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Abstract 

 The focus of this research was to characterize the behavior of two different ferromagnetic 

structures, thin films and nanoparticles, through the magneto-optical effects. The magneto-

optical Kerr Effect (MOKE) was used to characterize the crystalline structures of Nickel (Ni) 

thin films epitaxially grown on a Magnesium Oxide substrate Crystalline, Ni films were of 

interest for subsequent ultra-fast time-resolved studies within professor Luepke‟s group.  The 

Faraday Effect was used to measure the magneto-optical properties of nanoparticles which have 

a Fe-Ag core-shell microstructure to explore novel sensing platforms. Several samples which 

differed in ratio of Fe to Ag composition were used to characterize how the particles behave. It is 

expected that the noble metal (Ag) may induced enhancement of the magneto-optical activity. 

This is due to localized surface plasmons, i.e. charge oscillation in the conductor that give rise to 

large EM fields in the core of the sample. This in turn exposes the magnetic materials to larger 

fields leading to enhanced magneto-optical response. These studies may lead to optimized 

sensing applications. 
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II. Background and Theory 

a) Ferromagnetism 

Ferromagnetism is a physical trait exhibited by certain materials. Ferromagnetic materials 

keep an internal magnetization, average “spin” orientation, even in the absence of a magnetic 

field.
3
 An atom‟s magnetic moment is caused by its electron‟s spin and orbital angular 

momentum. When the magnetic moments of many unpaired electrons are aligned in the same 

direction a macroscopic magnetic field can be observed. It is implied then that not all materials 

can exhibit ferromagnetism, only those with unpaired electrons in the valence shells. 

Interestingly ferromagnetism shows anisotropic properties when certain materials have a specific 

shape or crystallographic form. Several elements in the periodic table including Fe, nickel (Ni), 

and cobalt (Co) exhibit ferromagnetism.
2 

There are other materials that are ferromagnetic 

including a few rare earth elements.   

Spin is a quantum mechanical property. Ferromagnetism occurs when the unpaired electrons 

from neighboring electrons from two or more atoms are coupled through the exchange 

interaction. When this happens the electrons align their magnetic moments parallel to eachother. 

This accounts for the internal magnetic field observed in ferromagnets even in the absence of 

externally applied fields.
2 

It is not until the material is subjected to a strong enough external 

magnetic field and thereby magnetized that these moments align uniformly throughout the 

material. 

To magnetize a sample material, it must be subjected to a strong external field. In doing this 

the electrons spin and magnetic dipoles align parallel to and in the same direction as the external 

field. 
3 

The reversal of the magnetization direction can be achieved by reversing the direction of 
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the applied field. Figure 1 shows a material with three different magnetizations (Note: the 

intermediate demagnetized state may also exhibit domain structure, not indicated here). The 

arrows are a representation of the direction of the dipole of the substances. The arrows do not 

represent magnitude of the dipoles only direction. 

 

Figure 1 

Ferromagnets can have a magnetic anisotropy which is dependent upon many factors. The 

anisotropy will determine along which axis the material can be magnetized easily. Along the 

hard axis, the material will require a larger magnetic field to align all the spins. The anisotropy 

can be dependent upon the bulk material‟s shape, and if the material is a crystal then its 

crystalline structure. This anisotropy can be measured through hysteresis for example.
2
 

b) Ferromagnetic Hysteresis 

A hysteresis loop is a graph of the magnetization process followed by the reversal process. In 

most magnetic materials these two processes are path-dependent and therefore hysteretic. Figure 

2 is an example of multiple hysteresis loops of an internal magnetization versus the strength of 

an external magnetic field. 
4 
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Figure 2 

Figure 2 shows minor loops, ones where the sample does not reach saturation before reversal, 

and the full hysteresis loop upon saturation, which is the largest loop. There are two points of 

interest on this latter graph. The BR is the remanence field. This is the internal magnetization of 

the material when the applied external magnetic field is reduced to zero from the saturation 

value, or the „field that remains‟. Notice that there are two values for the BR though both are 

about the same intensity they are in opposite directions. The first value is obtained after 

saturating the magnetization in a given orientation and then reducing the applied field to zero. 

Upon increasing the magnitude of the field in the opposite direction, the material is once more 

magnetized but in the opposite direction with respect to its previous state and the process is 

reversed to complete the hysteresis loop. Thus the magnetization can be changed if the substance 

is subjected to a strong enough field in the opposite direction. The second important value, the 

HC, is the coercivity value. This is the necessary intensity of an external magnetic field to switch 
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the direction of the internal magnetization. Once again there are two values, one for each 

direction of the magnetic field. The coercivity, remanence, and the shape of the hysteresis loop 

are unique and material dependent and also depend on other specific characteristics such as the 

shape of the specimen, its crystallographic structure, etc. Thus, for the specific case of crystalline 

thin films, a study of the hysteresis loop properties for various in-plane crystallographic 

orientations reveals the character of the magneto-crystalline anisotropy and can be used as a test 

of the crystalline quality of a sample.
4 

c) Magneto-Optical effects 

Maxwell‟s equations of electromagnetism as well as appropriate boundary conditions predict 

the behavior of light as it interacts with different surfaces. For the specific case of magnetic 

materials, the dielectric tensor exhibits non-zero off-diagonal elements that give rise to magneto-

optical effects. The magnetization of ferromagnetic materials changes the permittivity tensor 

matrix in such a way that light will change its polarization when interacting with the surface of 

the material.
3
This gives rise to the magneto optical effects.  

Light is an electromagnetic (EM) wave. This means that it has two components, an electric 

field and a magnetic field. The fields are perpendicular to each other and to the direction of 

motion of the wave, as in the figure 3. 
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EM waves are said to be polarized when the electric field has a defined orientation. Light can 

be polarized in different ways, linearly, circularly, or elliptically as the following figure 

demonstrates.
3 

   

Figure 4 

 

Figure 3 
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Figure 4 is a collection of Lissajous plots (purple) of the x-component (red) and the y-

component (green) of the electric field (blue) of a polarized EM wave. In the case of linear 

polarization the x and y components are in phase and of equal amplitude. Circular polarization 

occurs when the two components are out of phase by ninety degrees but have equal amplitude. 

Elliptical polarization can occur when the two components are out of phase but not by ninety 

degrees, or the amplitudes of the two components are not equal.
10 

When polarized light interacts with a magnetic medium the polarization of the light can 

change. When the light interacts with an electron of the material the way the electron reacts adds 

additional components to the EM wave which alter its polarization. This interaction is the 

magneto-optical effect.
1 

Everything that has been presented so far up to the rotation of polarization can be explained 

with Maxwell‟s equations and appropriate boundary conditions. It follows then that the rotation 

in polarization can be predicted for a specific material with a given internal magnetization. The 

degree of rotation is called the Kerr angle. 

Start with the pertinent 

Maxwell equations as in 

equation 1,  

 

 

Equation 1 
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The EM wave propagating along the z axis will 

then be given by equation 2, where E0 and H0 are the 

maximum amplitude of the fields, ω is the angular 

frequency of the EM wave, t is time elapsed and c is 

the speed of light. N is an index of refraction, such that 

equation 3 holds true. In equation 3 k is a unit vector in 

the z direction and, 

In equation 4, α0 and σ0 are tensors of 

conductivity and polarizability respectively.  

 

Through substituting the value of H in equation 3the equation 5 is obtained.   

 

Equation 5 has components of the form equation 6. 

 

 

Equation 2 

Equation 3 

Equation 4 

Equation 5 

Equation 6 
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Taking the determinant of the components will give 

solutions for N
2
 which are shown in equation 7. 

The two solutions show that for N+
2
, Ey

+
 = +iEx

+
 and for N-

2
,  Ey

-
 = -iEx

-
. In other words a 

wave can travel either to the left or to the right along the z axis. After coming into contact with a 

magnetized media the wave will be reflected and refracted as well as elliptically polarized.  

The reflected polarization angle is given by 

equation 8, and the refracted polarization angle is 

given by equation 9, 

 

Then, substituting the following we have 

equation 10. 
9 

 

The magneto-optical effect is named differently depending on whether the light is being 

reflected or transmitted through the sample. If the light is being reflected the effect is called the 

magneto-optical Kerr Effect. If the light is transmitted it is referred to as the Faraday Effect.
1
 

The magneto-optical Kerr effect can be measured in one of three different geometries; 

longitudinal, polar, or transverse.  Figure 5 illustrates these three orientations for MOKE. 

Equation 7 

Equation 8 

Equation 9 

Equation 10 
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Figure 5 

The polar configuration is used when the magnetization is perpendicular to the sample plane. In 

the longitudinal and transverse orientations the magnetization is in the plane of the sample and 

parallel or perpendicular to the plane of incidence respectively. 
6
  

d) Thin Films 

In a thin film, one of the three dimensions is only a few nanometers thick.  If the thin film is 

a ferromagnet, its magnetization is generally in the plane of the sample due to the „shape‟ 

anisotropy. The shape anisotropy favors configuration which minimize the magnetic charge on a 

surface. This allows the sample to be studied using transverse or longitudinal MOKE in the 

particular case of Ni thin films. If the film is crystalline, rich information regarding the in-plane 

magneto-crystalline anisotropy can be obtained through magneto-optical studies. 

e) Nanoparticles 

A nanoparticle is defined as any particle that has all three dimensions between 1 and 100 

nanometers.
7
 Fe nanoparticles have been shown to have their magneto-optical characteristics 
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increased when coated with a noble metal.
5 

This is due to the fact that the optical properties of 

gold and silver are such that these materials can sustain strong Surface Plasmon resonances at 

visible wavelengths leading to strong electromagnetic fields in the core of the nanoparticles. 

Thus when a noble metal, such as Ag, is coated around a Fe core a dramatic increase in the 

magneto-optical effect is expected. It is then of interest to find how the effect is enhanced by 

changing the ratio of Fe to Ag for possible sensing applications.
5 
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III. Experimental 

a. Magneto-Optical Kerr Effect on thin films 

The aim was to measure the magnetocrystalline anisotropy of a nickel thin film grown on a 

magnesium-oxide substrate. MOKE in the longitudinal geometry was used because the 

magnetization of the sample was in the sample‟s plane. Transverse was not used due to the 

increased complexity of the orientation. Figure 6 is picture of the experimental setup. 

 

Figure 6 

This is the actual set up used in the laboratory.  The setup was optimized to increase signal to 

noise ratio in the measured signal. The detector and the chopper were both connected to a lock-in 

amplifier to ensure that only light reflected from the sample was being measured.  This was done 

through lock-in technique. The chopper would parse the signal at a particular frequency which 

would allow the lock-in amplifier to pick out the reflected light from the background light. 
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The light source was a HeNe laser. The first polarizer the light encountered was used to 

ensure that the light was linearly polarized. The second polarizer was crossed with the first in 

order to apply the “null method”, by which small changes in light- intensity can be measured 

against a low background as opposed to a large background that would be close to the detector 

saturation. A lab view interfaced computer was connected to the lock-in amplifier, the 

electromagnet, and the stepping motor sample holder allowing in-plane rotation of the sample. 

The sample was mounted by carefully placing double-sided tape to the back of the sample. 

The sample was then handled with tweezers and lifted from the side to prevent damage to the 

surface. It was then placed on the axis of the sample-holder rod, which was connected to a 

stepping motor allowing controlled axial rotation. The tweezers were then used to gently press 

on the outer edges of the sample to make sure the sample was parallel to the surface of the rod‟s 

end. The setup was aligned such that as the sample rotated, the reflected light would always be 

on the photo-diode and the plane of the sample parallel to the external applied field. 

The setup was used to measure a hysteresis loop for the sample at a specific in-plane 

orientation of the magnetic field; the sample was then rotated by a predetermined angle, and 

another hysteresis loop measured and so on. After a full 360 degree rotation the coercive values 

from the individual hysteresis loops could be plotted in an azimuthal map. The azimuthal map 

could then be used to assess the crystalline quality of the nickel thin film sample grown on (001) 

oriented magnesium oxide. 
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b. Magneto-optical Faraday Effect on nanoparticles 

The following is a figure of the experimental setup. 

 

The main differences with respect to the previous setup is that the second polarizer, the 

chopper, and the detector were all placed at the opposite side of the material, and instead of a 

laser, a polychromatic light source with a monochromator was used to measure the Faraday 

rotation angle versus wavelength. In addition, a bored polar piece was used in the electromagnet 

to allow for the required transmission geometry while still providing sufficient magnetic field on 

the sample. The same Lock-In technique was used for the measurements, with the light 

modulated with a chopper. For this geometry, the two polarizers were not crossed but formed an 

angle of 45 degrees from each other. The incident and transmitted light was substantially weaker 

than the light from the HeNe laser so the null effect was not used. Because of the geometry of the 
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sample (nanoparticles dispersed in a liquid) the angular dependence of the magneto-optical 

properties was not measured. 

The sample was mounted on a glass slide. Fe-Ag core-shell nanoparticles with a 25:75 ratio 

were placed on the glass. Oil of the same refraction index as the glass substrate, n=1.5018, was 

then used to prepare a suspension, and to uniformly spread it on the slide. A glass cover was then 

placed on top of the sample and the oil-nanoparticle mixture. This was placed in a clamp and the 

clamp was placed between the two electromagnetic poles. It was then oriented to maximize the 

signal detected by the photodiode.  

 Once the sample was mounted the measurements began. The operator would set the 

wavelength to a predetermined value and take two readings, one with the magnet on and one 

with the magnet off. Prior hysteresis loops obtained with VSM magnetometry indicated that the 

strength of the external magnetic field needed to be 1 Tesla to ensure the nanoparticles were 

saturated and therefore produce the maximum magneto-optical effect. After both readings were 

taken the wavelength would be systematically changed a predetermined amount and the process 

was repeated to obtain all the pertinent data for a spectrum of Faraday rotation versus 

wavelength. 
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IV. Results and Conclusions 

a. Magneto-Optical Kerr Effect on thin films 

The azimuthal plot obtained from the experiment is shown below. 

The four fold symmetry is expected for a (001) oriented face cubed centered nickel crystal. The 

sample exhibited good crystalline quality and was then sent to Kevin Smith in Professor 

Luepke‟s group to be used in time-resolved MOKE studies towards his doctoral thesis. 
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b. Magneto-optical Faraday Effect on nanoparticles 

The core-shell Ag-Fe nanoparticles sample exhibited a large enhancement of magneto-optical 

effects as compared to the expected effect for pure Fe nanoparticles samples. The following 

graphs show that there is a maximum of absorption and Faraday rotation around the 3eV band. 

Thus, there is a strong correlation between the strong absorption due to localized surface 

plasmons and the magneto-optical activity. 
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The top two graphs show the actual data from the experiment. The right graph is the absorption 

and the left graph is the Faraday rotation of the wave. The bottom two graphs are simulations 
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that were done to predict the behavior of the sample and to compare with the expected rotation 

for pure Fe nanoparticles. The solid line represents the sample with the 25:75 ratio while the 

dotted line represents a sample composed of pure Fe. Experiments with pure Fe nanoparticles 

were not possible because of the strong tendency of this material to oxidize. Our results are 

consistent with similar findings on Au-Ferrite nanoparticles 
8
 and are encouraging for optimized 

sensing schemes. 
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Abstract 

Metallic nanoparticles (NPs) are suitable platforms for miniaturized bio-sensing based on their optical 

and magneto-optical properties. It is possible to enhance the sensitivity of specific kinds of NPs by 

exploiting their optical and magneto-optical properties under suitable external magnetic field 

modulation. Here, the magneto-optical properties of Fe-Ag core-shell ferromagnet-noble metal NPs 

have been investigated as function of the incident light frequency. For Fe-Ag NPs with a concentration 

ratio around 25:75 an optical absorption band centered at 3 eV due to Localized Surface Plasmon 

Resonance (LSPR) excitation is observed. A strong enhancement of the Faraday rotation is also 

observed, greatly exceeding the value estimated for pure Fe NPs, also associated with the LSPR 

excitation. Our findings open up the possibility of highly sensitive miniaturized magneto-optically 

modulated bio-sensing. 
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Introduction 

Development of highly sensitive biosensors for the diagnosis and monitoring of diseases, drug discovery, 

proteomics, and environmental detection of biological agents is an extremely significant problemi. In 

addition to the needs for enhanced sensitivity, the development of large-scale biosensor arrays 

composed of highly miniaturized signal transducer elements that can enable the real-time, parallel 

monitoring of multiple species imposes stringent requirements for high-throughput screening 

applicationsii. Much biosensor research has been devoted to the evaluation of various signal 

transduction methods including optical, piezoelectric, magnetic, micromechanical, amperometric and 

mass spectrometric. Although each of these methods has its individual strengths and weaknesses, a 

strong case has been made that optical sensors, in particular those based on evanescent 

electromagnetic fields such as propagating Surface Plasmon Polaritons (SPPs) in planar Au and Ag 

surfaces, are fast becoming a preferred method in many sensing applicationsiii. SPPs are essentially 

electromagnetic waves that are trapped on the interface of two media with permittivity of different 

sign, typically between a metal and a dielectric, due to their interaction with the free electrons of the 

metaliv. In addition, SPPs can also appear in appropriately designed metallic and metallo-dielectric 

structures as Localized Surface Plasmon Resonance (LSPR) that is excited when the incident photon 

frequency is resonant with the collective oscillation of the conduction electrons. As a consequence, 

noble metal nanoparticles exhibit a UV-visible absorption band not present in the bulk metalv,vi, 

resonant Rayleigh scattering with an efficiency equivalent to that of 106 fluorophorsvii, and enhanced 

local electromagnetic fields near the surface of the nanoparticleviii. Plasmon resonances impart these 

nanostructures with unusual optical properties, such as strongly enhanced size-, shape-, and medium-

dependent light absorption and have been employed in a wide range of applications including imaging, 

chemical and biological sensing and probing with remarkable sensitivity. Thus, several research groups 

have explored optical biosensorsix based on the optical properties of noble metal nanoparticles.  
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Although quite sensitive for many applications, most current bio-sensing schemes based on 

Surface Plasmon Resonance (SPR) and LSPR are “passive”, i.e. they are based on changes in the optical 

properties of the gold-surface when a biological specimen to be detected is bound to it and Surface 

Plasmons are excited. Thus, to further enhance the sensitivity for more stringent applications, we have 

explored core-shell “magneto-optically active” plasmonic NPs. Here the magneto-optical property can 

be varied under application of a modest external magnetic field hence enhancing the NPs inherent 

sensitivity by using field-modulated detection schemes that exploit their magneto-optical activity. 

Transition metals such as Fe, Ni and Co alone exhibit magneto-optical effects accessible at relatively low 

fields, but their absorption coefficients are higher than those of Au or Ag and therefore their SPPs are 

considerably damped, but when combined with these noble metals their magneto-optical activity is 

enhanced due to the large electromagnetic fields that arise in the composite nanostructure when sharp 

SPP is excited in the noble metalx,xi,xii. In fact, recent reports have indicated that the combination of 

noble metal (Au) and magnetic materials (Ferrite) in core-shell magnetic nano-particles exhibit 

remarkable magneto-optical effectsxiii, suggesting the possibility of implementing magneto-plasmonic 

materials to enhance sensitivity in bio-detection. In the present case we report on enhancement of the 

magneto-optical activity observed in core-shell Fe-Ag magnetic NPs due to excitation of LSPR. The 

spectral absorbance and the magneto-optical Faraday rotation of the polarization of light through a 

magnetized medium composed of the core-shell Ag-Fe NPs suspended in a suitable liquid between glass 

slides was observed in transmission geometry. 

 

Experimental  

Core shell Ag-Fe magnetic NPs were synthesized by aqueous reduction using sodium borohydride. The 

synthesis first included reduction of iron nano-particles and was followed by the addition of silver 
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nitrate. The iron served as a nucleation site for the reduction of silver, creating a core-shell nano-

particle. The particles were washed with ethanol several times and magnetically separated using a rare-

earth magnet. X-ray powder diffraction revealed a mix phase system with a body centered cubic iron 

and face centered cubic silverxiv. Transmission electron micrographs (TEMs) were taken on a JEOL JEM-

1230 at 150 kV with a Gatan Ultra Scan 4000 SP 4Kx4K CCD camera to determine the size, dispersion and 

morphology of the coated particles. The magnetization reversal was investigated by measuring 

hysteresis loops at room temperature (RT) on a Lakeshore model 7300 vibrating sample magnetometer. 

The sample was placed in a gelcap where the background was negligible compared to the sample signal.   

For the optical and magneto-optical studies, the magnetic nano-particles were suspended 

between two glass slides using index-matching oil with n=1.5018. Absorption and Faraday rotation 

measurements were carried out in the spectral range 1.4 to 3.5 eV. The light incident beam was linearly 

polarized by a Glan Thompson polarizer (extinction ratio 100,000:1) and then transmitted through the 

sample. The sample was placed in the gap of an electromagnet with hollow polar pieces, allowing 

applied magnetic fields up to 1 Tesla, that were high enough to magnetically saturate the NPs. The 

transmitted light was analyzed by a polarizer positioned at 45º degrees with respect to the incident 

polarization. The intensity variations were detected using a Si photodetector and lock-in amplifier 

techniques.  

 

Results and discussion 

TEM was performed to determine the size distribution and morphology of the iron-core Fe-Ag 

NPs. Figure 7 shows a TEM image corresponding to core-shell NPs with a Fe-Ag concentration ratio of 

75:25. The inset shows a high resolution TEM image of the Fe-Ag NPs illustrating their core-shell 
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structure with body centered cubic iron core and face centered cubic silver shell with an average total 

particle size of 15 nm. 

 

 

Figure 7. TEM image of Fe-Ag core-shell nanoparticles synthesized by aqueous reduction. The inset shows a 

high resolution TEM image of the Fe-Ag nanoparticles which illustrates the core-shell structure of the 

particles with an average particle size of 15 nm. 

 

 

The magnetic properties were studied by measuring hysteresis loops at RT. As shown in Figure 8, 

the NPs show characteristic superparamagnetic behavior with very low coercivity and high saturation 

fields around 5 kOe due to the fact that their volume is well below the critical volume and corresponding 

superparamagnetic field, which for Fe NPs corresponds to diameters around 26 nmxv. 
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Figure 8. Hysteresis loop for core-shell Ag-Fe nanoparticles showing their superparamagnetic behavior at 

room temperature, with saturation fields of approximately 5 kOe. 

 

 

The absorbance and Faraday rotation of the Fe-Ag core-shell nanoparticles suspended in index-

matching oil with n=1.5018 were measured in the spectral range from 1.4 to 3.5 eV. As shown in Figure 

9 (a) the absorbance of Fe-Ag nanoparticles with a Fe-Ag concentration ration of 25:75 exhibits an 

absorption band centered at 3 eV, signature of LSPR excitation as shown in previous reportsxiii. 

Associated with such absorption band there is a maximum in the Faraday rotation [Figure 9 (a) right].  

Simulations of the effective dielectric tensors of the dispersed NPs films were performed using a 

variation of the Maxwell-Garnett effective medium approximation presented by M. Abexvi,xvii for 

composite core-shell systems in order to understand the observed behavior. For this study the bulk Fe 

and Ag optical and magneto-optical constants were usedxviii, since the size of the NPs is well above that 

at which optical size effects have been described in nanoparticlesxix. Subsequently, the absorbance and 
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Faraday rotation were calculated using a matrix transfer formalismxx,xxi, able to describe the behavior of 

light in multilayered systems. Figure 9 (b) shows simulations using the cited formalism and considering a 

25 % concentration of NPs in the medium (continuous lines). As it can be observed, very good 

agreement is obtained between the simulation and the experimental data, confirming an absorption 

band centered at 3 eV and an associated maximum in the Faraday rotation. For comparison, the 

response of Fe nanoparticles with no coating and simulated under the same conditions is also shown in 

Figure 9 (b) with dashed lines. Due to the relatively high optical absorption of Fe in the UV and visible 

range, over-damped or no LSPR excitation is expected. It is worth noting that the experimental 

measurement of such Fe nanoparticles with no coating cannot be achieved due to the high tendency of 

Fe to oxide, but their simulated response allows us to understand the effect of LSPR excitation on the 

optical and magneto-optical properties of core-shell Ag-Fe NPs.  In fact, a broader and less intense 

absorption band is observed as in Figure 9 (b), indicating over-damped or no LSPR excitation. More 

interestingly, in spite of the fact that in this case the concentration Fe in the nanoparticles is 4 times 

higher than in the 25:75 Fe-Ag nanoparticles, a much smaller Faraday rotation is observed, thus 

evidencing a strong enhancement of the magneto-optical response for the Fe-Ag core-shell NPs when 

the Ag content is higher.   
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Figure 9. (a) Experimental absorbance (left) and Faraday rotation (right) for 25% Fe-75% Ag nanoparticles 

suspended in a liquid with n=1.5. A maximum both in absorbance and Faraday rotation is found around 3 eV 

due to Localized Surface Plasmon Resonance (LSPR) excitation. (b) Simulations show for 25% Fe-75% Ag 

(continuous lines) and 100 % Fe (dashed lines) nanoparticles show the effect of LSPR on the optical and 

magneto-optical response of the system.  

 

Conclusions 

We have investigated the microstructure, magnetism, optical and magneto-optical properties of Fe-Ag 

core shell NPs. The nanoparticles exhibit a mix phase system with a body centered cubic iron core and 

face centered cubic silver shell with average diameters around 15 nm. Superparamagnetic behavior was 

observed due to their reduced dimensionality. For Fe-Ag nanoparticles with concentration ratio around 

25:75 an optical absorption band centered at 3 eV is observed due to LSPR excitation. Associated with 

such increased absorbance a strong enhancement of the Faraday rotation it is also observed, greatly 

exceeding the estimated value for pure Fe nanoparticles.    
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