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Abstract 
This thesis describes the application of wavelet fingerprinting as a technique to analyze 

and automatically detect flaws in recorded audio.  Specifically, it focuses on time-localized 

errors in digitized wax cylinder recordings and contemporary digital media.  By taking the 

continuous wavelet transform of various recordings, we created a two-dimensional binary 

display of audio data.  After analyzing the images, we implemented an algorithm to 

automatically detect where a flaw occurs by comparing the image matrix against the matrix of a 

known flaw.  We were able to use this technique to automatically detect time-localized clicks, 

pops, and crackles in both cylinders and digital recordings.  We also found that while other extra-

musical noises, such as coughing, did not leave a traceable mark on the fingerprint, they were 

distinguishable from samples without the error. 
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1 Background 
1.1 Cylinder Recording and Associated Flaws 

 Practical audio recording began in the late 19th century with Thomas Edison’s wax 

cylinders (Figure 1).  The product of experimentation with tinfoil as a recording medium, wax 

was found to be a more viable and marketable method of capturing sound.  A performer would 

play sound into the recording apparatus, shaped like a horn, and the pressure would increase as 

sound traveled down the horn.  It would then cause a stylus to etch a groove into the wax mold, 

which could be played back.  Unfortunately, the material would degrade during playback, and 

the recording would become corrupted as the wax eroded.  This problem persisted into the 

twentieth century, even as the production process continued to improve.1  Among the flaws 

produced are time-localized pops and crackles, which often render cylinder recordings 

unlistenable.  The first step in preserving these cylinders is digitization, because at this point the 

recording cannot undergo any further damage.  While many cylinders have been digitized, many 

of these are not of sufficient commercial value to merit fixing by an engineer.  Our project aims 

to make this next phase easier.  If we can automatically detect where the flaws are in a digitized 

recording that make it unlistenable, an engineer will have a much easier time fixing them and the 

process will be less expensive.  Moreover, if multiple recordings of a particular piece exist, an 

engineer can select which one is worth fixing based on which has the least amount of errors.  

Thus, more of these historically important recordings will be preserved. 
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Figure 1: An Edison phonograph (left) (http://en.wikipedia.org/wiki/Phonograph).  
 An Edison wax cylinder (right) (http://en.wikipedia.org/wiki/Phonograph_cylinders).  

1.2 Digital Recording and Associated Flaws 

 Flaws associated with digital recording are undoubtedly easier to manage than those in 

digitized cylinders.  Most recording studios now use digital audio workstations (DAWs) on 

computers in conjunction with physical mixing stations, and it is common for audio to be 

recorded at bit depths at or above 24 bits and 96 kHz, although this is usually truncated down to 

16 bits and 44.1 kHz for commercial production.  Unlike the case of digitized cylinders, 

engineers have each instrument’s individual track (or tracks) to work with rather than just one 

master track.  Often this means that a flaw can be isolated to just one track, and a correction on 

that level is less musically offensive than altering the master.  Common problems which 

recording engineers spend hours finding and fixing include bad splices, accidental noises from an 

audience, and extra-musical sounds from the performers such as vocal clicks, guitar pick noises, 

and unwanted breathing. A time-consuming and monotonous portion of many recording 

engineers’ jobs is to go through a track little by little, find these errors, and then correct them. 
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Fortunately, the circumstances of digital recording allow for much easier correction of errors.  It 

is usually a simple matter to create a “correct” version of a track using various processing 

techniques, as the digital realm gives the engineer essentially unlimited room to duplicate, 

manipulate, and test different variations.  This makes automatic detection of the errors much 

easier in most cases. 

1.3 Previous Work in Automatic Flaw Detection 

 Programs do exist for correcting errors in audio at a very fine level.  CEDAR 

(http://www.cedar-audio.com), commercial audio restoration software, lets the user look at a 

spectrogram of the sound and remove unwanted parts by altering the image of the spectrogram.  

Even cross-fading and careful equalization in most DAWs can eliminate time-localized clicks, 

pops, and splice errors.  However, this can be both a time-consuming and expensive process, as 

the engineer has to both recognize all the errors in a recording and then figure out how to correct 

them.  In the music industry this never happens unless the recording is highly marketable in the 

first place.  Due to financial limitations, many historically important recordings on cylinders, 

magnetic tape, other analog media, and even digital media don’t merit a human cleaning.  The 

time and cost it takes to do this would be greatly reduced with an algorithm that automatically 

detects errors.  There is no effort on the engineer’s part to find the errors; he simply has to make 

the correction at the given time.  In addition, if multiple versions of a recording exist, an engineer 

could select which one would be worth fixing based on the amount of flaws that require 

attention. 

 Previous work in this field has involved using spectrographic analysis as a basis to de-

noise a signal using the continuous wavelet transform. The Single Wavelet Transform 1-

Dimensional De-Noising toolbox in MATLAB (The MathWorks, Inc.) was used to generate a 
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spectrogram of an input signal followed by the spectrogram of the filtered signal.  The 

continuous wavelet transform yields coefficients of “approximations” and “details”, or lower 

frequencies and higher frequencies, which can be individually modified with a certain gain.  In a 

sense, this is a type of equalization that relies on a wavelet transform as opposed to a Fourier 

transform, as all the coefficients belonging to a certain group will be changed according to their 

individual gain.2 

 Unfortunately, spectrographic analysis was not a very practical tool in automating noise 

removal.  While it was useful in making individual sections of a recording better, large-scale de-

noising on the recording did not make it more listenable.  For a given moment in time, it was 

appropriate to kill some of the detail coefficients, while removing them at other moments 

actually detracted from the musical quality. 

 
1.4 Current Work in Automatic Flaw Detection 

 We are using a Graphical User Interface (GUI) in MATLAB implemented by the Non-

Destructive Evaluation lab at the College of William & Mary to display and analyze the wavelet 

fingerprint of filtered data (Figure 2).  The continuous wavelet transform is used to evaluate 

patterns related to frequency and intensity in the music, but the output is not a plot of frequency 

intensities over time (like a spectrogram), but rather a 2-dimensional binary image.  This is a 

viable model because it is much easier to recognize patterns in a binary image than in a 

spectrogram, and it’s easier to tell a computer how to look at it.  By examining raw and filtered 

fingerprints for many variations of a certain type of input, we can make generalizations about 

how a flaw in a recording will manifest itself in the wavelet fingerprint.3 The wavelet fingerprint 

tool works similarly to MATLAB’s built-in wavelet tool: we input sound data from the 

workspace in MATLAB and view it as a waveform in the user interface.  Below that, we see a 
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filtered version of the wave file according to the filter parameters, and then the wavelet 

fingerprint below that. 

 

Figure 2: Wavelet Fingerprint Tool.  Top plot: the entire input waveform.  Middle plot: a 
selected portion of the filtered waveform.  Bottom plot: fingerprint of the selected part. 

 The process of writing a detection algorithm involves several important steps.  When 

working with digital recordings, we reproduced a given flaw via recording or processing in a 

digital audio workstation.  Using Avid’s Pro Tools DAW (http://www.avid.com), we recorded 

coughs, instrumental sounds, and generated other noises one might find in a recording.  We 

gathered multiple variations of a type of recorded data from multiple people; it does not reveal 

anything if the manifestation of one person’s cough is unique, for instance, because then the 

algorithm would only be valid for finding that one error. The amplitude, panning, and reverb of 

the error can be edited in Pro Tools and then synchronized in time with the clean audio tracks.  

The wave files are then exported separately, imported into a workspace in MATLAB, and 

analyzed using the Wavelet Fingerprint Tool.  Files are compared against other files containing 
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the same error as well as a control file without the error.  We can then filter the waveform using 

Fourier or wavelet analysis and examine the fingerprints for patterns and similarities. 

When working with cylinder recordings, we took a slightly different approach.  In this 

case, we did not simply insert an error into a clean recording; the recordings we worked with had 

the error to begin with.  This lack of control meant that, initially, we did not know exactly what 

we are looking for.  Fortunately, we have access to files that have been processed through 

CEDAR’s de-clicking, de-crackling, and de-hissing system.  This does help make the recording 

more listenable, but the errors are still present to a smaller degree.  The cleaned-up files are also 

louder and include the proper fades at the beginning and end of the track.  Thus, this process is 

somewhat analogous to the mastering process in digital music—the final step in making a track 

sound its best.  By synchronizing the cleaned-up track with the raw track, we can figure out what 

we are looking for in the wavelet fingerprint.  The errors that are affected by CEDAR will appear 

differently in the edited track, and the rest of the track should manifest itself in a similar way. 

However, synchronizing the files can be rather challenging.  In a digital audio 

workstation, it is relatively simple to get the files lined-up within several hundredths of a second.  

At this point, the files will sound like they overlap almost completely, but the sound will be more 

“full” due to the delay.  However, several hundredths of a second at the industry-standard 44.1 

kHz sample rate can be up to about 2,000 samples.  Due to the visual nature of the wavelet 

fingerprint, we need to get the files synchronized much better than that.  Synchronization within 

about 100 samples is sufficient. 

One method of synchronizing the files is simply to examine them visually in a 

commercial DAW.  By filtering out much of the non-musical information using an equalization 

program, the similarities in the unedited and edited waveforms become clearer.  We can continue 
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to zoom-in on the waveforms in the program and synchronize them as much as possible until 

they are lined-up to the sample (Figure 3).  Below, we see that the files are at worst only several 

samples apart; comparing them using the wavelet fingerprint tool will still be possible. 

 

Figure 3: Precise synchronization of waveforms in Pro Tools.  The two axes on top refer to 
the time in minutes and seconds (top) and samples (bottom). 

However, although this is an effective approach, it is not preferable because it is time-

consuming and subject to human error.  Thus, we have developed a program in MATLAB to 

automatically synchronize the two waveforms (Appendix Listing I).  Like a commercial DAW, 

our audio workstation allows the user to first manually line-up the waveforms to the extent that is 

humanly practical.  A simultaneous playback function exists so that we can verify aurally that the 

waveforms are reasonably synchronized.   

At this point, the user can run an automatic synchronization.  This program analyzes the 

waveforms against each other over a specified region and calculates a Pearson correlation 

coefficient between them.  The second waveform is then shifted by a sample, and another 

correlation coefficient is calculated.  After desired number of iterations (based on how close the 

user thinks the initial manual synchronization is) the program displays the maximum correlation 

coefficient and shifts the second waveform by the appropriate amount, thus automatically 

synchronizing the two waveforms. 

Like a commercial DAW, our MATLAB implementation also includes a Fourier-based 

equalization program, a compression algorithm (to cut intensities above a certain decibel level), a 
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gate algorithm (to cut intensities below a certain decibel level), gain control, and a trim function 

to change the lengths of a waveform by adding zero values.  Unlike most DAWs, however, our 

program allows for a more critical examination and alteration of a waveform, including 

frequency spectrum analysis by way of a discrete Fourier transform, and spectrograms of the 

waveforms.   

The equilization tool, while not a paragraphic equalizer, allows for carefully constructed 

multi-band rectangular filters to be placed on a waveform after Fourier analysis.  This is 

particularly helpful in the synchronization process; by removing the low-end of the signal (below 

anything that is musically important) and removing the high-end (above any of the fundamental 

pitch frequencies, usually no more than several thousand hertz), we can store the unedited and 

edited waveforms as temporary variables that end up looking much more like each other than 

they did initially.  By running the synchronization algorithm on the musically similar temporary 

variables, we know exactly how the actual waveforms should match up. 

With the unedited and edited files synchronized, we can examine them effectively with 

the wavelet fingerprint tool (Figure 4).  The more significant differences between the fingerprint 

of the unedited sound and that of the edited sound will likely indicate an error.  After we 

examine multiple instances, if we have enough reason to relate a visual pattern to an audio error, 

we can use our detection algorithm to automatically locate a flaw. 
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The detection algorithm we have 

implemented involves a numerical evaluation 

of the similarity between a known flaw and a 

given fingerprint (Appendix Listing II).  

Because the wavelet fingerprint is in reality 

just a pseudocolor plot of ones and zeros, we 

can incrementally shift a smaller flaw matrix 

over the larger fingerprint matrix and 

determine how similar the two matrices are.  

To do this, we simply increase a value 

representing how similar the matrices are by a 

given amount every time there is a match.  The 

user is able to decide how many points are 

awarded for a match of zeroes and how many 

points are awarded for a match of ones.  After 

the flaw is shifted over the entire waveform 

from beginning to end, we plot the match 

values and determine where the error is 

located.  The advantage to this approach is that 

it not only points out where errors likely are, but also allows the user to evaluate graphically 

where an error might be, incase there is something MATLAB failed to catch. 

In using the detection algorithm to analyze audio data, we found that it is often necessary 

to increase the width of the ridges and decrease the number of ridges for a reasonable evaluation.  

Figure 4: Comparing samples for 
synchronization using our MATLAB audio 
workstation.  This image shows the entire 
waveform, but we are able to zoom in and 

verify that they are lined-up. 
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Multiple iterations of one error (a pop, for instance) often manifest themselves very differently in 

the fingerprint.  Thus, it is helpful to have a more general picture of what is happening sonically 

from the fingerprint.  The match value technique in the detection algorithm gives us an 

unrepresentative evaluation of similarity between the given flaw and the test fingerprint if we set 

the ridge detail too fine.  

 
2 Theory 
 A Fourier transform is a powerful tool in showing the frequency decomposition of a 

given signal.  With a given intensity vs. time signal, we can find a set of Fourier coefficients that 

when multiplied by a series of sine waves yield the original signal4.  These Fourier coefficients 

are thus important because they show all frequency components of the spectrum (Equation 1). 

 

€ 

F(ω ) = f (t)e−iωt dt
−∞

∞

∫  (1) 

 

Where F is the frequency vs. intensity representation, f is the original intensity vs. time 

signal, and is a complex exponential that can be reduced to its real and imaginary parts. 

(Equation 2). 

 

€ 

F(ω ) = f (t)(cos(ωt) − isin(ωt))dt
−∞

∞

∫  (2) 

 

 However, the problem with the Fourier transform is that it yields only the frequency vs. 

intensity of an intensity vs. time signal.  We would like to see frequency, intensity, and time all 

in one representation.  A spectrogram does meet this criteria—by showing time and frequency on 

two axes and intensity with color, we can see what frequencies are present, and how much, at a 

given time (Figure 5).5  Programs exist which allow the user to modify the colors in the 
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spectrogram to edit the sound, but spectrograms are difficult to use for automation because the 

image is difficult to mathematically associate with a particular type of flaw. 

 

Figure 5: A spectrogram of a track we analyzed, created with out MATLAB audio 
workstation.  We show frequency, from 0 to 22.05 kHz, on the y-axis and time on the x-axis. 

 A wavelet transform lends itself to our goals much better.  Essentially, we calculate the 

similarity between a wavelet function and a section of the input signal, and then repeat the 

process over the entire signal.6  The wavelet function is then rescaled, and the process is 

repeated.  This leaves us with many coefficients for each different scale of the wavelet, which we 

can then interpret as “approximation” or “detail” coefficients (Equation 3). 

 

€ 

C = f (t)Ψ(t)dt
−∞

∞

∫  (3) 

 

Where f is the original intensity vs. time signal and Ψ is the wavelet, taken at different 

scales (up to the length of the input signal) and at different positions along the input signal.  

Scale is closely related to frequency, since a wavelet transform taken at a low scale will 



 18 

correspond to a higher frequency component.7  This is easy to understand by imagining how 

Fourier analysis works; by changing the scale of a sine wave, we are essentially just changing its 

frequency.  At this point, we now have a representation of time, frequency, and intensity, all at 

once.  We can plot the coefficients in terms of time and scale simultaneously.  The wavelet 

fingerprint tool we have implemented takes these coefficients and creates a binary image of the 

signal, much like an actual fingerprint, which is easy for both humans to visually interpret and 

computers to mathematically analyze.8  Two of the wavelets we use to a great extent in our 

analyses are the coiflet3 wavelet and the haar wavelet, shown below with fingerprints (of the 

same excerpt) that they were used to generate (Figures 6 and 7). 

 

Figure 6: Shapes of the coiflet3 wavelet (left) and the haar wavelet (right) 

 

 

 

Figure 7: Wavelet fingerprints of an excerpt generated by the coiflet3 wavelet (top) and 
haar wavelet (bottom) 
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3 Wavelet Fingerprinting in MATLAB 
The Wavelet Fingerprint tool currently runs from a 650-line code in MATLAB, which we 

are continuously modifying for practicality and functionality as it relates to this project.  The 

function is implemented in a GUI, so users can easily manipulate input parameters.  By clicking 

on a section of the filtered signal, the user can view the signal’s fingerprint manifestation, and 

clicking on the fingerprint will also let the user view what is happening at that point in the signal 

to cause that particular realization. 

 The mathematically interesting part of the code occurs almost exclusively just in the last 

hundred lines, where it creates the fingerprint from the filtered waveform.  It obtains the 

coefficients of the continuous wavelet transform from MATLAB’s built-in cwt function.  It 

takes the input parameters of the filtered wave from the specified left and right bounds selected 

by the user, the number of levels (which is related to scale) to use, and the wavelet to use for the 

analysis.  This creates a two-dimensional matrix of coefficient values, which are then normalized 

to 1 by dividing each component of the matrix by the overall maximum value.9 Initially, the 

entire fingerprint matrix is set to the value zero, and then certain areas will be set to one based on 

the values of the continuous wavelet transform coefficients, the parameter selected by the user of 

how many of these “ridges” there will appear, and how thick they will be.  Throughout the 

domain of the fingerprint, if the coefficients are greater than the number of ridges minus half 

their thickness and less than the number of ridges plus half their thickness, we set the fingerprint 

value at that point to be one.  This outputs a “fingerprint” whose information is contained in a 

two-dimensional matrix.  For each fingerprint, the two-dimensional matrix is displayed as a 

pseudocolor plot at the bottom of the interface. 
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 Several modifications have been made to the original version of this code throughout the 

past year.  For speed and ease-of-use, this version’s capability to recognize binary or ASCII 

input data has been eliminated.  We use only data imported into MATLAB’s workspace, so there 

is no need to create an error while running the program by accidentally clicking the wrong 

button.  Several of the program’s default parameters have also been changed.  Namely, the 

wavelet fingerprint no longer needs to discern between “valleys” (negative intensities) or 

“peaks” (positive intensities), because it is only the amplitude of the wave that contains relevant 

sonic information.  We set a more full 75 “levels” of the wavelet fingerprint by default, rather 

than 50, so we can examine all frequencies contained in the data more efficiently. The highest 

frequency we can be concerned with is 22.05 kHz, as we cannot take any information from 

frequencies higher than half the sampling rate (we always use the industry standard 44.1 kHz).  

More practically, the user can now highlight any part of the fingerprint, input signal, or filtered 

signal for analysis.  The program will still respond even if the user selects left and right bounds 

that don’t work, but rather will alter the bounds so that the entire domain shifts over. Titles and 

axis labels on all plots of the waveform and the fingerprints are now included as well. 
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4 Data and Analysis 

4.1 Method and Analysis of a Non-Localized  
Extra-Musical Event (Coughing) 

 To analyze extra-musical events as errors in MATLAB, we generated them artificially 

using Pro Tools, and tested many different variations of them with the wavelet fingerprint tool. 

 

Figure 8: Superimposing recorded errors with a signal in the Pro Tools 9 DAW 

Figure 8 shows about a 7-second excerpt of a WAV file of Igor Stravinski’s ballet, 

Petrouchka.  The second track, below that, is a cough.  When the file is played back, we can hear 

the cough superimposed with the music.  In this simulation, the recording is clean, and the error 

that we inserted is ultimately what needs to be detected in the signal.  We then exported both 

tracks together as a WAV file to be used in MATLAB.  We always specify WAV file because it 

is lossless audio and gives us the best possible digital sound of our original recording.  We never 

want to experience audio losses due to compression and elimination of higher frequencies in 

formats like mp3, despite the great reduction of file size.   

The file was then sent to the workspace in MATLAB.  By muting the cough, we created a 

control file without any extraneous noise and sent that to the workspace in MATLAB as well.  

We always exported audio files in mono rather than stereo, because currently the wavelet 
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fingerprint tool can only deal with a single vector of input values rather than two (one each for 

left and right).  For each file, we renamed the “data” portion of the file, containing the intensity 

of the sound at each sample, and remove the “fs” portion, containing the sampling rate (44.1 

kHz).  This created two files in the workspace: a vector of intensities for the “uncorrupted” file 

and a vector for the file with coughing. 

When we call the Wavelet Fingerprint Tool in the command window, the loaded 

waveform appears above its fingerprint (Figure 9).  In the top plot, we see the original waveform.  

The second plot shows an optionally filtered (this one is still clean) version of the selected part of 

the first plot.  The third image shows the fingerprint, in this case created by the coiflet3 wavelet.  

The black line on the fingerprint corresponds to the red line on the second plot, so we can see 

how the fingerprint relates to the waveform.  In the third plot, the yellow areas represent ridges, 

or “ones” in the modified wavelet transform coefficients matrix. We can also load the file with 

the coughing and examine it in a similar fashion. As a convention, we always set the ridge 

number to 15 and ridge thickness to 0.03 for unfiltered data. 
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Figure 9: Analyzing the data with the Wavelet Fingerprint Tool 

The code allows us to take a snapshot of all the loaded fingerprints with the “compare 

fingerprints” button.  This lets us see each of the fingerprints within the most recent bounds of 

the middle plot (shown in Figure 9).  Purposely, we have selected an area of the fingerprint that 

does not contain a cough (Figure 10). There is no visually obvious difference in the fingerprint—

as we expect, if there is no difference in the fingerprint, an error does not exist in this part of the 

sample. Shifting the region of interest to a spot with the error (Figure 11), we see in the second 

fingerprint that the thumbprint looks very skewed at higher levels.  The ridges seem to stretch 

significantly further than they did at the lower levels, but their orientation and position is very 

much unchanged. 
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Figure 10: Comparing Wavelet Fingerprints using the Wavelet Fingerprint Tool (no error 
present) 

 

Figure 11: Difference in fingerprint with (bottom) and without (top) coughing 

 

As expected, introducing an error also introduces a difference in the waveform.  But now, 

we have to test against many other types of errors to determine what the relationship is.  

Fortunately, Pro Tools makes it easy to keep track of many different tracks and move sound clips 

to the appropriate location in time.  We then compared the many different coughing samples in 

MATLAB (Figure 12). 
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Figure 12: Comparing many different recorded coughs 

While these coughs manifest themselves differently in the music, one similarity we do 

notice is an exaggeration of some of the upper-level characteristics in the clean sample (the top 

fingerprint).  For instance, in most variations, we notice a distortion in the “hook” that occurs at 

500 samples around level 50.  While this observation is vague, it is still somewhat significant, 

since these samples are taken from different “types” of coughs and from different people.  

Unfortunately, after testing the same coughing samples against several different audio 

recordings, the fingerprints did not show sufficient visual consistency.  Although these results 

are inconclusive, we think that if we filter the track in some ideal way in future studies, we 



 26 

should be able to identify where a cough might likely occur.  The rest of our analysis focuses on 

more time-localized errors. 

 
4.2 Errors Associated with Digital Audio Processing 

In mixing music, if an engineer wants to put two sounds together in immediate sequence, 

he lines them up next to each other in a DAW and cross-fades each portion with the other over a 

short time span (Figure 13).  One signal fades out while the other fades in.  When this is done 

incorrectly, it can leave an awkward jump in the sound that sometimes manifests itself as an 

audible and very un-musical popping noise.  For this analysis, we worked with three different 

types of music one might have to splice in the studio: tracks of acoustic guitar strumming, vocal 

takes spliced together, and the best takes of recorded audio from a live performance spliced 

together (which is very useful if there are multiple takes and the performers mess some of them 

up). 

 

Figure 13: Cross-fade of an acoustic guitar in Pro Tools 9 

First, we examined chord strumming recorded by an acoustic guitar.  One part of a song 

was recorded, and then the second part was recorded separately, and the two pieces were put 

together.  The three plots in Figure 14 show the track spliced together correctly, at a musically 

acceptable moment with a brief cross-fade, followed by two incorrect tracks, which are missing 

the cross-fade.  The last track even has the splice come too late, so there is a very short silence 
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between the two excerpts.  Mathematically, the second track just contains a slight discontinuity 

at the point of the splice, but the third track contains two discontinuities and a region of zero 

values. 

 

Figure 14: Comparing acoustic guitar splices: a correct splice (top), a bad splice (middle), 
zero data in front of splice (bottom) 

The late splice leaves an obvious mark; at the lower levels, the ridges disappear entirely.  

The flaw in the second graph is less obvious.  At about 250 samples, the gap between the two 

adjacent “thumbprints” is sharper and narrower in the second plot.  We then ran the same 

analysis with vocal data.  We found some similarities, but the plot of the fingerprint is so 

dependent on the overall volume that it is hard to determine what is directly connected with the 

flaw and what isn’t (Figure 15).  The triangular shape still appears prominently due to the zero 

values in the third plot, but the second plot is a little harder to analyze now.  Although there is no 

cross-fade, the discontinuity between the first and second waveforms is smaller.  However, at 

about 300 samples, the gap between the two thumbprints is once again complete, narrow, and 

sharp, although a little more curved this time.   
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Figure 15: Comparing vocal splices: a correct splice (top), a bad splice (middle), zero data 
in front of splice (bottom) 

Finally, to work ensemble playing into our analysis, we chose to examine a performance 

of an original composition for piano, guitar, percussion, and tenor saxophone (Figure 16).  This 

piece was performed at a reading session, so splicing together different parts of the piece from 

the best takes is what made the complete recording; a full-length, un-spliced recording does not 

exist.  Once again, in the third plot, we see the characteristic triangle shape.  In the upper plots, 

however, there is little difference, but there is a slight sharpening of the gap right after 300 

samples in the second pot.  While this result certainly is helpful, it is probably not code-able, 

since sharpness of a gap is not an artifact unique to not cross-fading.  However, the presence of 

similar visual patterns confirmed that investigating splices further was necessary.  Refer to 

section 4.4 for a continued analysis of splice errors and detection.  
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Figure 16: Comparing splices of a live recording: a correct splice (top), a bad splice 
(middle), zero data in front of splice (bottom) 

 
4.3 Automatic Detection of Flaws in Cylinder Recordings using Wavelet 

Filtering and Wavelet Fingerprint Analysis 

 Using files from the University of California at Santa Barbara’s Cylinder Conservation 

Project, we compared the fingerprints of unedited and edited digitized cylinders using the 

Wavelet Fingerprint tool.  The files provided were in stereo, but in actuality are the same in both 

the left and right channel, because stereo sound did not exist in cylinder recording.  So, we 

converted the files to mono by taking only the left channel’s data.  As before, the unedited file 

and edited file are each a vector the length of the waveform in samples.  

 Because a complete song is millions of samples long, it is impractical for the wavelet 

fingerprint program to process all the data at once.  Thus, we examined the complete audio file 

using our digital audio workstation implemented in MATLAB to look for more specific spots we 

wanted to check for errors (Figure 17).  The file on the bottom has been decreased by twelve 

decibels so that it looks similar to the first file (for visually accurate comparison).  Evidently, 

CEDAR’s de-clicking program did a relatively good job getting rid of the many of the louder 

clicks, but they still affect the sound in a less overbearing way.  We chose two regions to 
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examine with the wavelet fingerprint tool: two million to three million samples, and one to one 

million samples.  

Figure 17: Comparing Unedited (top) and Edited (bottom) Cylinder Wave Files using our 

MATLAB Audio Workstation 

We compared several fingerprints of clicks in the unedited waveform with the 

fingerprints of the edited waveform.  We used a relatively large ridge width of 0.1 and 20 ridges 

so we could look for more general trends in the fingerprint (Figure 18).  At about 2,258,000 

samples, we found a noticeable difference in the two images.  The flower-like shape that occurs 

at about 400 samples is common in other instances of clicks as well.  From about 256,000-

256,750 samples (Figure 19) and about 103,300 samples (Figure 20), we observed a similar 

shape.  We found that this particular manifestation was more visually apparent when the 

musically important information is quieter than the noise. 
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Figure 18: Comparing Wavelet Fingerprints of the data in Figure 17 (between 2,257,600 
and 2,258,350 samples): edited data (top), unedited data containing pop (bottom) 

 

Figure 19: Instance of a click at 256,000 samples (between 300 and 400 samples in the 
fingerprint): edited waveform fingerprint (top) and unedited waveform fingerprint 

(bottom) 

 

Figure 20: Instance of a click at 103,300 samples (slightly less than 400 samples in the 
fingerprint): edited waveform fingerprint (top), unedited waveform fingerprint (bottom) 
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We then chose a flaw to use as the control.  We compared this against a larger segment of 

the wavelet fingerprint, and using our automatic flaw detection algorithm, found the exact 

location of the error.  Taking the first error to generate our generic pop fingerprint, we store the 

area from 400 to 450 samples in a 75 x 50 matrix.  This was shifted over the entire test 

fingerprint, counting only the values of the ridges that match, as we can see by looking at the 

fingerprint the placement of the zero values do not seem to have much consistency between each 

shape. Assigning one match point for each ones match and no points for each zeros match, the 

program detected the flaw slightly early at 296 samples (Figure 21). However, it is very visually 

apparent that the flaw most likely occurs in the neighborhood of 300 samples, so it did a 

reasonably good job of locating it. 

 

Figure 21: Using the error at 2,258,000 samples as our generic flaw, we automatically 
detected the flaw at 256,500 samples (beginning at 296 samples in the fingerprint) using our 

flaw detection program. 

We expanded on this method further by filtering the waveform before the fingerprint was 

created.  Creating a temporary variable from the original waveform revealed useful information 

about where important events are located in the waveform.  Using the coiflet3 wavelet as our de-
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noising wavelet, we removed the third through fifth approximation coefficients as well as the 

second through fifth detail coefficients on the above excerpts.  We found that while much of the 

musical information is lost, information about where the errors occurred was exaggerated.  At 

256,500 samples, we observed a prominent fork shape in the unedited fingerprint (Figure 22).  In 

taking this data we normalized each fingerprint individually due to the large difference in 

intensities between the filtered versions of the clean and unedited wave files.  We observed the 

same shape at 103,300 samples (Figure 23).  For all filtered data, we use a ridge number of 20 

and thickness of 0.05. 

 

Figure 22: Using the coiflet3 wavelet to de-noise the input data, we observed the flaw at 
256,500 samples with the haar wavelet (about 400 samples in the fingerprint): filtered 

edited data (top) and its associated fingerprint (second from top), filtered unedited data 
(second from bottom) and its associated fingerprint (bottom) 
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Figure 23: Using the coiflet3 wavelet to de-noise the input data, we observed the flaw at 
103,300 samples with the haar wavelet (about 400 samples in the fingerprint): filtered 

edited data (top) and its associated fingerprint (second from top), filtered unedited data 
(second from bottom) and its associated fingerprint (bottom) 

 Taking this feature as our representative pop sample, we counted the number of zeros and 

ones in the first fingerprint that match up to see if we can automatically locate it.  Our program 

caught the flaw perfectly at about 350 samples (Figure 24).  The weakness of using this method 

is that it appears more likely, for instance, that there is a flaw at zero samples than at 300 

samples.  For a more accurate search, we need to develop a method that does not count the zero 

matches unless there is a significant amount of ones matches. 
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Figure 24: We took the shape in Figure 23 as our generic flaw and automatically detected 
the error in Figure 22 using our flaw detection program. 

Interestingly, we found that while it is difficult to locate the crackling noise made by 

cylinders just by looking at the waveform, we believe that we can successfully identify many 

instances through the same filtering process.  Since these are so widespread throughout the 

unedited waveform, we simply selected a portion of the file and examined the fingerprint for the 

above shape.  For instance, we chose the region at approximately 192,800-193,550 samples in 

the same file (Figure 25) and saw less-defined fork shapes appear frequently in the edited 

waveform than the unedited waveform.  At about 292,000 samples we observed a similar pattern 

(Figure 26). 
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Figure 25: Using wavelet filtering and fingerprinting to find where clicks occur between 
192,800 and 193,550 samples: filtered edited data (top) and its associated fingerprint 

(second from top), filtered unedited data (second from bottom) and its associated 
fingerprint (bottom) 
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Figure 26: Using wavelet filtering and fingerprinting to find where clicks occur between 
approximately 292,600 and 293,350 samples: filtered edited data (top) and its associated 

fingerprint (second from top), filtered unedited data (second from bottom) and its 
associated fingerprint (bottom) 
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While both fingerprints contain the fork shape throughout, they are more defined in the 

unedited waveform.  Since the forks seem to correspond to intensity extremes when they are 

well-defined, we think that this means they relate to the degree of presence of the crackling 

sounds.  Unfortunately, our algorithm for locating these forks is of little use in this situation.  We 

need a program to count the number of occurrences of forks,rather than individual points, per a 

certain number of samples.  When we run the fingerprint through the algorithm we already have, 

our results are only reasonable.  We assign match points for both ones and zeros so that we can 

account for how defined the fork shapes are.  Figure 27 shows the relative likelihood of a flaw in 

the unedited waveform, and Figure 28 shows the same for the edited waveform.  We see that in 

Figure 27, the peaks in the match values are higher than in Figure 28, suggesting that there is 

more crackling present in the unedited version. 
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Figure 27: Match values for the unedited waveform between 292,600 and 293,350 samples 
and the fork-shaped flaw 

 

 

Figure 28: Match values for the edited waveform between 292,600 and 293,350 samples and 
the fork-shaped flaw 
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4.4 Automatic Detection of Flaws in Digital Recordings using Wavelet 
Filtering and Wavelet Fingerprint Analysis 

 A common issue in editing is the latency of the cross-fade between splices.  For example, 

it is often necessary for an engineer to go through vocalists’ recordings and make sure everything 

is in tune.  This can be fixed in a DAW by selecting the part of the file that is out of tune and 

simply raising or lowering its pitch.  However, an extraneous noise such as a click or pop may be 

created from a change in the waveform.  There might be a discontinuity, or the waveform may 

stay in the positive or negative region for too long.  Oftentimes an automatically generated cross-

fade will not solve the problem, so an engineer needs to go through a recording, track by track, 

and listen for any bad splices.  Moreover, after the problem is located, the engineer must make a 

musical judgment on how to deal with it.  The cross-fade cannot be too long, or the separate 

regions will overlap, and filtering only a portion of the data could make the sound too strange.  

However, using wavelet filtering and fingerprinting comparison techniques, it is simple to 

automatically locate bad splices that require additional attention. 

 In Pro Tools, simulating this is straightforward.  We took the vocal track from a 

recording session and fully examined it, finding and correcting all the pitch errors.  Then, we 

listened to the track for any sort of error that resulted from the corrections.  We duplicated the 

corrected track, and at each instance of an error, manually fixed it on the control track (Figure 

29).  The track was exported from Pro Tools and examined using the Wavelet Fingerprint Tool 

(Figure 30).  Fortunately, since we were working in the digital realm, we already knew exactly 

where the flaws were, and there was no need to use our audio workstation to automatically sync 

the two tracks.  At about 81,500 samples, we see a very distinct image corresponding to the flaw: 

a discontinuity in the waveform that sounds like a small click. 
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Figure 29: Two versions of a vocal splice from pitch correction in pro tools: a correct cross-
fade (top) and a bad splice (bottom) 

 

Figure 30: Instance of a splice at 81,600 samples (about 400 samples in the fingerprint): 
edited waveform (top) and associated fingerprint (second from top), unedited waveform 
(second from bottom) and associated fingerprint (bottom).  Fingerprint created using the 

haar wavelet. 
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 The unedited waveform, unlike the control, has a triangular feature in the middle of the 

fingerprint.  Removing the fifth approximation coefficient using the coiflet3 wavelet as well as 

the second through fifth detail coefficients, however, reveals a very distinct fork shape (Figure 

31).  We already know from our analysis of cylinder flaws that it is possible to code for this 

shape.  In one way, this is a very good thing, because it means that this shape, when it is well-

defined, is indicative of a flaw and a computer has a relatively easy time finding it.  However, it 

does not say much about which particular type of flaw it is.  For that information, we need to rely 

on the appearance of unfiltered or less filtered data. 

 

Figure 31: Using the coiflet3 wavelet to de-noise the input data, we observed the flaw at 
81,600 samples with the haar wavelet (about 400 samples in the fingerprint): filtered edited 
data (top) and its associated fingerprint (second from top), filtered unedited data (second 

from bottom) and its associated fingerprint (bottom) 
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 At 117300 samples, we observed another error from pitch correction, this time a loud 

pop.  The waveform stays in the positive region for too long as a result of the splicing (Figure 

32).  By filtering out the second through fifth detail coefficients using the coiflet3 wavelet, we 

noticed that while the error is visually identifiable in the fingerprint, it is a different type of error 

than the previous one we examined (Figure 33).   Adding the fifth approximation coefficient to 

the filter, we see the characteristic fork shape once again (Figure 34).  Once more, the heavy 

filtering with the coiflet3 wavelet successfully marked an error, but we cannot say from the 

fingerprint exactly what kind of error it is. 

 

Figure 32: At 117,300 samples, we saw the vocal track stay in the positive region for too 
long as a result of an unmusical splice, which manifested itself musically as a loud pop. 
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Figure 33: Instance of a splice at 117,300 samples (about 400 samples in the fingerprint), 
with the second through fifth detail coefficients removed using the coiflet3 wavelet: edited 
waveform (top) and associated fingerprint (second from top), unedited waveform (second 

from bottom) and associated fingerprint (bottom).  Fingerprint created using the haar 
wavelet. 
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Figure 34: Instance of a splice at 117,300 samples (slightly before 400 samples in the 
fingerprint), with the second through fifth detail coefficients removed as well as the fifth 

approximation coefficient using the coiflet3 wavelet: edited waveform (top) and associated 
fingerprint (second from top), unedited waveform (second from bottom) and associated 

fingerprint (bottom).  Fingerprint created using the haar wavelet. 



 46 

 

Next, we analyzed the fingerprint of an electric guitar run through a time compression 

program (Figure 35).  An engineer would need to change how long a note or group of notes lasts 

if a musician was not playing in time, but like with pitch corrections, this can result in flaws.  We 

found that although the instrument is completely different, the error manifests itself in a similar 

way in the wavelet fingerprint. At about 567,130 samples, there is a discontinuity in the 

waveform resulting from the time compression (to the left).  We made a control track by cross-

fading the contracted and normal sections of the waveform, and analyzed the differences in the 

wavelet fingerprint in MATLAB.  Using the haar wavelet to generate the fingerprint without any 

pre-filtering, we found that a triangular figure manifests itself in the middle of the fingerprint 

where the splice occurs (Figure 36).  This “discontinuity” in the fingerprint was not apparent in 

that of the control track. 

 

Figure 35: A bad splice in an electric guitar track as a result of time compression on the 
data to the left. 
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Figure 36: Using haar wavelet to create the fingerprint without any pre-filtering, we 
observed the flaw at about 567,130 samples (slightly before 400 samples in the fingerprint): 
filtered edited data (top) and its associated fingerprint (second from top), filtered unedited 

data (second from bottom) and its associated fingerprint (bottom) 
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 Next, we used the coiflet3 wavelet to filter the waveform (Figure 37).  We killed the fifth 

approximation coefficient as well as the second through fifth detail coefficients, and we found 

the typical pronounced fork shape occurred at the discontinuity in the waveform.  In the 

fingerprint of the control waveform, we saw that there was a lack of clarity between each fork, 

and the forks themselves were once again not well defined.  Although the cause of the 

discontinuity was different in this test, it manifested itself in the fingerprint the same way.  Thus, 

we were able to identify that it is a discontinuity error as well as its location in the sample. 

 

Figure 37: Using the coiflet3 wavelet to de-noise the input data, we observed the flaw at 
81,600 samples with the haar wavelet (between 300 and 400 samples in the fingerprint): 

filtered edited data (top) and its associated fingerprint (second from top), filtered unedited 
data (second from bottom) and its associated fingerprint (bottom) 
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5 Conclusions and Future Work 

 Wavelet fingerprinting proved to be a useful technique in portraying and detecting time-

localized flaws.  We were able to very accurately and effectively detect pops and clicks in both 

digital recordings and digitized cylinders through a process of filtering the input waveform and 

analyzing the fingerprint.  Our algorithm precisely located at what point on the wavelet 

fingerprint the flaw began and provided a useful graphical display of the relative likelihood of an 

error.  We found that the same algorithm could be used to detect many manifestations of the 

same flaw. Whether it was produced by a bad splice from placement, tuning, or tempo 

adjustment, or induced by cylinder degradation, we were able to find where the problem 

occurred.  While our filtering process and algorithm did not tell us exactly what type of error 

occurred or how prominent it was, analysis of the unfiltered fingerprint did reveal a visual 

difference between flaws.  

 Wavelet fingerprinting proved relatively inefficient in detecting flaws in coughs.  We 

think that because events like this are more sonically diverse in nature and less time-localized, it 

was not possible for us to create an automatic detection algorithm.  With a high level of filtering, 

it may be possible in future work to locate such errors.  We also hope in future studies to further 

develop a method of detecting less audible flaws, such as the supposed crackles we noticed in 

cylinder files, with a higher mathematical level of precision and certainty.  We look to extend our 

program’s reach to musical flaws such as vocal clicks and the sound of a guitarist’s pick hitting a 

fingerboard.  Such a tool would be invaluable for engineers in both audio restoration and digital 

mastering. 

 There are several steps we must take to fully apply wavelet fingerprinting as an error 

detection technique.  First, we must modify our algorithm to search entire tracks for errors and 
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display every instance where one occurs, rather than just the several hundred samples where it 

most likely occurs.  We can do this essentially by placing intensity marks (for instance, a color or 

a number) at every point along the waveform indicating how likely it is that an error occurs 

there.  When searching for one given type of error, we suspect that these intensity marks will 

spike at the points of occurrence.  Furthermore, we must modify our algorithm to accurately 

detect flaws based on the type of flaw it is.  This involves inventing a more flexible and 

empirical method of detecting a flaw; this could mean not necessarily looking at all levels of the 

fingerprint, allowing uncertainty in how close matching points are, contracting or expanding the 

flaw matrix, or assigning match points more liberally or conservatively.  It will be a challenge, 

but also very necessary, to make our algorithms more adaptive as we continue to investigate 

more flaws and improve our current detection methods. 

 



 51 

Appendix: Programs Implemented in MATLAB 

Listing I: Digital Audio Workstation 

%% MATLAB Digital Audio Workstation 
% created by Ryan Laney 
% 2011 
  
function DAW 
  
fprintf('This program allows the user to manipulate, compare, and listen to 
edited and unedited audio samples. \n If you input one file, it is called 
"waveform" \n If you input two files, the first is called "waveform1" by the 
program, and the second is called "waveform2" \n Built-in functions include: 
\n Compression: waveform = compression(waveform) \n Gate: waveform = 
gate(waveform) \n DC Offset Removal: waveform = DCOffsetRemoval(waveform) \n 
EQ: waveform = EQ(waveform) \n FFT: frequencies(waveform1, waveform2) \n 
Volume Control: waveform = volume(waveform) \n Playback: waveform = 
playback(waveform) \n Simultaneous Playback: [waveform1, waveform2] = 
simultaneous_playback(waveform1, waveform2) \n Plot Waveforms: [waveform1, 
waveform2] = compare(waveform1, waveform2) \n Manual Offset: waveform = 
manual_offset(waveform) \n Automatic Offset: waveform = 
automatic_offset(waveform) \n Save Data: savefile(waveform) \n') 
clear all 
  
%% initial data 
prompt = {'How many files? (1 or 2)'}; 
name = 'Number of Files'; 
numlines = 1; 
default_answer = {'1'}; 
options.resize = 'on'; 
  
nFiles=inputdlg(prompt,name,numlines,default_answer,options); 
nFiles=str2double(nFiles(1)); 
  
if (nFiles ~= 1) && (nFiles ~=2) 
    error('Must select 1 or 2 files') 
end 
  
if nFiles == 1 
    filename = uigetfile('*.wav'); 
    [waveform, SampleRate, BitDepth] = wavread(filename); 
    c=size(waveform); channels = c(2); 
     
    fprintf('Sample Rate: %d \n', SampleRate); 
    fprintf('Bit Depth: %d \n', BitDepth); 
    fprintf('Number of Channels: %d \n', channels); 
    fprintf('Length of File (samples): %d \n', length(waveform)); 
     
    if channels ~=1 
        warning('Converting audio to mono') 
        waveform = waveform(1:length(waveform),1); 
    end 
     
elseif nFiles == 2 
    filename1 = uigetfile('*.wav');     % get first file 
    filename2 = uigetfile('*.wav');     % get second file 
    [waveform1, SampleRate1, BitDepth1] = wavread(filename1); 
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    [waveform2, SampleRate2, BitDepth2] = wavread(filename2); 
    c1=size(waveform1); channels1 = c1(2); 
    c2=size(waveform2); channels2 = c2(2); 
     
    fprintf('Sample Rate 1: %d \n', SampleRate1); 
    fprintf('Sample Rate 2: %d \n', SampleRate2); 
    fprintf('Bit Depth 1: %d \n', BitDepth1); 
    fprintf('Bit Depth 2: %d \n', BitDepth2); 
    fprintf('Number of Channels File 1: %d \n', channels1); 
    fprintf('Number of Channels File 2: %d \n', channels2); 
    fprintf('Length of File 1 (samples): %d \n', length(waveform1)); 
    fprintf('Length of File 2 (samples): %d \n', length(waveform2)); 
    fprintf('Length Difference (samples): %d \n', length(waveform1)-
length(waveform2)); 
     
    %read mono files only.  convert stereo files to mono. 
    S1 = size(waveform1);  
    S2 = size(waveform2); 
    if S1(2) == 2 
        waveform1 = waveform1(1:length(waveform1),1); 
    end 
    if S2(2) ==2 
        waveform2 = waveform2(1:length(waveform2),1); 
    end 
     
    %Prerequisites for accurate data======================================= 
    if channels1 ~= 1 || channels2 ~= 1 
        warning('Converting audio to mono') 
    end 
  
    if SampleRate1 ~= SampleRate2 
        error('Sample rates must be equal for accurate comparison') 
    else 
        SampleRate = SampleRate1; 
    end 
     
    if BitDepth1 ~= BitDepth2 
        warning('Bit Depths are unequal, data may be inaccurate') 
    else 
        BitDepth = BitDepth1; 
    end 
    %====================================================================== 
     
    figure(1) 
    subplot(2,2,1)      % first intensity plot 
    plot(waveform1) 
    title('SOUND FILE 1') 
    xlabel('Time (samples)') 
    v=axis; 
     
    subplot(2,2,2)      % first spectrogram 
    [~,F,T,P] = spectrogram(waveform1,2^13,256,1000,44100); 
    surf(T,F,10*log10(P),'edgecolor','none'); axis tight; 
    view(0,90); 
    xlabel('Time (seconds)') 
    ylabel('Frequency (Hz)') 
    title('SPECTROGRAM 1') 
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    subplot(2,2,3)      % second intensity plot 
    plot(waveform2) 
    title('SOUND FILE 2') 
    xlabel('Time (samples)') 
    axis([v(1) v(2) v(3) v(4)]); 
     
    subplot(2,2,4)      % second spectrogram 
    [~,F,T,P] = spectrogram(waveform2,2^13,256,1000,44100); 
    surf(T,F,10*log10(P),'edgecolor','none'); axis tight; 
    view(0,90); 
    xlabel('Time (seconds)') 
    ylabel('Frequency (Hz)') 
    title('SPECTROGRAM 2') 
     
end 
  
%% Input New Data 
    function [waveform1, waveform2] = input_data(~, ~) 
        clear all 
        fprintf('This function erases all previous waveforms (including 
edits) so you can start from scratch with new data \n') 
        prompt = {'How many files? (1 or 2)'}; 
        name = 'Number of Files'; 
        numlines = 1; 
        default_answer = {'1'}; 
        options.resize = 'on'; 
  
        nFiles=inputdlg(prompt,name,numlines,default_answer,options); 
        nFiles=str2double(nFiles(1)); 
  
        if (nFiles ~= 1) && (nFiles ~=2) 
            error('Must select 1 or 2 files') 
        end 
  
        if nFiles == 1 
            filename = uigetfile('*.wav'); 
            [waveform, SampleRate, BitDepth] = wavread(filename); 
     
            fprintf('Sample Rate: %d \n', SampleRate); 
            fprintf('Bit Depth: %d \n', BitDepth); 
     
        elseif nFiles == 2 
            filename1 = uigetfile('*.wav');     % get first file 
            filename2 = uigetfile('*.wav');     % get second file 
            [waveform1, SampleRate1, BitDepth1] = wavread(filename1); 
            [waveform2, SampleRate2, BitDepth2] = wavread(filename2); 
            c1=size(waveform1); channels1 = c1(2); 
            c2=size(waveform2); channels2 = c2(2); 
     
            fprintf('Sample Rate 1: %d \n', SampleRate1); 
            fprintf('Sample Rate 2: %d \n', SampleRate2); 
            fprintf('Bit Depth 1: %d \n', BitDepth1); 
            fprintf('Bit Depth 2: %d \n', BitDepth2); 
            fprintf('Number of Channels File 1: %d \n', channels1); 
            fprintf('Number of Channels File 2: %d \n', channels2); 
            fprintf('Length of File 1 (samples): %d \n', length(waveform1)); 
            fprintf('Length of File 2 (samples): %d \n', length(waveform2)); 
            fprintf('Length Difference (samples): %d \n', length(waveform1)-
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length(waveform2)); 
     
            %read mono files only.  convert stereo files to mono. 
            S1 = size(waveform1);  
            S2 = size(waveform2); 
            if S1(2) == 2 
                waveform1 = waveform1(1:length(waveform1),1); 
            end 
            if S2(2) ==2 
             waveform2 = waveform2(1:length(waveform2),1); 
            end 
     
            %Prerequisites for accurate 
data======================================= 
            if channels1 ~= 1 || channels2 ~= 1 
                warning('Converting audio to mono') 
            end 
  
            if SampleRate1 ~= SampleRate2 
                error('Sample rates must be equal for accurate comparison') 
            else 
                SampleRate = SampleRate1; 
            end 
     
            if BitDepth1 ~= BitDepth2 
                warning('Bit Depths are unequal, data may be inaccurate') 
            else 
                BitDepth = BitDepth1; 
            end 
            
%====================================================================== 
     
            figure(1) 
            subplot(2,2,1)      % first intensity plot 
            plot(waveform1) 
            title('SOUND FILE 1') 
            xlabel('Time (samples)') 
            v=axis; 
     
            subplot(2,2,2)      % first spectrogram 
            [~,F,T,P] = spectrogram(waveform1,2^13,256,1000,44100); 
            surf(T,F,10*log10(P),'edgecolor','none'); axis tight; 
            view(0,90); 
            xlabel('Time (seconds)') 
            ylabel('Frequency (Hz)') 
            title('SPECTROGRAM 1') 
        
            subplot(2,2,3)      % second intensity plot 
            plot(waveform2) 
            title('SOUND FILE 2') 
            xlabel('Time (samples)') 
            axis([v(1) v(2) v(3) v(4)]); 
     
            subplot(2,2,4)      % second spectrogram 
            [~,F,T,P] = spectrogram(waveform2,2^13,256,1000,44100); 
            surf(T,F,10*log10(P),'edgecolor','none'); axis tight; 
            view(0,90); 
            xlabel('Time (seconds)') 
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            ylabel('Frequency (Hz)') 
            title('SPECTROGRAM 2') 
     
        end 
    end 
  
%% Compression 
  
    function waveform = compression(waveform) 
        fprintf('At any intensity above the given threshold, the waveform wll 
be compressed linearly by the given ratio \n') 
        waveform_dB_before = mag2db(abs(waveform)); % convert the wav file to 
decibels 
        for i=1:length(waveform_dB_before); 
            if isnan(waveform_dB_before(i)) == 1; 
                waveform_dB_before(i) = -Inf; 
            end 
        end 
         
        %Plot before filtering 
        figure(2) 
        subplot(2,2,1) 
        plot(waveform) 
        title('Waveform Magnitude (before compression)') 
        ylabel('Magnitude') 
        u = axis; 
     
        subplot(2,2,2) 
        plot(waveform_dB_before) 
        title('Acoustic Intensity (before compression)') 
        ylabel('dB') 
        v = axis; 
     
        prompt = {'Threshold(dB)', 'Ratio (#:1)'}; 
        name = 'Compression'; 
        numlines = 1; 
        default_answer = {'0','1'}; 
        options.resize = 'on'; 
         
        compression=inputdlg(prompt,name,numlines,default_answer,options); 
        compression=[str2double(compression(1)),str2double(compression(2))]; 
        if compression(2) > 1 
            error('Ratio must be smaller than 1:1 to limit the output'); 
        end 
     
        %Filter the data 
        waveform_dB_after=waveform_dB_before; 
        for i=1:length(waveform_dB_before); 
            if waveform_dB_before(i,1) > compression(1);    % run the gate if 
the output is less than the threshold 
                waveform_dB_after(i,1) = 
compression(2)*(waveform_dB_before(i,1)-compression(1))+compression(1);  % 
figure out what the limited output should be 
                if isnan(waveform_dB_after(i,1)) == 1 
                    waveform_dB_after(i,1) = -Inf; 
                end 
            end 
        end 
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        waveform = .5*(waveform - 
sign(waveform).*((10.^(waveform_dB_after./20))-
(10.^(waveform_dB_before./20)))); % convert the wav file from decibels to 
magnitude 
         
        %Plot after filtering 
        subplot(2,2,3) 
        plot(waveform) 
        title('Waveform Magnitude (after compression)') 
        ylabel('Magnitude') 
        axis([u(1) u(2) u(3) u(4)]); 
     
        subplot(2,2,4) 
        plot(waveform_dB_after) 
        title('Acoustic Intensity (after compression)') 
        ylabel('dB') 
        axis([v(1) v(2) v(3) v(4)]); 
     
        figure(3) 
        subplot(3,1,1) 
        compression_x=[-100,compression(1),0]; 
        compression_y=[-100,compression(1),compression(2)*-
compression(1)+compression(1)]; 
        plot(compression_x,compression_y) 
        axis equal 
        axis square 
        title('Compression') 
        xlabel('Input (dB)') 
        ylabel('Output (dB)') 
      
    end 
  
%% Gate 
  
    function waveform = gate(waveform) 
        fprintf('At any intensity below the given threshold, the waveform 
will be limited by the given ratio \n') 
        waveform_dB_before = mag2db(abs(waveform)); % convert the wav file to 
decibels 
        for i=1:length(waveform_dB_before); 
            if isnan(waveform_dB_before(i)) == 1; 
                waveform_dB_before(i) = -Inf; 
            end 
        end 
         
        %Plot before filtering 
        figure(2) 
        subplot(2,2,1) 
        plot(waveform) 
        title('Waveform Magnitude (before gate)') 
        ylabel('Magnitude') 
        u = axis; 
     
        subplot(2,2,2) 
        plot(waveform_dB_before) 
        title('Acoustic Intensity (before gate)') 
        ylabel('dB') 
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        v = axis; 
     
        prompt = {'Threshold(dB)', 'Ratio (#:1)'}; 
        name = 'Gate'; 
        numlines = 1; 
        default_answer = {'0','1'}; 
        options.resize = 'on'; 
     
        gate=inputdlg(prompt,name,numlines,default_answer,options); 
        gate=[str2double(gate(1)),str2double(gate(2))]; 
        if gate(2) < 1  % if the gate ratio is less than 1:1 (smaller output 
becomes larger) 
            error('Ratio must be greater than 1:1 to limit the output') 
        end 
         
        %Filter the data 
        waveform_dB_after=waveform_dB_before; 
        for i=1:length(waveform_dB_before); 
            if waveform_dB_before(i,1) < gate(1);    % run the gate if the 
output is less than the threshold 
                waveform_dB_after(i,1) = gate(2)*(waveform_dB_before(i,1)-
gate(1))+gate(1);  % figure out what the limited output should be 
                if isnan(waveform_dB_after(i,1)) == 1 
                    waveform_dB_after(i,1) = -Inf; 
                end 
            end 
        end 
     
        waveform = .5*(waveform - 
sign(waveform).*((10.^(waveform_dB_after./20))-
(10.^(waveform_dB_before./20)))); % convert the wav file from decibels to 
magnitude 
         
        %Plot after filtering 
        subplot(2,2,3) 
        plot(waveform) 
        title('Waveform Magnitude (after gate)') 
        ylabel('Magnitude') 
        axis([u(1) u(2) u(3) u(4)]); 
     
        subplot(2,2,4) 
        plot(waveform_dB_after) 
        title('Acoustic Intensity (after gate)') 
        ylabel('dB') 
        axis([v(1) v(2) v(3) v(4)]); 
     
        figure(3) 
        subplot(3,1,2) 
        gate_x=[-100,gate(1),0]; 
        gate_y=[gate(2)*(-100-gate(1))+gate(1),gate(1),0]; 
        plot(gate_x,gate_y) 
        axis equal 
        title('Gate') 
        xlabel('Input (dB)') 
        ylabel('Output (dB)') 
      
    end 
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%% Frequency Distribution 
    function [] = frequencies(waveform1, waveform2) 
        fprintf('Takes a discrete fourier transform of the waveform and 
returns the frequency distribution \n') 
         
        prompt = {'Min Frequency?','Max Frequency?'}; 
        name = 'FFT Graph Properties'; 
        numlines = 1; 
        default_answer = {'20','20000'}; 
         
        FFToptions = inputdlg(prompt,name,numlines,default_answer); 
        FFToptions = str2double(FFToptions); 
         
        function spectrum_freq=fourier_frequencies(SampleRate, N) 
            %% returns a column vector of positive and negative frequencies 
for discrete fourier transform 
            % this function created by Professor Eugeniy Mikhailov 
            % N - number of data points 
  
            f1=SampleRate/N; % fundamental frequency = SampleRate*N 
  
            % simple assignment of frequency 
            spectrum_freq=(((1:N)-1)*f1).';  % column vector 
  
            % recall spectrum(1) is zero frequency i.e. DC part 
            NyquistFreq= (N/2)*f1; % index of Nyquist frequency i.e. 
reflection point 
  
            %let's take reflection into account 
            spectrum_freq(spectrum_freq>NyquistFreq) =-
N*f1+spectrum_freq(spectrum_freq>NyquistFreq); 
        end 
         
        %calculate the frequency distribution (FFT) of waveform1 
        N1 = length(waveform1); 
        t1 = ((1:N1)*1/SampleRate).';    
        spectrum_freq1 = fourier_frequencies(SampleRate,N1); 
        [~,index1] = sort(spectrum_freq1);  %x-axis of frequency distribution 
        frequency_distribution1 = fft(waveform1);   %y-axis of frequency 
distribution 
         
        %calculate the frequency distribution (FFT) of waveform2 
        N2 = length(waveform2); 
        t2 = ((1:N2)*1/SampleRate).'; 
        spectrum_freq2 = fourier_frequencies(SampleRate,N2); 
        [~,index2] = sort(spectrum_freq2);  %x-axis of frequency distribution 
        frequency_distribution2 = fft(waveform2);   %y-axis of frequency 
distribution 
              
        %plot the frequency distribution for waveform 1 
        figure(2) 
        subplot(2,1,1) 
        plot( spectrum_freq1(index1), abs(frequency_distribution1(index1))); 
        xlabel('Frequency (Hz)'); 
        ylabel('Amplitude'); 
        title('FREQUENCY SPECTRUM of WAVEFORM 1'); 
        if abs(real(max(frequency_distribution1))) > 
abs(real(max(frequency_distribution2))) 
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axis([FFToptions(1),FFToptions(2),0,abs(real(max(frequency_distribution1)))]) 
        else 
            
axis([FFToptions(1),FFToptions(2),0,abs(real(max(frequency_distribution2)))]) 
        end 
  
        %plot the frequency distribution for waveform 2 
        subplot(2,1,2) 
        plot( spectrum_freq2(index2), abs(frequency_distribution2(index2))); 
        xlabel('Frequency (Hz)'); 
        ylabel('Amplitude'); 
        title('FREQUENCY SPECTRUM of WAVEFORM 2'); 
        if abs(real(max(frequency_distribution1))) > 
abs(real(max(frequency_distribution2))) 
            
axis([FFToptions(1),FFToptions(2),0,abs(real(max(frequency_distribution1)))]) 
        else 
            
axis([FFToptions(1),FFToptions(2),0,abs(real(max(frequency_distribution2)))]) 
        end 
  
    end 
%% EQ 
    function waveform = EQ(waveform) 
        fprintf('One-band equalization function.  Use the function multiple 
times for multi-band EQ \n') 
        function spectrum_freq=fourier_frequencies(SampleRate, N) 
            %% returns a column vector of positive and negative frequencies 
for discrete fourier transform 
            % this function created by Professor Eugeniy Mikhailov 
            % N - number of data points 
  
            f1=SampleRate/N; % fundamental frequency = SampleRate*N 
  
            % simple assignment of frequency 
            spectrum_freq=(((1:N)-1)*f1).';  % column vector 
  
            % recall spectrum(1) is zero frequency i.e. DC part 
            NyquistFreq= (N/2)*f1; % index of Nyquist frequency i.e. 
reflection point 
  
            %let's take reflection into account 
            spectrum_freq(spectrum_freq>NyquistFreq) =-
N*f1+spectrum_freq(spectrum_freq>NyquistFreq); 
        end 
         
        %calculate the frequency distribution (FFT) 
        N = length(waveform); 
        t = ((1:N)*1/SampleRate).'; 
        spectrum_freq = fourier_frequencies(SampleRate,N); 
        [~,index] = sort(spectrum_freq);    %x-axis of frequency distribution 
        frequency_distribution = fft(waveform); %y-axis of frequency 
distribution 
         
        %user determines gain vs. frequency 
        gain = ones(length(spectrum_freq),1); 
        prompt = {'Low End (Hz)','High End (Hz)','Gain'}; 
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        name = 'EQ'; 
        numlines = 1; 
        default_answer = {'n/a','n/a','1'}; 
         
        EQ = inputdlg(prompt,name,numlines,default_answer); 
        EQ = [str2double(EQ(1)),str2double(EQ(2)),str2double(EQ(3))]; 
         
        if EQ(3) < 0 
            error('Gain must be greater than or equal to zero') 
        end 
         
        %filter the spectrum 
        indexes_to_filter = find((abs(spectrum_freq) > EQ(1)) & 
(abs(spectrum_freq) <= EQ(2))); 
        gain(indexes_to_filter) = EQ(3); 
        spectrum_filtered = gain.*frequency_distribution; 
         
        %plot the frequency distribution 
        figure(2); 
        subplot(2,1,1); 
        plot( spectrum_freq(index), abs(gain(index)),'LineWidth',2 ); 
        xlabel('Frequency (Hz)'); 
        ylabel('Gain'); 
        title('GAIN vs FREQUENCY') 
        if EQ(3) > 1 
            axis([0 20000 0 EQ(3)]); 
        else 
            axis([0 20000 0 1]); 
        end 
         
        %plot gain vs frequency 
        figure(2); 
        subplot(3,1,1); 
        plot( spectrum_freq(index), abs(gain(index)),'LineWidth',2 ); 
        xlabel('Frequency (Hz)'); 
        ylabel('Gain'); 
        title('GAIN vs FREQUENCY') 
        if EQ(3) > 1 
            axis([0 20000 0 EQ(3)]); 
        else 
            axis([0 20000 0 1]); 
        end 
         
        %plot the dry and mixed frequency distributions 
        figure(2); hold off; 
        subplot(3,1,2) 
        plot( spectrum_freq(index), abs(frequency_distribution(index)), 'b' 
); hold on; 
        plot( spectrum_freq(index), abs(spectrum_filtered(index)), 'r' );  
        legend('Dry', 'Mixed'); 
        xlabel('Frequency (Hz)'); 
        ylabel('Amplitude'); 
        title('FREQUENCY SPECTRUM'); 
        if max(frequency_distribution) >= max(spectrum_filtered) 
            axis([0 20000 0 abs(real(max(frequency_distribution)))]); 
        else 
            axis([0 20000 0 abs(real(max(spectrum_filtered)))]); 
        end 
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        %take inverse FFT, convert back to signal vs. time 
        waveform_filtered = ifft(spectrum_filtered); 
  
        waveform_filtered=real(waveform_filtered); 
         
        %plot the filtered and unfiltered waveforms 
        figure(2); hold off; 
        subplot(3,1,3) 
        plot(t, waveform, 'b-'); hold on; 
        plot(t, waveform_filtered,'r-'); 
        title('FILTERED and UNFILTERED WAVEFORMS'); 
        xlabel('Time'); 
        ylabel('Amplitude'); 
        legend('raw', 'filtered');hold off; 
         
        waveform = waveform_filtered; 
    end 
        
%% Trim 
    function waveform = trim(waveform) 
         
        %user determines how much to add to waveform 
        fprintf('Add zeros to the end of a waveform to change its length \n')  
        prompt = {'Increase Length by How Many Samples (zeros at end)?','Use 
Which Waveform?'}; 
        name = 'Zeros'; 
        numlines = 1; 
        default_answer = {'0','waveform2'}; 
     
        add_zeros = inputdlg(prompt,name,numlines,default_answer); 
        zeros_waveform = str2double(add_zeros(1)); 
         
        %plot file before trim 
        figure(2) 
        subplot(2,1,1) 
        plot(waveform) 
        title('SOUND FILE(before trim)') 
        v=axis; 
  
        if ((zeros_waveform < 0) || ((zeros_waveform ~= 0) && 
(zeros_waveform-floor(zeros_waveform) ~= 0))) 
            error('It is only possible to add a positive integer amount of 
samples') 
        end 
     
        if zeros_waveform > 0 
            L1 = length(waveform); %original length of waveform1; 
            waveform(L1+1:L1+zeros_waveform) = 0; 
        end 
         
        if strcmpi(add_zeros(2),'waveform2') == 1 
            waveform2 = waveform; 
        elseif strcmpi(add_zeros(2),'waveform1') == 1 
            waveform1 = waveform; 
        end 
         
        %plot file after trim 
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        subplot(2,1,2) 
        plot(waveform) 
        title('SOUND FILE (after trim)') 
        xlabel('Time (samples)') 
        axis([v(1) v(2) v(3) v(4)]); 
         
        fprintf('Length of File 1 (samples): %d \n', length(waveform1)); 
        fprintf('Length of File 2 (samples): %d \n', length(waveform2)); 
        fprintf('Length Difference (samples): %d \n', length(waveform1)-
length(waveform2)); 
    end 
  
%% DC Offset Removal 
  
    function waveform = DCOffsetRemoval(waveform) 
        fprintf('Removes any DC offset on the waveform by subtracting the 
entire waveform by its average \n') 
        waveform = waveform - mean(waveform); 
    end 
  
%% Volume Control 
     
    function waveform = volume(waveform) 
        fprintf('Increase or decrease the volume of the waveform by a certain 
amount \n') 
         
        waveform_dB_before = mag2db(abs(waveform)); % convert the wav file to 
decibels 
         
        %plot waveform before gain 
        figure(2) 
        subplot(2,2,1) 
        plot(waveform) 
        title('Waveform Magnitude (before volume control)') 
        ylabel('Magnitude') 
        u = axis; 
     
        subplot(2,2,2) 
        plot(waveform_dB_before) 
        title('Acoustic Intensity (before volume control)') 
        ylabel('dB') 
        v = axis; 
  
        prompt = {'Adjust Volume (dB)'}; 
        name = 'Volume'; 
        numlines = 1; 
        default_answer = {'0'}; 
        options.resize = 'on'; 
     
        Volume=inputdlg(prompt,name,numlines,default_answer,options); 
        Volume=str2double(Volume(1)); 
      
        waveform_dB_after = waveform_dB_before + Volume; 
     
        waveform = .5*(waveform + 
sign(waveform).*((10.^(waveform_dB_after./20))-
(10.^(waveform_dB_before./20)))); % convert the wav file from decibels to 
magnitude 
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        %plot waveform after gain 
        subplot(2,2,3) 
        plot(waveform) 
        title('Waveform Magnitude (after volume adjustment)') 
        ylabel('Magnitude') 
        axis([u(1) u(2) u(3) u(4)]); 
     
        subplot(2,2,4) 
        plot(waveform_dB_after) 
        title('Acoustic Intensity (after volume adjustment)') 
        ylabel('dB') 
        axis([v(1) v(2) v(3) v(4)]); 
     
        if any(abs(waveform) > 1) 
            disp('***Warning: Audio clipping present.  Decrease volume for 
improved sound quality.***') 
        end 
    end 
     
%% Playback 
  
    function waveform = playback(waveform) 
        fprintf('Plays back the given waveform, with all the users edits \n')    
        %PLAYBACK OPTIONS----------------------------------------------------
-- 
        prompt = {'Units of Time (samples or seconds)', 'Start time', 'End 
time'}; 
        name = 'Playback'; 
        numlines = 1; 
        default_answer = {'samples','0','0'}; 
  
        playback_options=inputdlg(prompt,name,numlines,default_answer); 
        
playback_time=[str2double(playback_options(2)),str2double(playback_options(3)
)]; 
                 
        % algorithm for determining start and end positions 
        if ((strcmpi(playback_options(1),'samples')) ~= 1 && 
(strcmpi(playback_options(1),'seconds') ~= 1)) 
            error('Must select playback time in samples or seconds') 
        end 
     
        if (playback_time(1) == 0) && (strcmpi(playback_options(1),'samples') 
== 1) 
            playback_time(1) = 1; 
        end 
     
        if strcmpi(playback_options(1),'seconds') == 1 
            playback_time(1) = floor(playback_time(1)*SampleRate) + 1; 
%convert seconds to samples 
            playback_time(2) = floor(playback_time(2)*SampleRate) + 1; 
        end 
         
        % to play all the way till the end, enter a really big number 
        for i=1:2 
            if playback_time(i)>length(waveform1) 
                playback_time(i)=length(waveform1); 
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            end 
        end 
  
        if playback_time(1) == playback_time(2) 
            error('cannot play a sound file for 0 seconds...') 
        end   
  
        % the portion of the file that is actually played back 
        if (playback_time(1) < playback_time(2)) 
            % play normally 
            waveform_playback=waveform(playback_time(1):playback_time(2)); 
        else 
            % play backwards 
            waveform_playback=waveform(playback_time(2):playback_time(1)); 
            waveform_playback=flipud(waveform_playback); 
        end 
        % play the wav file 
        disp('Playing audio...') 
        sound(waveform_playback,SampleRate,BitDepth); 
  
    end 
  
%% Simultaneous Playback 
    function [waveform1, waveform2] = simultaneous_playback(waveform1, 
waveform2) 
         
        if nFiles == 1 
            error('Must select nFiles = 2 for this function') 
        end 
         
        fprintf('Plays back both the given waveforms simultaneously.  Allows 
the user to tell if the waveforms are relatively in sync or not \n') 
  
        prompt = {'Units of Time (samples or seconds)', 'Start time', 'End 
time'}; 
        name = 'Simultaneous Playback'; 
        numlines = 1; 
        default_answer = {'samples','0','0'}; 
             
        simultaneous_playback = 
inputdlg(prompt,name,numlines,default_answer); 
    
        %make sure files are the same length for playback 
        if length(waveform1) > length(waveform2) 
            warning('Adding zero values to make files the same length') 
            for i = length(waveform2)+1:length(waveform1) 
                waveform2(i) = 0; 
            end 
        elseif length(waveform1) < length(waveform2) 
            warning('Adding zero values to make files the same length') 
            for i = length(waveform1)+1:length(waveform2) 
                waveform1(i) = 0; 
            end 
        end 
        
playback_time=[str2double(simultaneous_playback(2)),str2double(simultaneous_p
layback(3))]; 
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        % algorithm for determining start and end positions 
        if ((strcmpi(simultaneous_playback(1),'samples')) ~= 1 && 
(strcmpi(simultaneous_playback(1),'seconds') ~= 1)) 
            error('Must select playback time in samples or seconds') 
        end 
     
        if (playback_time(1) == 0) && 
(strcmpi(simultaneous_playback(1),'samples') == 1) 
            playback_time(1) = 1; 
        end 
     
        if strcmpi(simultaneous_playback(1),'seconds') == 1 
            playback_time(1) = floor(playback_time(1)*SampleRate) + 1; 
%convert seconds to samples 
            playback_time(2) = floor(playback_time(2)*SampleRate) + 1; 
        end 
         
        % to play all the way till the end, enter a really big number 
        for i=1:2 
            if playback_time(i)>length(waveform1) 
                playback_time(i)=length(waveform1); 
            end 
        end 
  
        if playback_time(1) == playback_time(2) 
            error('cannot play a sound file for 0 seconds...') 
        end   
  
        % the portion of the file that is actually played back 
        if (playback_time(1) < playback_time(2)) 
            % play normally 
            waveform1_playback=waveform1(playback_time(1):playback_time(2)); 
            waveform2_playback=waveform2(playback_time(1):playback_time(2)); 
        else 
            % play backwards 
            waveform1_playback=waveform1(playback_time(2):playback_time(1)); 
            waveform1_playback=flipud(waveform1_playback); 
            waveform2_playback=waveform2(playback_time(2):playback_time(1)); 
            waveform2_playback=flipud(waveform2_playback); 
        end 
        waveform_compiled = (waveform1_playback + waveform2_playback)./2; 
        sound(waveform_compiled,SampleRate,BitDepth); 
     
    end 
  
%% Plot Waveforms 
    function [waveform1, waveform2] = compare(waveform1, waveform2) 
         
        if nFiles == 1 
            error('Must select nFiles = 2 for this function') 
        end 
         
        fprintf('Plots the waveforms and their spectrograms \n') 
         
        figure(1) 
        subplot(2,2,1)      % first intensity plot 
        plot(waveform1) 
        title('SOUND FILE 1') 
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        xlabel('Time (samples)') 
        v=axis; 
     
        subplot(2,2,2)      % second spectrogram 
        [~,F,T,P] = spectrogram(waveform1,2^13,256,1000,44100); 
        surf(T,F,10*log10(P),'edgecolor','none'); axis tight; 
        view(0,90); 
        xlabel('Time (seconds)') 
        ylabel('Frequency (Hz)') 
        title('SPECTROGRAM 2') 
        
        subplot(2,2,3)      % second intensity plot 
        plot(waveform2) 
        title('SOUND FILE 2') 
        xlabel('samples') 
        axis([v(1) v(2) v(3) v(4)]); 
     
        subplot(2,2,4)      % second spectrogram 
        [~,F,T,P] = spectrogram(waveform2,2^13,256,1000,44100); 
        surf(T,F,10*log10(P),'edgecolor','none'); axis tight; 
        view(0,90); 
        xlabel('Time (seconds)') 
        ylabel('Frequency (Hz)') 
        title('SPECTROGRAM 2') 
     
        %compare sound files 
        figure(2) 
        subplot(1,1,1) 
        plot(waveform1,'b'); hold on 
        plot(waveform2,'-r'); hold off 
        title('UNEDITED AND EDITED SAMPLES') 
        xlabel('Time (samples)') 
        legend('unedited','edited') 
        axis([v(1) v(2) v(3) v(4)]); 
    end 
             
%% Manual Offset 
  
    function waveform = manual_offset(waveform) 
         
        fprintf('Shifts the second waveform by a given amount.  ONLY USE THIS 
FUNCTION WITH THE SECOND INPUT FILE! \n') 
        waveform2 = waveform; 
         
        %plot waveforms before offset 
        figure(2) 
        subplot(2,2,1) 
        plot(waveform1) 
        title('SOUND FILE 1 (before offset)') 
        v=axis; 
         
        subplot(2,2,2) 
        plot(waveform2) 
        title('SOUND FILE 2 (before offset)') 
        axis([v(1) v(2) v(3) v(4)]) 
         
        %user manually enters offset 
        prompt = {'Offset (enter a number, in samples)'}; 
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        name = 'Amount of Offset'; 
        numlines = 1; 
        default_answer = {'0'}; 
         
        Amount_of_Offset = inputdlg(prompt,name,numlines,default_answer); 
        Amount_of_Offset = str2double(Amount_of_Offset(1)); 
         
        %offset waveform2 
        waveform_temp = zeros(length(waveform2),1); 
        for i=1:length(waveform2) 
            if (i-Amount_of_Offset >= 1) && (i-Amount_of_Offset <= 
length(waveform2)) 
                waveform_temp(i)=waveform2(i-Amount_of_Offset); 
            else 
                waveform_temp(i)=0; 
            end 
        end 
             
        waveform2 = waveform_temp; 
         
        %plot waveforms after offset 
        subplot(2,2,3) 
        plot(waveform1) 
        title('SOUND FILE 1 (after offset)') 
        axis([v(1) v(2) v(3) v(4)]) 
                                     
        subplot(2,2,4) 
        plot(waveform2) 
        title('SOUND FILE 2 (after offset)') 
        axis([v(1) v(2) v(3) v(4)]); 
         
        waveform = waveform2; 
             
    end 
  
%% Automatic Offset 
    function waveform = automatic_offset(waveform) 
         
        fprintf('Automatically offsets the second waveform to sync up with 
the first waveform by evaluating the pearson correlation coefficient between 
segments.  \nIt is advised that the simultaneous playback and manual offset 
functions be used first to align the waveforms to a certain degree.  \nThen, 
use this function for more specific alignment. \n') 
        waveform2 = waveform; 
         
        %plot waveforms before offset 
        figure(2) 
        subplot(2,2,1) 
        plot(waveform1) 
        title('SOUND FILE 1 (before offset)') 
        v=axis; 
         
        subplot(2,2,2) 
        plot(waveform2) 
        title('SOUND FILE 2 (before offset)') 
        axis([v(1) v(2) v(3) v(4)]) 
         
        %user inputs offset parameters 
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        prompt = {'Calculate at which sample?','Sync region (higher values 
increase execution time)','Sync certainty (how much you are shifting the sync 
region, both left and right).  higher values increase execution time'}; 
        name = 'Offset Parameters'; 
        numlines = 1; 
        default_answer = {'1','100','10000'}; 
         
        auto_sync = inputdlg(prompt,name,numlines,default_answer); 
        sync_point = str2double(auto_sync(1));       %sample to calculate the 
sync at (user-input) 
        sync_length = str2double(auto_sync(2));      %a larger region over 
which to sync will be more reliable, but takes more time to compute 
        sync_certainty = str2double(auto_sync(3));   %a larger certainty will 
be more reliable, but takes mroe time to compute 
         
        %take only an excerpt of the waveform 
        waveform1_excerpt = waveform1(sync_point:sync_point+sync_length-1); 
         
        % s == how much waveform2 is shifted with respect to waveform1 
        % i == the index 
         
        %calculate the automatic offset 
        correlation_coefficeint = zeros(1,2*sync_certainty+1); 
        for s = -sync_certainty:sync_certainty 
            starting_index=sync_point+s;    %index of waveform2 to start 
waveform2_excerpt 
            waveform2_excerpt = 
waveform2(starting_index:starting_index+sync_length-1); %create 
waveform2_excerpt 
            correlation_index = s+sync_certainty+1; %define an index to 
capture the correlation coefficient 
            correlation_coefficient(correlation_index) = 
sum((waveform1_excerpt-mean(waveform1_excerpt)).*(waveform2_excerpt-
mean(waveform2_excerpt)))/length(waveform1_excerpt);   %calculate the 
correlation coefficient 
        end 
         
        [sync_coefficient, sync_index] = max(correlation_coefficient); 
        fprintf('Best correlation is %d \n', sync_coefficient) 
         
        net_shift = sync_index-sync_certainty-1; 
        fprintf('Waveform 2 is shifted %d samples \n', net_shift) 
         
        waveform2_temp = waveform2; 
        waveform2 = zeros(length(waveform1),1); 
         
        if net_shift < 0 
            waveform2(1:length(waveform2)+net_shift) = waveform2_temp(1-
net_shift:length(waveform2)); 
        elseif net_shift > 0 
            waveform2(1+net_shift:length(waveform2)) = 
waveform2_temp(1:length(waveform2)-net_shift); 
        elseif net_shift == 0 
            waveform2 = waveform2_temp; 
        end 
                 
        %plot waveforms after offset 
        subplot(2,2,3) 
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        plot(waveform1) 
        title('SOUND FILE 1 (after offset)') 
        axis([v(1) v(2) v(3) v(4)]) 
                                     
        subplot(2,2,4) 
        plot(waveform2) 
        title('SOUND FILE 2 (after offset)') 
        axis([v(1) v(2) v(3) v(4)]); 
         
        waveform = waveform2; 
  
    end 
  
%% Save File 
    function [] = savefile(waveform) 
        fprintf('Saves the given waveform as "untitled" in the current folder 
\n') 
        prompt = {'File Name','Sample Rate (kHz)','Bit Depth'}; 
        %NOTE: 'FILE NAME' LINE NOT IMPLEMENTED YET 
        name = 'Save'; 
        numlines = 1; 
        default_answer = {'untitled','44.1','16'}; 
         
        savefile = inputdlg(prompt,name,numlines,default_answer); 
         
        wavwrite(waveform, str2double(savefile(2))*1000, 
str2double(savefile(3)), 'untitled'); 
    end 
%% 
%give user a chance to run another program 
keyboard; 
  
end 
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Listing II: Flaw Detection Program 

%% Flaw Detection in Audio using Wavelet Fingerprinting 
%created by Ryan Laney 
%2011 
  
function flaw_detect(input_thumbprint, flaw) 
% input_thumbprint is the region in which we are looking for a flaw 
% flaw is the known error we are comparing against 
  
prompt = {'Points for Zeros Match','Points for Ones Match'}; 
name = 'Match Points'; 
numlines = 1; 
default_answer = {'1','1'}; 
  
match_points = inputdlg(prompt,name,numlines,default_answer); 
points_zeros = str2double(match_points(1)); 
points_ones = str2double(match_points(2)); 
  
% make flaw and thumbprint matrices all 0s and 1s 
S=size(input_thumbprint); 
for i=1:S(1) 
    for j=1:S(2) 
        if input_thumbprint(i,j) ~= 0 
            input_thumbprint(i,j) = 1; 
        end 
    end 
end 
  
T=size(flaw); 
for i=1:T(1) 
    for j=1:T(2) 
        if flaw(i,j) ~= 0 
            flaw(i,j) = 1; 
        end 
    end 
end 
  
% take a dot product of the matrices 
for i=1:S(2)-T(2) 
    match_matrix = zeros(T(1),T(2)); 
    for j=1:T(1) 
        for k=1:T(2) 
            if (flaw(j,k) == 1 && input_thumbprint(j,i-1+k) == 1) 
                match_matrix(j,k)=points_ones;      %assign points for ones 
match 
            elseif (flaw(j,k) == 0 && input_thumbprint(j,i-1+k) == 0) 
                match_matrix(j,k)=points_zeros;     %assign points for zeros 
match 
            end 
        end 
    end 
    Y(i) = sum(sum(match_matrix)); 
end 
  
[Ymax, Index] = max(Y); 
  
fprintf('Best match is %d values \n', Ymax) 
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fprintf('Occurs at %d samples \n', Index) 
  
% plot how much the error matches the flaw vs. where it is compared 
figure(1) 
plot(Y) 
title('Match Values') 
xlabel('Sample') 
ylabel('Value') 
  
end
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