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Abstract

Intracellular free calcium (Ca2+) signaling in cardiac myocytes has been studied extensively
through both experiments and modeling. Of particular interest are the changes in bulk Ca2+

concentration in the cytosol and endoplasmic reticulum (ER) and the dynamics of localized
Ca2+ elevations due to Ca2+ release from clusters of Ca2+-regulated ion channels. This paper
develops a hybrid whole cell model that accounts for both of these spatial scales of Ca2+

signaling and examines the effect of stochastic Ca2+ release (i.e. Ca2+ sparks) on whole cell
Ca2+ homeostasis. When used to simulate experimental studies that examined the effects of
tetracaine and flecainide on local and global Ca2+ signaling, the model behaves consistently
with experiments and supports the qualitative explanations of experimental results that
appeared in Zima et al. Biophys. J. 94(5): 1867, 2008.

1 Introduction

Intracellular free calcium (Ca2+) concentration is an important cellular signal whose dynam-
ics are controlled through several mechanisms, including ion channels on the endoplasmic
reticulum (ER) membrane. These intracellular Ca2+ channels are regulated by the binding
of cytosolic Ca2+ which can activate and inactivate them. The two major classes of such
intracellular Ca2+ channels, inositol 1,4,5 trisphosphate receptors (IP3Rs) and ryanodine re-
ceptors (RyRs), are often clustered together in Ca2+ release sites small enough to be coupled
by increases in cytosolic Ca2+ concentration on a spatial scale of 50-500 nanometers. The
stochastic opening of a few such channels, and the resulting release of Ca2+ from the ER, can
cause a larger number of the channels in the release site to open. These concerted openings
are known as Ca2+ puffs or sparks.

Most previous theoretical research on spark statistics has focused on models of individual
channels and release sites, and on the relationship between channel kinetics and puff/spark
dynamics. In prior work, the Ca2+ concentration in the subspace directly around the channel
is often modeled as a variable that changes with channel opening, while the bulk cytosolic
and ER Ca2+ concentrations are parameters that provide boundary conditions for the system
[1–4]. Other studies that focus on whole cell Ca2+ dynamics usually use a Hodgkin-Huxley
type gating variable that represents opening and closing of a large number of IP3Rs or RyRs
that are evenly distributed along the ER membrane [5–7]. In contrast, this paper presents a
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hybrid whole cell model that accounts for both local and global aspects of Ca2+ signaling by
coupling a compositionally defined Markov chain to nonlinear ODEs. We use this model to
examine the effect of the RyR inhibitors on Ca2+ release site statistics and whole cell Ca2+

homeostasis.
Understanding the dynamics of Ca2+ release via sparks is particularly important in the

study of heart muscle, where changes in patterns of local Ca2+ signaling play a role in cardiac
arrhythmias. Experimental work [8,9] has shown that tetracaine, a local anaesthetic, reduces
the open probability of individual RyRs by increasing the dwell time in a closed state. When
added to cardiac myocytes, tetrcaine also causes an unexpected result of prolonged spark
duration. The authors suggested that this counter-intuitive result is due to an increased
Ca2+ load in the ER caused by the observed decrease in spark frequency, which may allow
the ER to release more Ca2+ when sparks do occur. The initial goal of this research was to
determine if this result can be reproduced in a whole cell model that accounts for the effect to
stochastic Ca2+ release (i.e. sparks) on whole cell Ca2+ homeostasis, thereby demonstrating
the consistency of the hypothesis presented in Zima et al.

Experiments have also shown that flecainide causes a similar reduction in open probability
of individual RyRs, but by a different mechanism than tetracaine [8–10]. Experimental
evidence suggests that tetracaine increases the dwell time in closed states, and most authors
agree that tetracaine has no effect of the open state dwell time (for an exception see [10]).
In contrast, flecainide decreases the open dwell time of RyRs, while leaving the closed dwell
time constant [10]. The hybrid model of local and global Ca2+ signaling presented here
provides an opportunity to examine how these pharmacological agents that reduce the open
probability of single channels may interact to effect spark dynamics involving clusters of
coupled RyRs and whole cell Ca2+ homeostasis.

2 Model Formulation

2.1 Overview

The hybrid Markov Chain-ODE model developed here takes into account both the release
site dynamics and the homeostasis of the whole cell Ca2+ (Fig. 1). The model assumes that
intracellular Ca2+ channels are clustered on the ER membrane in release sites composed
of 10-100 channels. We assume that when a release site changes state, the local Ca2+

concentration around the release site changes faster than the bulk concentrations. Therefore,
the model includes local domains on both the cytosolic and luminal sides of the membrane
with concentrations dependent on their respective bulk concentrations and the number of
open channels in the release site. The release sites are coupled to the bulk concentrations,
allowing changes in the release sites to affect the bulk cytosolic and ER Ca2+. Additionally,
a flux is added to account for the action of the SERCA pumps, which re-sequester Ca2+ in
the ER after release into the cytosol. A passive leak from the ER to the cytosol allows for
movement of Ca2+ from the ER even when no channels are open.

In the experimental studies of Ca2+ dynamics that are the focus of this work, the cells are
permeabilized; that is, a pharmacological agent has been added to the bath that perforates
the cell membrane. This effectively clamps the cytosolic Ca2+ concentration at the level
of the bathing solution. The plasma membrane fluxes represented in the model allow for
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Figure 1: The hybrid whole cell model represents two bulk compartments: the ER (cer)
and the cytosol (ccyt). The membrane of the ER includes multiple release sites, each of
which includes a local Ca2+ domain on both sides of the membrane. The release sites are
independent, stochastic units; two release sites in different states are shown. The domain
Ca2+ concentrations (cd

cyt and cd
er) are influenced by fluxes that involve the bulk Ca2+ con-

centrations (cytosolic and ER) and the state of the release site. Fluxes include diffusion
from cytosolic domains to the bulk cytosol (Jcyt), diffusion from the bulk ER to the luminal
domains (Jer), the SERCA pump flux that re-sequesters Ca2+ into the ER (Jpump), a passive
leak from the ER to the cytosol (Jleak), and the fluxes across the plasma membrane (Jin and
Jout).

modeling an intact cell (when the values are low) or a permeabilized cell (when the fluxes
are high).

2.2 Ca2+ release site model

The basic unit of the hybrid model is a single channel model of a Ca2+-regulated intracellular
Ca2+ channel. There are many such single channel models in the literature, ranging in
complexity from two to several hundred states. The simplest possible single channel RyR
model includes two states, closed (C) and open (O). The RyR opens at a rate dependent on
the local Ca2+ concentration and closes with a constant (i.e. Ca2+-independent) transition
rate,

C
k+

12c
η

⇋

k−

21

O, (1)

where η is the cooperativity of Ca2+ binding, c is the local [Ca2+], k+

12c
η and k−

21 are transition
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rates with units of reciprocal time, and k+

12 is an association rate constant with units of
conc−ηtime−1. If the local [Ca2+] is specified, the transition state diagram (Eq. 1) defines a
discrete-state continuous-time stochastic process, S(t), that takes on values in the state-space
S = (C, O).

In order to incorporate this single channel RyR model into a Ca2+ release site model,
we assume that the release site is composed of N stochastically gating channels. We also
assume mean-field coupling; the local [Ca2+] experienced by a channel depends only on the
bulk concentrations ccyt and cer and the number of open channels at the Ca2+ release site, not
the spatial arrangement of those channels. The state space for the Ca2+ release site model
thus includes (N + 1) states given by S = ((N, 0), (N − 1, 1), (N − 2, 2)...(1, N − 1), (0, N)),
where (NC , NO) indicates the number of closed and open channels, respectively.

The transition-state diagram for a release site composed of N channels is shown below,
where the local [Ca2+] used in each Ca2+-mediated transition is indicated by cn, with 0 ≤

n ≤ N indicating the number of open channels.

Nk+

12c
η
0 (N − 1)k+

12c
η
1 (N − 2)k+

12c
η
2 2k+

12c
η
N−2

k+

12c
η
N−1

0 ⇋ 1 ⇋ 2 ⇋ . . . ⇋ N − 1 ⇋ N
k−

21 2k−

21 3k−

21 (N − 1)k−

21 Nk−

21

(2)
The resulting Q-matrix corresponding to (Eq. 2) is

Q = qij =



















⋄ Nk+

12c
η
0 0 0 0 0

k−

21 ⋄ (N − 1)k+

12c
η
1 0 0 0

0 2k−

21 ⋄ (N − 2)k+

12c
η
2 0 0

. . .

0 0 0 (N − 1)k−

21 ⋄ k+

12c
η
N−1

0 0 0 0 Nk−

21 ⋄



















, (3)

where qij is the transition rate from state i to state j and the diamonds (⋄) indicate a
diagonal entry leading to a row sum of zero. Notice that the transition rates from state i
to state j are scaled by the number of channels in state i. The upper diagonal elements are
transitions mediated by [Ca2+] and use the bimolecular rate constants. The lower diagonal
elements are independent of [Ca2+] and use unimolecular rate constants.

2.3 Dynamics of domain Ca2+

This model is built under the assumption of instantaneous coupling, meaning that the time-
scale for the change in the [Ca2+] in the domains is fast compared to the gating of the
channels. The domains are coupled to the bulk compartments via the fluxes Jcyt and Jer

given by

Jcyt = vcyt

(

cd
cyt − ccyt

)

(4)

Jer = ver

(

cer − cd
er

)

(5)

where cd
cyt and cd

er are the cytosolic and luminal domain Ca2+ concentrations, vcyt is the rate
of cytosolic domain collapse and ver is the rate of luminal domain recovery [5].
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The release of Ca2+ through IP3Rs (Jrel) is given by

Jrel = γ vrel

(

cd
er − cd

cyt

)

(6)

where γ indicates the fraction of channels at the Ca2+ release site that are open and takes
the values

γ ∈

{

0,
1

N
,

2

N
, · · · ,

N − 1

N
, 1

}

.

The release flux Jrel is thus proportional to the maximum conductance of the release site
(vrel), and the driving force is given by the difference between the luminal and cytosolic
domain Ca2+ concentrations.

Based on Eqs. 4–6, the concentration balance equations for the domain Ca2+ concentra-
tions are given by

dcd
cyt

dt
=

1

λd
cyt

(Jrel − Jcyt) (7)

dcd
er

dt
=

1

λd
er

(−Jrel + Jer) (8)

where λd
er and λd

cyt are scaling factors that account for the domain volumes.
Under the assumption of instantaneous coupling, the steady-state cytosolic and luminal

domain Ca2+ concentrations are given as functions of γ and are found by setting the left
hand sides of Eqs. 7 and 8 to zero, with the following result [11],

cd,ss
cyt (n) =

vcyt

vcyt + v′

er

ccyt +
v′

er

vcyt + v′

er

cer (9)

cd,ss
er (n) =

v′

cyt

v′

cyt + ver

ccyt +
ver

v′

cyt + ver

cer (10)

where
v′

cyt =
γvrelvcyt

γvrel + vcyt

, v′

er =
γvrelver

γvrel + ver

, and γ =
n

N
.

We define the values of cn in Eq. 3 in the previous section as

cn = cd,ss
cyt (n). (11)

Thus, for any given ccyt and cer we have a generator matrix Q(ccyt, cer) and the time-evolution
of the probability distribution of the number of open channels that can be found by solving
the ODE initial value problem

dπ

dt
= πQ (12)

where π = (π0, π1, · · · , πN), πi(t) is the probability of finding a release site in state i, and
π(0) is the initial condition.
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2.4 Ca2+ concentration balance equations

By considering the limit as the total number of release sites approaches infinity, we can study
the Ca2+ handling in a whole cell model. The bulk Ca2+ concentrations are affected by the
SERCA pumps (Jpump), a passive leak from the ER to the cytosol that is independent of
release site activity (Jleak), and the total flux through the release sites (JT

rel). These fluxes
take the form,

Jpump =
vpump(ccyt)

2

(kpump)2 + (ccyt)2
. (13)

Jleak = vleak (cer − ccyt) (14)

JT
rel =

N
∑

n=0

πnγvT
rel

[

cd,ss
er (n) − cd,ss

cyt (n)
]

(15)

We define the total cytosolic and luminal Ca2+ concentrations as a the sum of the bulk
concentration and the concentration in the domains scaled by the relative effective volumes,
Λd

cyt and Λd
er,

ĉcyt = ccyt + Λd
cytc̄

d
cyt (16)

ĉer = cer +
Λd

er

λer

c̄ d
er, (17)

where c̄ d
cyt =

∑N

n=0
πnc

d,ss
cyt (n) and c̄ d

er =
∑N

n=0
πncd,ss

er (n) are average values for domain [Ca2+].
For a closed cell with no fluxes across the plasma membrane, it can be shown without

approximation that ĉcyt and ĉer solve

dĉcyt

dt
= JT

rel + Jleak − Jpump (18)

dĉer

dt
=

1

λer

(

−JT
rel − Jleak + Jpump

)

(19)

where JT
rel, Jleak, and Jpump are given by Eqs. 15–13. Note that the fluxes that occur in

Eqs. 18–19 are functions of ccyt and cer that must be evaluated using the values of ĉcyt and
ĉer that are found by inverting

ĉcyt = ccyt + Λd
cyt

N
∑

n=0

[

πn

(

vcyt

vcyt + v′

er

ccyt +
v′

er

vcyt + v′

er

cer

)]

(20)

ĉer = cer +
Λd

er

λer

N
∑

n=0

[

πn

(

v′

cyt

v′

cyt + ver

ccyt +
ver

v′

cyt + ver

cer

)]

. (21)

Eqs. 20 and 21 can be derived by combining Eqs. 16 and 17 with Eqs. 9 and 10 and using
the definitions of c̄ d

cyt and c̄ d
er.

Rearranging Eqs. 20–21 gives

ĉcyt = a11ccyt + a12cer (22)
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ĉer = a21ccyt + a22cer (23)

where

a11 = 1 + Λd
cyt

N
∑

n=0

(

πn

vcyt

vcyt + v′

er

)

(24)

a12 = Λd
cyt

N
∑

n=0

(

πn

v′

er

vcyt + v′

er

)

(25)

a21 =
Λd

er

λer

N
∑

n=0

(

πn

v′

cyt

v′

cyt + ver

)

(26)

a22 = 1 +
Λd

er

λer

N
∑

n=0

(

πn

ver

v′

cyt + ver

)

. (27)

Using Cramer’s rule we see

ccyt =
a22ĉcyt − a12ĉer

D
cer =

a11ĉer − a21ĉcyt

D
(28)

where D = a11a22 − a12a21. In this manner, the fluxes Jleak, Jpump, and JT
rel can then be

evaluated as functions of ĉcyt and ĉer. We now have a complete set of ODEs describing the
behavior of the system on several spatial scales. Unlike previous models, this hybrid model
of local and global Ca2+ signaling accounts for both release site dynamics and whole cell
Ca2+ homeostasis.

The experimental studies we intend to simulate here used permeabilized cardiac myocytes.
Permeabilizing the plasma membrane effectively clamps the cytosolic Ca2+ concentration to
the level of the extracellular medium. Even in intact cells, fluxes across the plasma membrane
can cause changes in total whole cell Ca2+ concentrations. In order to model these conditions,
we included plasma membrane fluxes and allow the total Ca2+ in the cell to change. The
flux of Ca2+ out of the cell is assumed to be proportional to the cytosolic [Ca2+],

Jout = koutccyt (29)

where kout is the extrusion rate constant. The inward Ca2+ flux, Jin, is assumed constant
and independent of cytosolic [Ca2+]. At steady state, Jin and Jout are equal, which means
that

css
cyt =

Jin

kout

. (30)

Because the steady state cytosolic [Ca2+] is known from experiment, we use Eq. 30 to de-
termine Jin consistent with the known css

cyt. Varying kout thus changes the magnitude of

the plasma membrane fluxes without altering the steady-state cytosolic Ca2+ concentration.
A low value of kout corresponds to an intact cell; a high kout reflects the conditions of a
permeabilized cell.
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2.5 Numerical Analysis and Contributions

MATLAB’s ODE solvers were used to numerically integrate the set of ODEs presented in
Sections 2.3 and 2.4 (for representative code, see Appendix). Studies focused on either the
steady state behavior of the probability distribution (π) and bulk Ca2+ concentrations (ccyt

and cer) as a function of one or, alternatively, more parameters or the transient behavior for
a given parameter set. The code for the matrix analytic method of calculating the expected
spark duration was provided by Jeff Groff (see [2]). All simulations and parameter studies
presented as figures or tables in the following sections are original work, as well as many
others that are not presented for the sake of brevity.

3 Results

3.1 Parameter scan over the activation rate constant k
+

12

As discussed in the Introduction, the hybrid model of local and global Ca2+ signaling that
is the focus of this thesis is designed to explore the effect of the addition of tetracaine (a
pharmacological agent that reduces the single RyR open probability) on stochastic Ca2+

release by clusters of RyRs and whole cell Ca2+ homeostasis. Because there is evidence
that tetracaine decreases the open probability of RyRs by increasing the mean closed dwell
time of these intracellular Ca2+ channels (τC = 1/k+

12c
η), the primary parameter under

consideration is k+

12 (see Eq. 1) . Decreasing this parameter corresponds to the effects of the
addition of tetracaine (i.e., reducing the single RyR open probability). We examined the
effect of changing k+

12 on the faction of open channels and the expected value of the spark
duration. We also calculated the spark Score, a measure of the tendency of a system to
spark, which is given by

Score =
1

N

V ar[NO]

E[NO]
(31)

where NO is the number of open channels in the Ca2+ release site model. The value of
the Score ranges from 0 to 1; a Score of 0.2 or higher indicates a system with frequent
or robust sparks [12]. For purposes of duration calculation, a spark is defined as starting
when the release site reaches a threshold number of open channels (NO = κ = 5 out of 10
channels) and ending when all the channels close (NO = 0). The spark duration statistics
were numerically calculated using the matrix analytic method described in [2] and are only
reported when the Score was greater than 0.2. Finally, the fraction of open channels in a
release site is given by

fO =
E[NO]

N
. (32)

Fig. 2 summarizes these four measures as a function of the single channel Ca2+ activation
rate constant k+

12. The fraction of open channels at release sites increases with k+

12, consistent
with the effect of tetracaine on single channels. As the open probability decreases, the total
[Ca2+] in the ER at steady state increases. Since the flux of the SERCA pumps (Eq. 13) is
independent of the luminal [Ca2+], reducing the RyR open probability decreases (from right
to left), the release flux (Eq. 15) while the flux into the ER stays constant. Although the
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Figure 2: Release site dynamics and whole cell conditions at steady state as functions of
the RyR activation rate constant k+

12. A. Luminal Ca2+ concentration. B. Fraction of open
channels. C. Score. D. Expected spark duration. The arrow on the right indicates the
standard conditions; the left arrow designates the reduction in k+

12 corresponding to the
addition of tetracaine. All other parameter values as in Table 2.

greater difference between the luminal and cytosolic Ca2+ concentrations makes the passive
leak term higher (Eq. 14), it is not enough to compensate for the decreased flux through the
release site.

In the region where css
er is somewhat elevated but k+

12 is not low enough to shut down all
channel activity, we see an increase in both the Score and the expected spark duration. Note
that the increase in Score does not necessarily correspond to an increase in the frequency
of sparks. Fewer but longer sparks can also can an increase in the Score. Consistent with
experiment, we find that decreasing k+

12 can lead to longer sparks driven by an overloaded
ER [8].

The right arrow in each figure indicates the standard parameter set (see Table 2). The left
arrow shows the k+

12 value that corresponds to the conditions in the cell after the addition of
tetracaine, k+

12 = 0.5 µM−2s−1. Experimentally, the addition of 0.7 mM of tetracaine caused
an 88% reduction in open probability in lipid bilayer single channel recordings [8]. The
reduction in k+

12 chosen to represent the application of tetracaine show a similar reduction
in PO compared to the standard parameters, using

PO =
k+

12(c
ss
cyt)

η

k+

12(c
ss
cyt)

η + k−

21

. (33)

Note that with this change in k+

12, the fraction of open channels in the release site is only
reduced by 79%, indicating that the interaction between the channels attenuates the decrease
in channel activity occuring during the simulated application of tetracaine. Presumably, high
luminal [Ca2+] provides the driving force for this Ca2+-mediated channel coupling.
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Figure 3: Gillespie simulations of sparks under three different steady state conditions. The
left portion shows a 50 second simulation for a release site with N = 10 channels. The first
release event with more than 5 open channels is shown on a larger scale on the right. Except
where noted, all parameters values are as in Table 2. A: Standard parameters with k+

12 = 4.5
µM−2s−1 resulting Score = 0.51. B: Activation coefficient reduction with homeostasis:
k+

12 = 0.5 µM−2s−1. Score = 0.59. C: Activation coefficient reduction without homeostasis
cfixed
er = 342 µM , k+

12 = 0.5 µM−2s−1, Score = 0.11.

3.2 Stochastic simulations of individual release sites

For any given parameter set, a simulation can be run to obtain an example of how a given
release site might activate and inactivate in a stochastic fashion. Fig. 3 shows simulations
generated by the Gillespie method [13] for the two values of k+

12 indicated in Fig. 2 and
discussed. On the left is a simulation run for 50 seconds; on the right is a larger view of the
first spark with a number of open channels above the threshold (κ = 5 channels). Fig. 3A
shows the high frequency of sparks that characterizes the standard conditions. In this case,
we see five sparks and multiple smaller release events with amplitudes below the threshold
number of channels, which are referred to as Ca2+ quarks in the experimental literature.
The expectated value of the spark duration is 18.3 ms; the first spark in this simulation has
a duration of 17.5 ms.

When we change to the parameter set corresponding to the addition of tetracaine, the
spark frequency is significantly reduced (Fig. 3B). Although there are fewer sparks, the
variation in the number of open channels increases enough to raise the Score. In this
simulation, there is one spark and three quarks. While the expected spark duration is
26.8 ms, sparks of 90 ms or more are not infrequent using the tetracaine parameter set,
though they almost never occur with the standard parameter set. This is consistent with
experimental observations: not all release events are long duration sparks; many are of the
length seen before the addition of tetracaine [8].

In order to study the effect of the Ca2+ homeostasis mechanisms of the model, we can fix
cer and ccyt to the values obtained with the standard parameters, then reduce k+

12 without
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allowing the bulk Ca2+ concentrations to change, and compare these calculations to the
results obtained when the bulk Ca2+ concentrations respond to Ca2+ release via spontaneous
sparks. Fig. 3C shows that such a simulation results in only a few release events, none with
more than three channels open. We therefore conclude that the homeostasis mechanisms
have a significant impact on the hybrid model calculations and are required for the presence
of prolonged sparks in this study. We also find that without an elevated luminal [Ca2+], a
reduction in single channel open probability decreases spark frequency and does not cause
an increase in spark duration. This is consistent with the experimental observations and
qualitative explanations presented in Zima et al [8].

3.3 Transient effects of reduction of the activation rate constant

Because long duration sparks depend on an increased ER Ca2+ load, there is a period
immediately after the addition of tetracaine when there are very few sparks, and those sparks
which do occur have short durations [8, 9]. While steady-state dynamics were the focus of
the previous parameter studies, we can use the steady state of the standard parameter
calculation as the initial condition for the tetracaine parameter calculation and thereby
simulate the transient dynamics observed upon the addition of tetracaine to permeabilized
cardiac myocytes.
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Figure 4: Transient effects of the reduction of the Ca2+-activation rate constant k+

12. At
t = 0, k+

12 is reduced from 4.5 to 0.5 µM−2s−1. Score and expected spark duration are
calculated as described in text. All other parameters as in Table 2.

As shown in Fig. 4, when the single channel open probability is reduced due to the
simulated application of tetracaine, there is an initial decrease in both the expected spark
duration and the Score. This decrease in stochastic Ca2+ release allows the ER to fill up,
however, and both the Score and expected spark duration subsequently recover to greater
than the original values. This is consistent with the experimentally observed suppression
followed by activation of Ca2+ release after the addition of tetracaine and confirms that a
high luminal [Ca2+] is a requirement for long sparks.
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3.4 Two dimensional parameter scan

Flecainide has been shown to reduce the open probability of single channels by decreasing the
dwell time in open states [10]. We therefore model the application of flecainide by increasing
k−

21 rather than decreasing k+

12 (see Eq. 1). Fig. 5 shows the response measures described
above for a two dimensional scan over both parameters.
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Figure 5: Release site dynamics and whole cell conditions as functions of the coefficient of
activation and the deactivation rate. A. Luminal Ca2+ concentration. B. Fraction of open
channels. C. Score. D. Expected spark duration. All other parameter values as in Table 2

The changes in the fraction of open channels are as expected upon changing k+

12 and
k−

21; FO is highest when k+

12 is high and k−

21 is low. The luminal Ca2+ concentration is
inversely proportional to the fraction of open channels, consistent with the earlier conclusion
that decreasing the spark rate causes the ER to overload. The Score depends on the ratio
between the two parameters rather than the magnitude of either one; for a given k+

12 value, a
corresponding k−

21 value can be found to yield a Score above 0.5. The range of high Scores
indicates that the results seen in Fig. 2 do not require the particular k−

21 value chosen for the
standard parameter set.

The expected duration, shown only for the range of values where the Score is greater
than 0.2, decreases monotonically as k−

21 increases for any value of k+

12. In contrast, as k+

12

increases for a given k−

21 value, the expected duration first increases, then decreases. Once
again we see that for any given value of k−

21, we can find a range of values that produce the
same qualitative effects as the addition of tetracaine.

Note that for a given ratio of k+

12 to k−

21, multiple steady solutions can be found that have
the same css

er, FO, and Score, but differ with respect to the expected spark duration. When
a single channel model with more than two states is used, we see a more complex variation
in the Score and expected duration (not shown). However, the data in Figs. 2-4 shows
that a simple two channel model in sufficient to reproduce the experimental results under
consideration.
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3.5 Mechanisms of RyR inhibition

Comparable reductions in the single channel open probability can be obtained by changing
k+

12, k−

21, or both (see Fig. 5). Because of this, we can examine how different RyR inhibition
mechanisms effect spark dynamics and whole cell Ca2+ homeostasis. Table 1 shows the
steady state results of the standard parameter set, followed by three parameter changes that
result in the same single channel PO. As discussed in Sections 3.1 and 3.4, a reduction in
k+

12 corresponds to the addition of tetracaine increasing RyR closed dwell times (B) and an
increase in k−

21 is used to model the application of flecainide resulting in decreased open dwell
times (C). Because there is disagreement about whether tetracaine also decreases open dwell
times, an additional parameter set (D) is included that changes both parameters. For each of
the three altered parameter sets the Score, luminal Ca2+ concentration, and FO are the same.
They differ only in the expected spark duration, which is consistent with the scaling seen in
Fig. 5D. Comparison of these results to the response measures obtained with the standard
parameters (A), suggests that prolonged spark duration upon addition of tetracaine may
be interpreted as evidence for a mechanism of RyR inhibition that involves increasing the
RyR closed dwell time without decreasing the open dwell time. Perhaps more importantly,
Table 1 shows that it is not decreased PO per se but rather the specific mechanism of RyR
inhibition that determines whether spark duration decreases or increases upon ER overload.

A. Standard B. Tetracaine C. Flecainide D. Dual
Parameters Mechanism

k+

12 (µM−2s−1) 4.5 0.5 4.5 1.5
k−

21 (s−1) 500 500 4500 1500
FO 9.6x10−4 2.0x10−4 2.0x10−4 2.0x10−4

Score 0.51 0.59 0.59 0.59
css
er (µM) 342 1112 1112 1112

Duration (ms) 18.2 26.7 2.97 8.90

Table 1: The effect of three mechanisms of RyR inhibition. Parameters sets B-D result in
the same reduction in open probability and at steady state differ only in the expected spark
duration.

As in Section 3.2, we present a stochastic simulation for each parameter set in Table 1.
Fig. 6 reproduces the earlier results for the standard parameters (A) and the parameters
corresponding to the application of tetracaine (B). Fig. 6C shows a simulation correspond-
ing to the addition of flecainide, which results in nearly as many sparks as the standard
conditions. However, as seen in both the representative spark (second column) and the ex-
pected spark duration (Table 1), the sparks are much shorter in duration. Fig. 6D shows
the corresponding result when both k+

12 and k−

21 are changed. As might be expected from the
previous two parameter sets, RyR inhibition by this dual mechanism shows a slight decrease
in spark frequency and duration compared to the standard parameters, but less reduction
than C or D.

Comparison of the luminal Ca2+ concentration for all three altered parameter sets with
the standard conditions suggests that whole cell Ca2+ homeostasis can be dramatically af-
fected by changes in release site dynamics due to RyR inhibition. While the specific mech-
anism of RyR inhibition can impact spark statistics such as the expected spark duration,
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Figure 6: Gillespie simulations of sparks under four different steady-state conditions resulting
from the parameter sets in Table 1. The left panels show 50 second simulations for release
sites with N = 10 channels. The first release event of more than 5 channels is shown on a
larger scale on the right. The parameters k+

12 and k−

21 are as in Table 1. All other parameters
as in Table 2.

all three mechanisms have a similar impact on the whole cell Ca2+ homeostasis, i.e. the
steady-state value of the ER Ca2+ concentration is increased. This somewhat unexpected
result that different release site activity (Fig. 6B and C) can yield the same whole cell Ca2+

balance makes sense when one considers the fact that short duration sparks occurring at
high frequency release the same amount of Ca2+ as long duration sparks occurring at low
frequency.

4 Ongoing Research

There are still questions related to the current study that require consideration, such as what
percentage of Ca2+ release is due to sparks and how much is due to the passive leak present
when all RyRs are closed or to “hidden leak” in the form of quarks. The model also makes
several assumptions, including instantaneous and mean-field coupling, the validity of which
may need to be assessed in this context. Finally, the increased ER Ca2+ load seen with
tetracaine has not yet been experimentally observed with the application of flecainide. Our
model predicts elevated ER Ca2+ upon application of flecainide and thus awaits experimental
confirmation. Further studies would be needed to determine if this could be effectively
simulated.

The model above is very versatile and provides many options for future research. The
single channel model presented above is the simplest possible model. Models with Ca2+-
dependent inactivation or luminal regulation have also been incorporated into the full model.
Preliminary results indicate that when inactivation is included, results are qualitatively simi-
lar to those above, but with consistently shorter durations (not shown). For some parameter
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Parameter Definition Value
λer bulk ER effective volume fraction 1/6
Λd

er total luminal domain effective volume fraction 1/30
Λd

cyt total cytosolic domain effective volume fraction 1/30

vT
rel release flux rate 10 s−1

vT
cyt cytosolic domain collapse rate 100 s−1

vT
er luminal domain recovery rate 10 s−1

vleak ER leak rate when all RyRs are closed 0.001 s−1

vpump maximum SERCA pump rate 5 µMs−1

kpump dissociation constant of SERCA pump 0.1 µM
η cooperativity of Ca2+ binding to RyR 2
κ threshold for spark duration calculation 5
N number of channels per release site 10
k+

12 association rate constant of activating Ca2+ 4.5 µM−ηs−1

k−

21 dissociation rate constant of activating Ca2+ 500 s−1

Table 2: Standard parameters for the hybrid model of local and global Ca2+ signaling.
Application of tetracaine is simulated by changing k+

12 from 4.5 to 0.5 µM−ηs−1.

sets, oscillations in the luminal [Ca2+] are observed, in spite of the fact that bulk cytoso-
lic Ca2+ concentration is essentially “clamped” due to the permeabilized cell memebrane.
There is much interest in luminal Ca2+ regulation of RyRs and the resulting effect on luminal
Ca2+ oscillations observed in permeabilized cardiac myocytes in the laboratory of Sandor
Györke (an experimental collaborator at OSU). Further work with variants of this hybrid
model of local and global Ca2+ signaling could shed light on the mechanisms generating such
oscillations.

5 Conclusion

Ca2+ signaling in cardiac myocytes occurs on multiple spatial and temporal scales. A hybrid
Markov chain-ODE model was constructed to simultaneously account for whole cell Ca2+

homeostasis and local stochastic Ca2+ release site dynamics. Release sites were modeled as
a collection of N instantaneously mean-field coupled intracellular Ca2+ channels, and their
dynamics were incorporated into a whole cell model of Ca2+ homeostasis by assuming an
infinite number of release sites. The model was used to analyze an experimental study in
which application of tetracaine (a pharmacological agent that reduces single channel open
probability of RyRs) was found to result in long duration Ca2+ sparks [8]. This modeling
study reproduced this counter-intuitive result and supported the published suggestion that
prolonged sparks are the result of increased ER load (Figs 2-3). We also generated predictions
about the effect of other types of perturbations on the Ca2+ dynamics. We observed that the
parameters corresponding to the addition of flecainide resulted in very short sparks (Table 1).
Finally, we noted that similar whole cell Ca2+ balance can be obtained via radically different
Ca2+ release site dynamics, as spark duration and spark frequency combine to determine the
rate of Ca2+ release.
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Appendix: Representative Matlab code

The following code was used to generate Fig. 2. The program parameter scan generated the
data using the internal MATLAB ODE solver ode15s which calls concentration equations,
the file that defines the differential equations to be numerically integrated. The file figures
was used to create the figure itself. The other scripts are subroutines called in parameter scan.
The subroutines ballbin, expandedKmeanfield, meanstdfromdist, and qballbin2 were
available to the lab from prior research. The code matrixAnalyticPuffStats was provided
by Jeff Groff (see [2]). All other code is original work.

parameter scan

% Runs a parameter scan over k12+ for a two state (CO) or three state (COI)

% model. Returns information on steady state calcium concentrations and

% release site statistics. Each parameter set is run through an ODE solver

% until a specified steady state is reached.

clear

clc

% FLAGS

CellType = 1; % 0=closed, 1=open

Inactivation = 0; % 0=NoInact, 1=fast, 2=slow

FileName = ’OpenCellNoInact.mat’;

NumChannels = 10; % Number of channels per release site

kappa = 5; % Threshold of duration calculations

C_cyt_hat0 = .1; % Initial cytosolic [Ca] (uM)

C_er_hat0 = 500; % Initial ER [Ca] (uM)

a = logspace(-1,0,2); % scaling factor for paramter scan

steady_state_tolerance = 1e-5;

global Q

%Build Model

k12p = 1.5e2; % uM^-eta s^-1

k21m = 0.5e2; % 1/s

if (Inactivation == 0) %no inactivation

k23p = 0; %uM^-eta s^-1

k32m = 0; %1/s

elseif (Inactivation == 1) %fast inactivation
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k23p = .015e3; %uM^-eta s^-1

k32m = .005e3; %1/s

else %slow inactivation

k23p = .0015e3; %uM^-eta s^-1

k32m = .0005e3; %1/s

end

Kp1 = [ 0 k12p 0; 0 0 k23p; 0 0 0 ];

Km1 = [ 0 0 0; k21m 0 0; 0 k32m 0 ];

[ SingleChannelStates, dummy ] = size(Kp1);

b = ballbin(NumChannels,SingleChannelStates);

Qbb = qballbin2(b);

NumStates = length(b);

KpN = expandedKmeanfield(Kp1,Qbb,b);

KmN = expandedKmeanfield(Km1,Qbb,b);

% Define Parameters

vT_rel = 10; %1/s

vT_cyt = 100; %1/s

vT_er = 10; %1/s

eta = 2;

v_leak = 0.001; %1/s

v_pump = 5; %uM/s

k_pump = .1; %uM

lambda_er = 1/6;

LambdaD_cyt = 1/30;

LambdaD_er = 1/30;

Cbin = 2; %open (Ca releasing) state

C_cyt_ss_det = .1; %uM

k_out = 10000; %1/s

n_index_channels = 0:NumChannels;

n_open_by_state = b(:,Cbin)’;

p=zeros(size(KpN));

p(1) = NumChannels;

p(2) = NumStates;

p(3) = vT_rel;

p(4) = vT_cyt;

p(5) = vT_er;

p(6) = eta;

p(7) = v_leak;
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p(8) = v_pump;

p(9) = k_pump;

p(10) = lambda_er;

p(11) = LambdaD_cyt;

p(12) = LambdaD_er;

p(13) = Cbin; %open (Ca releasing) state

p(14) = CellType;

if (CellType == 1)

p(15) = C_cyt_ss_det;

p(16) = k_out;

else

p(15) = 0;

p(16) = 0;

end

p(17:NumStates+16) = n_open_by_state;

P = cat(3,KpN,KmN,p);

% Define initial conditions

pi0 = [1 zeros(1,(NumStates-1))]; % All channels closed

%Initialize matrices for scan results

C_cyt_ss = zeros(2,length(a)); C_er_ss = zeros(2,length(a));

Score = zeros(2,length(a)); MaxScore = zeros(2,length(a));

Duration = zeros(2,length(a)); DurDistribution = zeros(2,1000,length(a));

ExpectedOpen = zeros(2,length(a)); CV = zeros(2,length(a));

Po = zeros(2,length(a)); Fo = zeros(2,length(a));

PI_N_Open = zeros(1,NumChannels+1);

for loop=1:2

for j = 1:length(a)

%Redefine k12p based on a, run ODE solver to determine ss

k12pa = a(j)*k12p; Kp1 = [ 0 k12pa 0; 0 0 k23p; 0 0 0 ];

P(:,:,1)=expandedKmeanfield(Kp1,Qbb,b);

odetime = 200; odetime_add=50;

[T,Y] = ode15s(@concentration_equations,[0 odetime], ...

[pi0 C_cyt_hat0 C_er_hat0],[],[P]);

deltaC_cyt = (Y(end-1,(NumStates+1)) - Y((end-3),(NumStates+1)))/2;

deltaC_er = (Y(end-1,(NumStates+2)) - Y((end-3),(NumStates+2)))/2;

figure(1) %Plot [Ca] while ODE is running

subplot(2,1,1) %C_er_hat

plot(T,Y(:,(NumStates+2)),’o-’);
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ylabel(’C_{er}^{hat}’)

xlabel(’time’)

subplot(2,1,2) %C_cyt_hat

plot(T,Y(:,(NumStates+1)),’ro-’);

ylabel(’C_{cyt}^{hat}’)

xlabel(’time’)

%run ode until steady state tolerance is reachced

while (abs(deltaC_er)>steady_state_tolerance) && ...

(Y(end,NumStates+2) < 10000)

odetime = odetime + odetime_add;

[T_add,Y_add] = ode15s(@concentration_equations,...

[T(end) odetime],[Y(end,:)],[],[P]);

T =[T; T_add(2:end)];

Y =[Y; Y_add((2:end),:)];

deltaC_cyt=(Y(end-1,(NumStates+1))-Y((end-3),(NumStates+1)))/2;

deltaC_er=(Y(end-1,(NumStates+2))-Y((end-3),(NumStates+2)))/2;

figure(1)

subplot(2,1,1) %C_cyt_hat

plot(T,Y(:,(NumStates+2)),’o-’);

ylabel(’C_{er}^{hat}’)

xlabel(’time’)

subplot(2,1,2) %C_cyt_hat

plot(T,Y(:,(NumStates+1)),’ro-’);

ylabel(’C_{cyt}^{hat}’)

xlabel(’time’)

end

%Calculate and Record Scores

Score_time = TimeStats(Y,NumStates,n_open_by_state,NumChannels);

MaxScore(loop,j) = max(Score_time);

Score(loop,j) = Score_time(end)

PI_States_ss = Y(end,1:NumStates);

C_cyt_hat_ss = Y(end,(NumStates+1));

C_er_hat_ss = Y(end,(NumStates+2));

%Convert from C_cyt_hat to C_cyt

gamma = n_open_by_state./NumChannels;

v_cyt2 = (gamma*vT_rel*vT_cyt)./(gamma*vT_rel + vT_cyt);
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v_er2 = (gamma*vT_rel*vT_er)./(gamma*vT_rel + vT_er);

a11 = 1 + LambdaD_cyt*sum(PI_States_ss*vT_cyt./(vT_cyt+v_er2));

a12 = LambdaD_cyt*sum(PI_States_ss.*v_er2./(vT_cyt + v_er2));

a21 = (LambdaD_er/lambda_er)*...

sum(PI_States_ss.*v_cyt2./(v_cyt2+vT_er));

a22 = 1 + (LambdaD_er/lambda_er)*...

sum(PI_States_ss*vT_er./(v_cyt2 + vT_er));

C_cyt_ss(loop,j) = (a22*C_cyt_hat_ss - a12*C_er_hat_ss)/...

(a11*a22 - a12*a21);

C_er_ss(loop,j) = (a11*C_er_hat_ss - a21*C_cyt_hat_ss)/...

(a11*a22 - a12*a21);

% Calculate PI vector for number of open channels and open

% probability of a single channel

% find states with i open channels, then calculate the total

% probability of i open channels

for i = 0:NumChannels

openstates = find(b(:,Cbin)==i);

PI_N_Open(1,i+1) = sum(Y(end,openstates));

end

ExpectedOpen(loop,j) = sum(PI_States_ss.*n_open_by_state)

Fo(loop,j) = ExpectedOpen(loop,j)/NumChannels

Po(loop,j)= (k12pa*(C_cyt_ss(loop,j)^eta))/...

(k12pa*(C_cyt_ss(loop,j)^eta) + k21m)

%Calculate Spark Duration

if (Score(loop,j) < .2)

Duration(loop,j)=0

else

calcdist = 1;

x = linspace(0,1,1000);

[EPD,varPD,f] = matrixAnalyticPuffStats(Q,PI_States_ss,b,...

Cbin,kappa,calcdist,x);

Duration(loop,j) = EPD

DurDistribution(loop,:,j)=f;

[mu,sigma] = meanstdfromdist(x,f)

CV(loop,j) = sigma/mu

end

end

%Redefine starting conditions for loop 2

pi0 = [zeros(1,NumStates)];
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pi0(find(b(:,Cbin)==NumChannels)) = 1; % All channels open

end

save(FileName);

concentration equations

% Defines the ODEs to be called by parameter_scan

function dY = concentration_equations(t,Y,P)

global Q

%parameters

KpN = P(:,:,1);

KmN = P(:,:,2);

p = P(:,:,3);

NumChannels = p(1);

NumStates = p(2);

vT_rel = p(3);

vT_cyt = p(4);

vT_er = p(5);

eta = p(6);

v_leak = p(7);

v_pump = p(8);

k_pump = p(9);

lambda_er = p(10);

LambdaD_cyt = p(11);

LambdaD_er = p(12);

Cbin = p(13); %open (Ca releasing) site

CellType = p(14); % 0=closed, 1=open

C_cyt_ss_det = p(15);

k_out = p(16);

n_open_by_state = p(17:NumStates+16);

% variables

PI = Y(1:NumStates)’;

C_cyt_hat = Y(NumStates+1);

C_er_hat = Y(NumStates+2);

% equations and values defined
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gamma = n_open_by_state./NumChannels;

v_cyt2 = (gamma*vT_rel*vT_cyt)./(gamma*vT_rel + vT_cyt);

v_er2 = (gamma*vT_rel*vT_er)./(gamma*vT_rel + vT_er);

a11 = 1 + LambdaD_cyt*sum(PI*vT_cyt./(vT_cyt+v_er2));

a12 = LambdaD_cyt*sum(PI.*v_er2./(vT_cyt + v_er2));

a21 = (LambdaD_er/lambda_er)*sum(PI.*v_cyt2./(v_cyt2+vT_er));

a22 = 1 + (LambdaD_er/lambda_er)*sum(PI*vT_er./(v_cyt2 + vT_er));

C_cyt = (a22*C_cyt_hat - a12*C_er_hat)/(a11*a22 - a12*a21);

C_er = (a11*C_er_hat - a21*C_cyt_hat)/(a11*a22 - a12*a21);

Cdss_cyt = vT_cyt*C_cyt./(vT_cyt+v_er2) + v_er2*C_er./(vT_cyt + v_er2);

Cdss_er = v_cyt2*C_cyt./(v_cyt2+vT_er) + vT_er*C_er./(v_cyt2 + vT_er);

%Q-Matrix formation

Cp1 = Cdss_cyt.^eta;

Cm1 = ones(1,NumStates);

CpN = diag(Cp1);

CmN = diag(Cm1);

CaKpN = CpN*KpN;

CaKmN = CmN*KmN;

CaKpN = CaKpN - diag(sum(CaKpN,2));

CaKmN = CaKmN - diag(sum(CaKmN,2));

Q = CaKpN + CaKmN;

J_leak = v_leak*(C_er - C_cyt);

J_pump = v_pump*(C_cyt^2)/((k_pump^2)+(C_cyt^2));

JT_rel = sum(PI.*gamma*vT_rel.*(Cdss_er-Cdss_cyt));

if (CellType == 1)

J_out = k_out*C_cyt;

J_in = k_out*C_cyt_ss_det;

end

%dif eqs defined
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dY(1:NumStates) = PI*Q; %dPI/dt

if (CellType == 0)

dY(NumStates +1) = JT_rel + J_leak - J_pump; %dC_cyt_hat/dt

else

dY(NumStates +1) = JT_rel + J_leak - J_pump + J_in - J_out;

end

dY(NumStates +2) = (1/lambda_er)*(-JT_rel - J_leak + J_pump); %dC_er_hat/dt

dY = dY’;

ballbin

% BALLBIN returns all the possible ways B that NBALL indistinguishable

% balls can be placed in NBIN bins. The NBIN cols of B represent bins;

% the rows of B are the ways.

function [ b ] = ballbin(nball,nbin)

if nbin == 1

b = nball;

return

end

if nball == 0

b = zeros(1,nbin);

return

end

b = [];

for bl = nball:-1:0

[ br ] = ballbin(nball-bl,nbin-1);

b = [ b; bl*ones(size(br,1),1) br ];

end

b = sparse(b);

return
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expandedKmeanfield

% Generates mean field KN matrix with zeros on diagonals from a single

% channel model K1 matrix and using QBB, the output of qballbin2.

function [ KN ] = expandedKmeanfield(K1,Qbb,b)

[ M, dummy ] = size(K1);

[ a ] = find(Qbb ~= 0);

[ i, j ] = find(Qbb ~= 0);

fr = sub2ind(size(Qbb),i,j);

to = sub2ind(size(Qbb),j,i);

KN = zeros(size(Qbb));

KN(a)=b(sub2ind(size(b),i,Qbb(fr))).*K1(sub2ind(size(K1),Qbb(fr),Qbb(to)));

return

matrixAnalyticPuffStats

% Q - infinitesimal generator matrix

% stateSpace - state space result from ballbin

% iOpen - index of open state

% kappa - number of open channels at puff start

function [EPD,varPD,f] = matrixAnalyticPuffStats(Q,poeq,stateSpace,...

iOpen,kappa,calcdist,x)

O0 = find(stateSpace(:,iOpen)==0);

O1 = find(stateSpace(:,iOpen)==1);

Ok = find(stateSpace(:,iOpen)==kappa);

Os = find(stateSpace(:,iOpen)~=0 & stateSpace(:,iOpen)~=1 & ...

stateSpace(:,iOpen)~=kappa);

N0 = length(O0);

N1 = length(O1);

Nk = length(Ok);

Ns = length(Os);
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Z0 = zeros(1,N0);

Z1 = zeros(1,N1);

Zk = zeros(1,Nk);

Zs = zeros(1,Ns);

newStateSpace = [O0; O1; Ok; Os];

Qnew = Q(:,newStateSpace); % rearrange columns

Qnew = Qnew(newStateSpace,:); % rearrange rows

a = [1 N0+1 N0+N1+1 N0+N1+Nk+1];

b = [N0 N0+N1 N0+N1+Nk N0+N1+Nk+Ns];

Q00 = Qnew(a(1):b(1),a(1):b(1));

Q01 = Qnew(a(1):b(1),a(2):b(2));

Q0k = Qnew(a(1):b(1),a(3):b(3));

Q0s = Qnew(a(1):b(1),a(4):b(4));

Q10 = Qnew(a(2):b(2),a(1):b(1));

Q11 = Qnew(a(2):b(2),a(2):b(2));

Q1k = Qnew(a(2):b(2),a(3):b(3));

Q1s = Qnew(a(2):b(2),a(4):b(4));

Qk0 = Qnew(a(3):b(3),a(1):b(1));

Qk1 = Qnew(a(3):b(3),a(2):b(2));

Qkk = Qnew(a(3):b(3),a(3):b(3));

Qks = Qnew(a(3):b(3),a(4):b(4));

Qs0 = Qnew(a(4):b(4),a(1):b(1));

Qs1 = Qnew(a(4):b(4),a(2):b(2));

Qsk = Qnew(a(4):b(4),a(3):b(3));

Qss = Qnew(a(4):b(4),a(4):b(4));

G01 = poeq(O0)*Q01;

QTTPS = [Q11 Q1s; Qs1 Qss];

QTAPS = [Q10 Q1k; Qs0 Qsk];

G00G0k = - [G01 Zs]*inv(QTTPS)*QTAPS;

G00 = G00G0k(1:N0);

G0k = G00G0k(N0+1:N0+Nk);

phik = G0k/sum(G0k);

phiPD = [Z1 phik Zs];

QTTPD = [Q11 Q1k Q1s; Qk1 Qkk Qks; Qs1 Qsk Qss];
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QTAPD = [Q10; Qk0; Qs0];

invQTTPD = inv(QTTPD);

NT = N1+Nk+Ns;

unos = ones(NT,1);

EPD = -sum(phiPD*invQTTPD);

varPD = phiPD*(-invQTTPD)*(2*eye(NT) - unos*phiPD)*(-invQTTPD)*unos;

if calcdist == 1

t = sum(QTTPD,2);

f = zeros(size(x));

for ii = 1:length(x)

xnow = x(ii);

f(ii) = - phiPD * (expm(xnow*QTTPD)) * t;

end

else

f = [];

end

return

meanstdfromdist

% Calculates the mean and standard deviation from a distribution.

function [mu,sigma] = meanstdfromdist(t,f)

shoudbeone = trapz(t,f);

mu = trapz(t,t.*f);

sm = trapz(t,t.^2.*f);

sigma = sqrt(sm-mu^2);

return

qballbin2

% QBALLBIN2 returns the SIZE(B,1) by SIZE(B,1) matrix Q(I,J) that
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% (when nonzero) indicates the transitions required to make a B(I,:)

% to B(J,:) state change. Q(I,J) is the bin that lost a ball. Q(J,I)

% is the bin that gained a ball.

function [ q ] = qballbin2(b)

[ nconfig, nbin ] = size(b);

nnzcolb = length(b(:,1)); % nnz in a column of b (same for each col)

nnzq = nbin*(nbin-1)*nnzcolb; % nnz ultimately in q

q = spalloc(nconfig,nconfig,nnzq);

for i = 1:nbin

ai = find(b(:,i)>0);

for j = 1:nbin

if i~=j

aj = find(b(:,j)>0);

q = q+sparse(ai,aj,i,nconfig,nconfig,nnzcolb);

end

end

end

return

TimeStats

% Calculates the Score as a function of time

function [ Score_time ] = TimeStats(Y, Numstates, n_open_by_state, NumChannels)

PI_time = Y(:,1:Numstates);

[DimY, DimN] = size(PI_time);

ScaleY = ones(DimY,1);

ScaleN = ones(1,DimN);

X = ScaleY*n_open_by_state;

E_time = sum((PI_time.*X),2);

E_time_expanded = E_time*ScaleN;

Var_time = sum((PI_time.*((X-E_time_expanded).^2)),2);

Score_time = (1/NumChannels)*(Var_time./E_time);
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figures

% Prints results of a parameter scan generated using "parameter_scan.m"

% Plot C_er_ss vs k12p

subplot(2,2,1)

loglog((a*k12p),C_er_ss(1,:),’ko-’);

ylabel(’c_{er}^{ss} ({\mu}M)’, ’FontSize’,15);

xlabel(’k_{12}^{+} ({\mu}M^{-\eta}s^{-1})’, ’FontSize’,15);

hold on

loglog((a*k12p),C_er_ss(2,:),’ks-’);

hold off

xlim([1e-3 1e3])

box off

set(gca,’fontsize’,20)

set(gca,’Tickdir’,’out’)

set(gca,’XTick’,[1e-3 1e0 1e3])

annotation(’arrow’,[.305 .305], [.915 .865]);

annotation(’arrow’,[.35 .35], [.885 .835]);

set(gcf,’DefaulttextUnits’,’normalized’)

set(gcf,’DefaulttextFontSize’,30)

text(-.4,1.1,’A’)

% Plot Fraction of Open Channels vs k12p

subplot(2,2,2)

semilogx((a*k12p),Fo(1,:),’ko-’);

ylabel(’F_{O}’, ’FontSize’,15);

xlabel(’k_{12}^{+} ({\mu}M^{-\eta}s^{-1})’, ’FontSize’,15);

hold on

semilogx((a*k12p),Fo(2,:),’ks-’);

hold off

xlim([1e-3 1e3])

box off

set(gca,’fontsize’,20)

set(gca,’Tickdir’,’out’)

set(gca,’XTick’,[1e-3 1e0 1e3])

annotation(’arrow’,[.74 .74], [.69 .64]);

annotation(’arrow’,[.785 .785], [.7 .65]);

text(-.4,1.1,’B’)

% Plot Score vs k12p

subplot(2,2,3)

semilogx((a*k12p),Score(1,:),’ko-’);

ylabel(’Score’, ’FontSize’,15);

xlabel(’k_{12}^{+} ({\mu}M^{-\eta}s^{-1})’, ’FontSize’,15);
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hold on

semilogx((a*k12p),Score(2,:),’ks-’);

hold off

xlim([1e-3 1e3])

ylim([0 max(Score(1,:))+.1])

box off

set(gca,’fontsize’,20)

set(gca,’Tickdir’,’out’)

set(gca,’XTick’,[1e-3 1e0 1e3])

annotation(’arrow’,[.305 .305], [.47 .42]);

annotation(’arrow’,[.35 .35], [.44 .39]);

text(-.4,1.1,’C’)

% Plot Expected Duration vs k12p

none = find(Duration==0);

Duration(none) = NaN;

subplot(2,2,4)

semilogx((a*k12p),Duration(1,:),’ko-’);

ylabel(’Duration (s)’, ’FontSize’,15);

xlabel(’k_{12}^{+} ({\mu}M^{-\eta}s^{-1})’, ’FontSize’,15);

hold on

semilogx((a*k12p),Duration(2,:),’ks-’);

hold off

xlim([1e-3 1e3])

box off

set(gca,’fontsize’,20)

set(gca,’Tickdir’,’out’)

set(gca,’XTick’,[1e-3 1e0 1e3])

annotation(’arrow’,[.74 .74], [.485 .435]);

annotation(’arrow’,[.785 .785], [.4 .35]);

text(-.4,1.1,’D’)

print([’Summary’ ],’-deps2’)
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