastic sheets used in this application were preformed flat sheets with a 

reflective backing on one side.  The sheets were cut with a sharp blade to reduce the 

introduction of additional stresses, chips or cracks in the coating causing unwanted 

fringes that interfere with the desired photoelastic fringes.  Cleaning of the PS-1 coating 

was only done with isopropyl alcohol [10]. 

Photoelastic adhesive, a mixture of a resin and hardener, was applied to the test 

surface to bond the optical coating.  The chosen adhesive for the photoelastic sheets on 

the lap joints was the PC-1 (resin) with PCH-1 (hardener).  Prior to mixing, it was 

necessary to calculate the surface area to be covered, which gave the grams of mixed 

adhesive needed.  One gram of mixed adhesive covered about 10 cm2, 1 mm thick.  The 

resin was heated to 90°F (32°C) and ten parts per hundred of the hardener by weight were 

added to the resin.  The hardener (PCH-1) was added at room temperature.  No more than 

100 grams of adhesive could be mixed per batch since amounts larger than this 
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significantly decreased pot life.  The parts were mixed until the adhesive was non-

streaking and homogeneous, about 3 to 5 minutes.  Upon application, any excess 

adhesive was squeezed out, leaving a final layer 0.1 to 0.25 mm thick.  Finally, the bond 

was cured for 12 hours at room temperature.   

Normal adhesive bonding procedures should be followed to obtain the optimum 

photoelastic adhesive bond.  The area should be clean with a temperature of 65-85°F (18-

29°C).  Masking tape should be applied about 3/16 inches from the boundaries of the 

photoelastic coating.  The adhesive is brushed over the aluminum surface to a thickness 

of at least 1 mm.  The coating is applied by pressing down on the top, starting at edge and 

working across with constant pressure to press out any air.  The coating should be pressed 

again after it is applied to bleed out any additional adhesive.  The paper backing should 

still be on the coating to preclude damage of the photoelastic coating.  Adhesive needs to 

be brushed at the edges of the coating to seal against air and moisture.  A final adhesive 

thickness of 0.01 to 0.03 mm is typical.  If the coating slides upon application, it can be 

tacked in place with masking tape.  It will then be allowed to set for one to two hours.  At 

this point, the tape is r emoved.  All excess adhesive must also be removed at this time, as 

should the paper backing on the coating.  The adhesive must cure for twelve hours before 

testing [10]. 

 The 0.09-inch joints yielded little photoelastic information.  Two of the eight 

0.09-inch samples broke before testing began because of compression by the load frame.  

Very little photoelastic signal was seen from the other 0.09-inch samples.  This could be 

due to a dim light source or the metal could have been too thick to see significant strains.  

The photoelastic coating was 0.010 inches thick.  The next set of samples was made from 
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0.05 inch aluminum with one- and two- inch overlaps.  These were coated with a 0.021 

inch photoelastic coating.  A brighter flashlight was used as the light source for visual 

measurements.   

Testing with the 810 Material Test System (MTS) load frame was performed by 

writing a procedure to ramp up the force by 100 N per second to the final load, hold for 

30 seconds, and ramp down to 0 N.  Before each run, the desired force is changed in the 

procedure.  The procedure was written with TestStar II, a commercial software package.  

At any point, the machine may be manually “held” at a load and then released.  After the 

sample was loaded and held with the grips, the procedure could begin.  As the force was 

held constant, photoelastic measurements were taken with flashlight and polarizing 

filters.  Digital photographs were also taken for archival purposes.  The digital camera 

had a flash brighter than the flashlight used in the visual measurements. 

Circularly polarized light was reflected from the coating, and the resulting fringe 

patterns were then viewed with a reflection polariscope of flashlight and filters.  Some 

images were captured with a digital camera with filters over the flash and lens.  The 

fringe patterns started at the bond line and extended out toward the ends from there.  

These strain distributions correlated with the strain distributions in the finite element 

models, as in Figure 15. 
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Figure 15: (Left) Fringes show areas of highest strain at the joint on the lower plate. 
(Right) Highest strains are at the joint on the lower plate, as in the photoelastic image. 

 
 

The photographs do not correspond well to visual observation of the surfaces of 

the joints.  The flash seems to wash out the colors.  It is also picking up residual strains 

on the surfaces of the coatings.  The coating in Figure 16 (left) is unstressed, but bright 

spots still are evident.  These bright spots can be seen in the right image (Figure 16), 

which is stressed. 
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Figure 16 (Left).  Unstressed joint.  Residual strains are marked by arrows. 

(Right).  Stressed joint.  Residual strains are in the same locations and marked by arrows. 
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 The forces at which the joints broke were plotted as a function of bond overlap 

(Figure 17) and aluminum thickness (Figure 18): 
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Figure 17.  Failure force v. Bond overlap. 
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Figure 18.  Failure force v. Aluminum thickness. 
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 Purple was the first color to appear on the test surface.  The samples should start 

with black and go through gray, white, yellow, orange, and a dull red before getting to 

purple.  In addition, no complete fringe pattern ever appeared on the surface.  As new 

fringes appeared, the older ones should get pushed out to the edges, as expected, but 

without the early colors.  This may have been because the sample was only partially 

coated and these areas of lower stress were not on the coated area.  While the fringes 

appeared in the correct order, they did not seem to represent a readily identifiable fringe 

pattern since they only exhibited purple through red.  See Table 1 for the color sequence.  

The light source may have been too dim to observe the early colors. 

 In addition to the problem of fringe order, the coating on the lower plate seemed 

to disbond before the joint broke.  As the force increased, some point at the very edge of 

the lower coating near the bond seemed to give way.  Gaps of violet appeared in fringes 

of color, often between areas of green/yellow, as in Figure 17.  When these colors were 

used to determine surface strains from the fringe order and photoelastic calculations 

(from Table 1), it was difficult to determine which color to use where there were gaps. 

 

  

Figure 17: (Left) Stressed joint before appearance of gap. 
(Right) Joint after appearance of gap. 
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 An example of the problem follows.  For s ample 15, a lap joint with 2 in overlap, 

aluminum 0.05 in thick, and a force of 2200 Newtons, a green fringe was observed at the 

joint.  According to Table 1, the fringe order for this should be  

30.1=observedN        (26) 
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Therefore, for plane stress, the correction factor from equation (18) is 

( )( ) 015.142.0036.01**1 =+=+= tECPS    (29) 

and from equations (22) and (25) 

( )( ) 32.1015.130.1 ==N      (30) 

It follows that 

( )( ) ininininNfx /4752/360032.1 µµε ===   (31) 

where f is given for the coating.   

 

The experimental strain is compared with finite element analysis.  From FEA, the strain 

at the same point is 1.7 µin/in.  They differ by 
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Going the other way, using εx = 1.7 µin/in 
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These results do not match either way.  Performing the same analysis for the bending 

correction, 

ininininNfx /3660)/3600)(017.1( µµε ===   (34) 

The difference between the model and experiment is 
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The numerical results from the experiment and model did not correlate.  This 

could be due to many factors.  A dim light source may not have shown the color fringes 

correctly, thus giving the wrong value for N.  The colors in the digital photographs were 

not the same as those seen in visual observations.  The finite element model may not have 

been detailed enough without accounting for the photoelastic coating. 

 The correction for the reinforcing effect of the photoelastic coat ing on the 

aluminum lap joint was not fully treated in this analysis.  At low stresses, bending 

moments are not significant and can be ignored.  However in the plastic region, the 

bending moment of the joint would be significant.  In this case, neither plane stress nor 

bending moments can be considered alone, thus complicating analysis [2,4]. 
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V. CONCLUSION 

The location of strain distributions in the photoelastic measurements correspond 

to strain distribution locations in the finite element analysis.  At the moment, however, it 

seems that the photoelastic coating is failing around the point of failure of the joint, but it 

is unclear how the coating is affecting the joint strength of the aluminum lap joint.  It is 

possible that the stiffening effect of the photoelastic coating allows the joint to carry a 

higher load, but once the photoelastic adhesive bond breaks, the forces are too great for 

the joint to carry and it fails.  The coatings are known to have reinforcing effects and the 

moduli of elasticity for the epoxy, plastic coating, and photoelastic adhesive are all within 

the same order of magnitude.  Young’s modulus of the Type PS-1 polycarbonate coating 

is approximately 360,000 psi [4].  The modulus of elasticity for the photoelastic adhesive 

is about 450,000 psi [10].  It is about 350,000 psi for the joint (if the epoxy is 

approximated by a medium-high impact acrylic).  The problem is quite complicated and 

needs much more attention. 
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VI FUTURE WORK 

Much work is necessary before photoelasticity can be used to evaluate lap joints.  

American Society of Testing Materials standards for bonding could be followed to obtain 

more uniform bonds for testing.  Also, an adhesive with a modulus of elasticity 

significantly lower than that of the photoelastic coating would be certain to fail first, 

thereby avoiding having two moduli of elasticity which are almost the same.  However, 

this would not be representative of structural bonds.  Other coatings could also be tried on 

the surface, including coatings which could be applied like paint [8].  Within the finite 

element models, the extra adhesive layers from the photoelastic coating could be added 

for analysis.  Additionally, a finer mesh could be used for the models in an attempt to 

gain more information about the bonds. 
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APPENDIX A 

C*  Session file for the 1-inch lap joint model. 
C*  Aluminum adherents and acrylic bond. 
C* 
C*  Four volumes make the bond, while two volumes 
C*  each generate the aluminum plates.  The mesh is 
C*  most dense in and adjacent to the adhesive. 
C*  Forces are applied at each end of the model and 
C*  boundary conditions prevent motion of the rigid 
C*  body. 
C* 
C* 
C*  COSMOS/M      Geostar V1.75 
C*  Problem : lap          Date :  3-24-99  Time : 17:10:56 
C* 
C* FILE inchLap.txt 1 1 1 1  
C* 
C*  
PLANE Z 0 1  
VIEW 0 0 1 0  
EGROUP 1 SOLID 0 1 0 0 0 0 0 0  
PICK_MAT 1 AL_2024 FPS  
C* MATL:AL_2024      : ALUMINUM 2024 ALLOY                      
 
C* EX        0.11E+08   psi                 
C* NUXY      0.33                           
C* GXY       0.40E+07   psi                 
C* ALPX      0.13E-04   /Fahrenheit         
C* DENS      0.26E-03   lbf*s*s/in**4       
C* KX        0.19E-02   BTU/in/s/F          
C* C (Cp)     73.       BTU*in/lbf/s/s/F    
PICK_MAT 2 ACRYLIC FPS  
C* MATL:ACRYLIC      : ACRYLIC (MEDIUM-HIGH IMPACT)             
 
C* EX        0.35E+06   psi                 
C* NUXY      0.35                           
C* GXY       0.13E+06   psi                 
C* ALPX      0.29E-04   /Fahrenheit         
C* DENS      0.11E-03   lbf*s*s/in**4       
C* KX        0.28E-05   BTU/in/s/F          
C* C (Cp)    0.14E+03   BTU*in/lbf/s/s/F    
PT 1 0 0 0  
PT 2 0 0.048 0  
PT 3 16 0.048 0  
PT 4 16 0 0  
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PT 5 16 -0.048 0  
PT 6 0 -0.048 0  
PT 7 -16 -0.048 0  
PT 8 -16 0 0  
PT 9 -16 0.048 0  
PT 10 -16 2.928 0  
PT 11 54 2.928 0  
PT 12 54 0.048 0  
PT 13 16 -2.928 0  
PT 14 -54 -2.928 0  
PT 15 -54 -0.048 0  
PT 16 176 2.928 0  
PT 17 176 0.048 0  
PT 18 -176 -2.928 0  
PT 19 -176 -0.048 0  
SF4PT 1 1 4 3 2 0  
SF4PT 2 6 5 4 1 0  
SF4PT 3 7 6 1 8 0  
SF4PT 4 8 1 2 9 0  
SF4PT 5 9 12 11 10 0  
SF4PT 6 14 13 5 15 0  
SF4PT 7 12 17 16 11 0  
SF4PT 8 18 14 15 19 0  
SFGEN 1 1 8 1 0 0 0 3  
VL2SF 1 1 9 1  
VL2SF 2 2 10 1  
VL2SF 3 3 11 1  
VL2SF 4 4 12 1  
VL2SF 5 5 13 1  
VL2SF 6 6 14 1  
VL2SF 7 7 15 1  
VL2SF 8 8 16 1  
ACTSET MP 2  
M_VL 1 4 1 8 16 2 6 1 1 1  
ACTSET MP 1  
M_VL 5 6 1 8 70 4 6 1 1 1  
M_VL 7 8 1 8 20 4 6 1 1 1  
NMERGE 1 7868 1 0.0001 0 0 0  
NCOMPRESS 1 7867  
VIEW 0 0 1 0  
SCALE 0  
VIEW 1 1 1 0  
CLS 1  
FSF 39 FX 15 39 1  
FSF 41 FX -15 41 1  
DSF 39 UY 0 39 1 UZ     
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DSF 41 UY 0 41 1 UZ     
DCR 53 UX 0 53 1     
C* R_STATIC  
C* 
C*  COSMOS/M      Geostar V1.75 
C*  Problem : lap          Date :  3-24-99  Time : 17:19:44 
C* 
C* R_STATIC  
C* 
C*  COSMOS/M      Geostar V1.75 
C*  Problem : lap          Date :  3-24-99  Time : 17:32:45 
C* 
VIEW 0 0 1 0  
VIEW 0 0 1 0  
VIEW 1 1 1 0  
VIEW 0 0 1 0  
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