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Abstract

This thesis sets out to create a model with which we can further examine res-
onance scattering. Many of the techniques used are well established within the com-
munity of Lattice Quantum Chromodynamics and other field theories. However, the
value of the thesis is in being able to build them for a model system. We begin by
discussing the theory behind the project, namely the phenomenon of resonance scat-
tering. We then discuss some of the details of our simulation. We then discuss the
manner in which the model relates to physical realities, and finally discuss some of
our results and conclusion.



Chapter 1

Introduction

While Quantum Chromodynamics can calculate the masses of stable hadrons,
effectively modeling the nature of unstable particles has always been a challenge.
For instance, the ρ meson, which has a mean lifetime of 4.4 × 10−24 s, appears as
a resonance in the elastic ππ → ππ scattering in the angular momentum l = 1 and
isospin I = 1 channel. Due to their unstable nature, these particles themselves are
hard to study, but by studying the interactions (ππ → ππ) we can glean information
about its resonances (ρ).[6]

This paper establishes a computational method of modeling such a decay using
a statistical system, the Ising Model. The ideas are not new : this particular model
has been used in the past to study the exact same structure. However, we explore
the use of new update algorithms so as to achieve more efficiency in the computation.
Moreover, emulating previous work like this provides a mechanism to check our work
along the way.
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Chapter 2

Scattering and the Scattering
Phase Shift

In this section, I will discuss the effects of finite volume scattering with a simple
example. Consider a particle with wavefunction ϕ in torus of circumference 2L, with
a potential of V (x) = V0δ (x). This can be considered a one-dimensional problem with
the restriction that ϕ (L) = ϕ (−L). Upon further inspection, we can deduce several
other properties of this wavefunction. Firstly, because V (x) is even, we can take the

wavefunction to be even. This implies that its derivative,
dϕ

dx
must be odd. By the

continuity of the wavefunction and its derivative, we see that at
dϕ

dx

∣∣∣∣
(L)

=
dϕ

dx

∣∣∣∣
(−L)

= 0

Finally, we note that because of the infinite potential at x = 0, that the derivative
need not be continuous there.

Taking all of these considerations about the qualities of the wave function into
consideration, we write down the Schrödinger equation for this problem:(

− ~2

2m

d2

dx2
+ V0δ (x)

)
ϕ = Eϕ (2.1)

Aside from Dirac Delta, this is the equation for a free particle. As an ansatz, we
suggest that the solution to this equation is

ϕ (x) = eik|x| + e−ik|x|+2iδl . (2.2)

We arrived at this result by taking the solution for a free particle, and modifying it
to meet our stipulations. The substitution of x→ |x| covers our symmetry condition,
while the phase shift 2δl on the second term is added because of potential difficulties
resolving the boundary conditions.

The energy eigenvalues are easy to evaluate: we simply take the second derivative
of ϕ at any point x 6= 0, in order to solve the Schrödinger equation for E. When

calculated, they are clearly
k2~2

2m
We now turn our attention to solving for δl.

2



By our boundary conditions, we know
dϕ

dx

∣∣∣∣
L

= ik
(
eikL − e−ikL+2iδl

)
= 0. This

resolves to eikL = e−ikL+2iδl , or δl = kL+ nπ for integer n.

We can also integrate the Schrödinger equation, such that lim
ε→0

∫ ε

−ε

[
E +

~2

2m

d2

dx2

]
ϕdx =∫ ε

−ε
V0δ (x)ϕdx. After some rather trivial integration, we arrive at the result [5]

V0m

~2k
= tan (kL) (2.3)

Much like a finite potential well, we find a transcendental equation relates to us the
bound states. However, unlike a finite potential well, we infinitely many bound states,
as the two functions intersect infinitely many times. Furthermore, as k increases, the
left hand side approaches 0, and the quantization condition becomes 0 = tan (kL),

which has solutions kn =
nπ

L
. Thus, for large n, kn ≈

nπ

L
. As a final note of curiosity,

we note that for large L, the spacing between momentum levels approaches 0. Thus,

we see that for small L and large n, the energy levels approach En =
~2n2π2

2mL2
, the

energy levels of the infinite square well. For large L and small n, we see that the energy
levels are very close to each other, and approach the continuous energy spectrum of
a free particle.

Figure 2.1: A graph showing the roots of the quantization condition. Note how quickly

the blue curve

(
V0m

~2k

)
approaches 0, and intersects with the red curve (tan (kL)) in

evenly spaced intervals of
nπ

L
. Each point of intersection is (k, δl (k))
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This section has demonstrated the effect that finite volumes (in this case, lengths)
can have on scattering processes. More importantly, the calculation of δl, the scat-
tering phase shift, can give insight into several different key aspects of the scattering
process.
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Chapter 3

The Simulation

3.1 The Ising Model

The Ising Model is a lattice system, which has been extensively used to describe
magnetism, among other phenomena. The model creates a lattice in N dimensions,
at each point of which is a quantity called the Spin. According to the model, the
spin at a location can only be either pointing up (with an associated value of +1), or
pointing down (with an associated value of -1). We define the action of a single Ising
Field to be [2]

S = −κ
∑
~x,µ̂

φ~xφ~x+µ̂ (3.1)

where κ is a coupling parameter, restricted in our case to be positive, ~x is an N-
dimensional position on the lattice, µ̂ is a unit vector pointing either positively or
negatively in any direction (µ̂ ∈ {±x̂1, · · · ± x̂N}) and φ~x is the Spin at the position
~x. Each term of the sum is either positive if the two neighboring spins are aligned
(φ~x = φ~x+µ̂), or negative if the two spins are anti-aligned (φ~x = −φ~x+µ̂). Thus, the
action tends to a more negative number when spins are mostly aligned, towards a
more positive number when the spins are mostly anti-aligned, and towards 0 when
the spins are randomly distributed between the two.

We can also associate an energy with each spin as the sum of each nearest neighbor
of that spin: that is,[2]

E (φ~x) = −2κ
∑
µ̂

φ~x+µ̂ (3.2)

The factor of two is motivated by the fact that, strictly speaking, φ~x occurs in the
terms φ~xφ~x+µ̂ and φ~x−µ̂φ~x; however, because we sum over positive and negative unit
vectors µ̂, these two terms are identical. In terms of thermodynamics, we can con-
struct a Boltzmann factor around this energy, and establish that the probability of a
particular spin being oriented upwards is

P (φ~x = 1) =
e−E(φ~x)

eE(φ~x) + e−E(φ~x)
(3.3)
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An interesting feature of the Ising Model (when N > 1) is a transition from an
ordered phase to a disordered phase.[2] That is, there is a stable “Thermalized” state
of the lattice, which occurs when the lattice reaches thermal equilibrium with itself.
In which the expected value of the average spin (the Magnetization) is constant, no
matter how many more updates are performed on the lattice. For low enough values
of the coupling constant, the magnetization thermalizes to approximately 0 (within
statistical error). After a critical coupling constant, though, the lattice thermalizes to
non-zero values. In fact, at the critical value of κ, the average spin (the Magnetization
of the Lattice) undergoes a second-order phase transition. (Fig. 3.1)

Figure 3.1: A plot of the magnetization of a 4-Dimensional lattice for varying coupling
constants κ. There exists a second order phase transition at approximately κ = 0.735.
Around this point, the curve seems to smoothly curve upwards instead of sharply
increase as is the case of second order phase transisions - this is due to finite volume
corrections. As the volume increases, the phase transition becomes more sharp.
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3.2 Coupled Ising Fields

For the purposes of our experiment, we created two separate Ising fields (φ and ρ),
coupled to each other. We defined the action to be [6]

S = g
∑
~x,µ̂

ρ~xφ~xφ~x+µ̂ − κρ
∑
~x,µ̂

ρ~xρ~x+µ̂ − κφ
∑
~x,µ̂

φ~xφ~x+µ̂ (3.4)

where, as before, κ is a coupling constant for within one field (κφ for the φ field, and
κρ for the ρ field), while g is a coupling constant which governs the interaction each
field has with each other. Note that in the case g = 0, the action is merely the sum
of the action for two non-interacting Ising Fields.

As before, we can calculate the energy at each point of the fields, both the φ and
the ρ. However, the consideration of the energy is slightly more complicated now due
to the interaction between the two fields. We define the energy to be the sum of all
terms in which that spin is involved divided by the value of the spin. That is,

E (φ~x) =
1

φ~x

(
g
∑
µ̂

ρ~xφ~xφ~x+µ̂ + g
∑
µ̂

ρ~x−µ̂φ~x−µ̂φ~x − 2κφ
∑
µ̂

φ~xφ~x+µ̂

)
= (3.5)

g
∑
µ̂

φ~x+µ̂ (ρ~x + ρ~x+µ̂)− 2κφ
∑
µ̂

φ~x+µ̂

E (ρ~x) =
1

ρ~x

(
g
∑
µ̂

ρ~xφ~xφ~x+µ̂ − 2κρ
∑
µ̂

ρ~xρ~x+µ̂

)
= g

∑
µ̂

φ~xφ~x+µ̂−2κρ
∑
µ̂

ρ~x+µ̂ (3.6)

As before, phase transitions still occur, but they are clearly dependent on all three
parameters, g, κφ, and κρ.

3.3 Update Algorithm

In the past, other Ising Models have used Cluster Algorithms[6, 5] or Metropolis
Algorithms to update their fields, as it was deemed computationally more efficient.
Generally speaking, the Metropolis algorithm is slow and inefficient for a models
such as this one. The cluster algorithm has been used extensively, and is, on normal
machines, the best that can be done. With recent advances in parallel computing and
other technological advances, however, we have adopted a heat-bath algorithm. We
calculate the quantity P (3.3) at every point on the lattice, choose a random number
r between 0 and 1, and if r > P , then we se the spin to +1. If r < P , we set it to
−1. We have found it to run relatively quickly, and uses very little computer-time.
This algorithm exploits the power of parallel computing, and we expect there to be
a significant increase in efficiency with it. Our Monte Carlo runs were done on the
Cyclades cluster at William and Mary. The use of the QDP++ library developed by
Jefferson Lab was instrumental to handling of the updates.
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At every update time, perform two sweeps on a checkerboard pattern (that is,
if any given spin is being updated, then all of its nearest neighbors are not being
updated. Similarly, if any spin is not being updated, then all of its nearest neighbors
are.) Because most quantities in the Ising Model depend solely on nearest neighbor
interactions, this sweep pattern ensures that each update updates the entire field in
accordance with the model.

It is important that we create statistically independent configurations before we
begin to measure data. Because the lattice begins in a state that has nothing to
do with the update algorithm, and thus the physics of the situation, we need a
way to ensure that the lattice has successfully evolved away from initial condition,
and has reached thermal equilibrium. This state (the thermalized state) happens
relatively quickly, although one way to check is to watch the standard deviation of
the magnetization of each field. For low values of Monte Carlo time, the standard
deviation is typically high, as the values are changing sporadically with each passing
update. As time passes, however, the fields approach a configuration independent of
their starting states, the standard deviation levels off to a constant value, reflecting
that the change from one configuration to the next is typically the same, indicating
that a thermalized state has been reached.

It is important to know when the system has evolved from one state into another
so that we can correlate independent states with. If we did not know how long this
took, we would be essentially analyzing the same data multiple times over, and losing
time on analysis without gaining anything in terms of statistics. We compute the
auto-correlation of a field φ, given by

A (τ) =

N−τ∑
i=0

(φi − 〈φ〉) (φi+τ − 〈φ〉)(
N∑
i=0

(φi − 〈φ〉)

)2 (3.7)

where φi is the magnetization of the lattice at monte carlo time i, and N is a suffi-
ciently large number of configurations. This function decays exponentially, and when
A (τ) ≈ 0 (within statistical noise), then we know that configurations τ apart are
statistically independent.

3.4 Simulation Specifics

We use two coupled Ising fields to describe two separate particles, named φ and ρ for
no substantial reason, which interact in a resonant reaction (that is, φφ→ ρ→ φφ).
We construct an Ising field in four dimensions: three spatial dimensions, and one
Wick-rotated time dimension. That is, the dimension we call t in our simulations
actually represents −it. In this way, our t stands on equal footing with the other

8



Figure 3.2: Plots showing various analyses of simulation data, where each color rep-
resents a different value of g. The first picture shows the magnetization as a function
of simulation time. Note that relatively quickly, within the first 100s of updates, the
magnetization reaches its steady state. It approaches that value so quickly that the
standard deviation, plotted in the second picture, which only uses 2000 data points
at a time, looks discontinuous at thermalization. The Autocorrelations show how, for
differing values of g(red: g= 0.004, green : g=0.008, blue: g= 0.010, violet, g=0.016),
statistically independent configurations are further spaced apart.
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Euclidean dimensions, and a four dimensional model as described is justified. The
main difference this makes in terms of any substantial results is that several key
calculations turn out to be sums of exponentials: in actual space, they are oscillatory
functions, with frequencies related to the decay widths we calculate. The dimension
we designate to be time is, in a sense, arbitrary: we could just as easily do all of
our analysis in the z direction instead of in the t direction. However, to distinguish
the temporal dimension from the spatial ones, as well as to have enough temporal
length to extract good exponential fits, we construct lattices that have dimensions
n× n× 2n, giving the temporal dimension twice the length of all the spatial ones.

Though we calculate the Ising field at every point (x, y, z, t) on the grid, the only
data we record at any given update is the spatial average of the spins on any given
timeslice.

The action described in eq. 3.4 was not chosen completely arbitrarily. It is chosen
to resemble two interacting fields as given in Quantum Chromodynamics, particularly
the φ4 theory, defined by the action[6]

S =

∫
d4x

(
1

2
∂µφ∂µφ+

1

2
m2
φ,0φ

2 +
λφ,0
4!

φ4 +
1

2
∂µρ∂µρ+

1

2
m2
ρ,0ρ

2 +
λρ,0
4!
ρ4 +

g0

2
ρφ2

)
(3.8)

where φ, ρ are the fields and particles in question, mφ,0,mρ,0 are the groundstate
masses of the particles, λφ,0, λρ,0 are scaling constants, and g0 is a coupling constant
which defines the strength of the interaction between the ρ and φφ states. In com-
paring eq. 3.4 with eq. 3.8, we can see a relationship between the mass parameters
and the κ parameters, as well as a correlation between g0 and g. Thus, we can expect
that the κ parameters be related to the masses of the particles, while the g parameter
dictates how strongly the two interact: in both cases, the presence of one ρ and two φ
(whether the value for φ be squared or taken from two different points on the lattice)
indicates that the ρ particle can decay into two φ’s. This shows that eq. 3.4 is a
discretized version of 3.8, adapted for the ising model.

10



Figure 3.3: These plots show the masses of the φ (the red lines) and ρ (the green lines).
particles as functions of the coupling constants κφ and κρ, and g. Respectively. Un-
less otherwise being varied, the parameters are κφ = 0.07325, κρ = 0.0718, g = 0.008.
Note that in the κρ plot, the ρ reaches a maximum around 0.0718, and decreases
monotonically outwards from that point, while the φ mass remains constant. In the
φ plot, note that the φ mass increases as a function of κφ. Both of these reflect that
there is a critical value of the κ parameter, which creates the maximum possible mass:
in the case of κρ, it is approximately 0.07184, and for κφ, it is greater than 0.0738
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Chapter 4

Data Analysis

4.1 Two-Point Function

The two-point function is used to examine how similar a spin configuration is from
one time-slice to another. This is useful to us because it answers the question of if
one particular spin is flipped, what kind of a “spin wave” will propagate in the t
direction on the lattice. To construct the two-point function mathematically, we use
the formula[6]

C (t) =< (M(t)− 〈M(t)〉) (M(0)− 〈M(0)〉) > (4.1)

Upon analyzing the two-point function, we notice that it takes the form of an
exponential decay with time. Such a result is expected, as the two-point function
also takes the form[6]

C (t) =
∑
n

Ane
−Ent (4.2)

where An are amplitudes which depend on the energy levels, and En are the energy
levels themselves. Ideally, if we could fit the two-point function perfectly, we could
extract all of the energy levels of this system to exquisite detail. Unfortunately, this
is not possible.

Equation 4.2 is essentially a correlation amplitude[7]. The correlation funcion
represents a transition amplitude : that is, the probability that a particle will remain
in a given state after a given amount of time. According to Sakurai, we find that the
propagator C (t) is related to the Hamiltonian of the system by[7]

C (t) = 〈α| e−
i
~ Ĥt |α〉 (4.3)

Where H is the Hamiltonian operator, and α is a linear combination of energy eigen-

states

(
|α〉 =

∑
a′

ca′ |a′〉

)
. This can be reduced, in Minkowski space, to be [7]

C (t) =
∑
a′

|ca′ |2 exp

(
−iEa′t

~

)
(4.4)

12



After Wick-rotating the time from t to it, and applying fundamental units (~ ≡ 1),
we arrive at equation 4.2, as expected.

Figure 4.1: This figure shows a good two-point function on a logarithmic scale. Note
that, until approximately t = 10, the data points fall into straight diagonal lines -
this show a clean signal of e−mt, where mis the slope of this line, which is the best
fit we can make. The region where the plot is disconnected is the region in which
the two-point function is 0 within statistical error, and crossed into negatives. The
abnormal shape of this graph is a product of periodic boundary conditions : Here,
t = 30 is just the same as t = 2 : when running fitting programs, we account for this
by trying to fit a function of the form e−mt + e−m(tmax−t)

Making the ansatz that the ground state energy E0 (corresponding to ~p = 0) is the
smallest of these energies, and thus contributing the most significantly at large times,
we can assume that all other energy levels contribute negligibly, fit the two point
function at long times, and extract the masses out of two-point function. However,
the signal is often clouded by the other energy levels, and hence, a simple two-point
function on its own can only give a rough estimate of the ground state energy, and
no insight into the other energy levels.

4.2 Momenta and the Fourier Transform

The quantization condition established on the lattice requires that all momenta ~p
take the form

~p =
2π

L
~n, ~n ∈ Z3 (4.5)

13



We can use this information to apply a Fourier Transform to the spins of the both
the φ and the ρ Ising fields according to[6]

φ̃~x (~p, t) =
∑
~x

ei(~p·~x)φ (~x, t) (4.6)

We know, from special relativity, that the energy states of the φφ that we have placed
in this box are

En = 2
√
m2
φ + p2

n (4.7)

where mφ is the mass of the φ particle, and pn is given in equation 4.5. The factor
of 2 arises from the fact that there are two interacting φ particles bouncing around
in the box, each with opposite momenta (because there is 0 net momentum), so they
each have the same value of p2

n.
From here, as before, we can take the fourier transform of just a timeslice, by

averaging over all ~x. Because we care so frequently about the fields on just one
timeslice at a time, we often lose track of the true nature of the spins on that timeslice.
For instance, we may be able to extrapolate how many spins are pointing up and
pointing down, but where are they in relation to each other? How are they arranged?
The Fourier Transform allows us to gain better insight into the layout of such a
system by creating an explicit dependence of x in our observable ; in theory, using
information from all L3 possible Fourier Transforms could uniquely determine the
configuration of the lattice.

More importantly, the Fourier Transform allows us to shift the φs into a frame in
which they are moving. This allows us to study more general forms of decay, though
we must stay in the zero-momentum center of mass frame. This also allows us to
see more clearly the entire energy spectrum of the φφ part of the interaction, which
can give us good insight into the energy spectrum of the ρ particle. Because we are
considering only the center of mass frame, the ρ will always have no momentum, and
this method of Fourier Transform is invalid. However, if we examine the energy levels
of the φ as a function of length, we can expect to see a phenomenon called “Avoided
Energy Level Crossing” where in the energy levels of φ decrease exponentially as a
function of L, except to plateau at energy levels of the ρ. This point represents the
case of resonance that we have been expecting to study (see fig 4.2).

4.3 Four-Point Functions and the Generalized Eigen-

value Problem

In order to analyze the energy levels taken from the fourier transformed lattice, we
need to construct a four point function which connects the possible states of the
interaction : either two φs with equal and opposite momenta or a single ρ with 0
momentum. We construct the function[6]

Cij (t) =
〈(
φ̃ (~pi, t) φ̃ (−~pi, t)− < φ̃ (~pi, t) φ̃ (−~pi, t) >

)
· (4.8)
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Figure 4.2: A figure taken from the Rommukainen and Gottlieb[6] paper on the same
topic plotting energy versus length. Notice how the second energy level is decaying,
plateauing, and then decaying again, right when the third level starts to plateau. The
decaying energy levels fall as, approximately, En = 2

√
m2 + p2

n, the non-interacting
energy levels. The value where the second and third energies represents a bound state
of sorts, corresponding to the creation of a resonant particle.

(
φ̃ (~pj, 0) φ̃ (−~pj, 0)− < φ̃ (~pj, 0) φ̃ (−~pj, 0) >

)〉
where the momenta ~pi have all been ordered in some arbitrary order, for the case of
φs elastically scattering. If we want to include a ρ, we would remove one term and
replace it with ρ̃ (0, t) or ρ̃ (0, 0) as necessary. This matrix is, in the infinite statistics
limit, real and symmetric.

To extract energy levels from this four point function, we need to consider the
Generalized Eigenvalue problem, which is of the form

Au = λBu (4.9)

In our case, we choose A = C (t), B = C (t0), and u (t, t0) , λ (t; t0) to be arbitrary
functions which solve the equation. In some very lucky cases, the answer is almost
trivial: u and λ are the eivenvectors and eigenvalues of C−1 (t0)C (t). However, in
the case where C is singular at time t0, this solution is invalid. The problem is still
solvable in general though, especially if you make a few important assumptions

We can construct the correlation matrix C (t) as

C (t) =
∑
n

e−Ent |ψn〉 〈ψn| (4.10)

where |ψn〉i =
∑
i

〈0| Ôi |n〉, where |0〉 , |n〉 are Eigenstates of the Hamiltonian of
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our system, Ôi projects the ith momentum onto the state, and this is just the ith

component in some orthonormal basis. We now introduce the dual vectors |un〉 defined

by 〈un|ψm〉 = δnm. Then we see that C (t) |un〉 =

(∑
n′

e−En′ t |ψn′〉 〈ψn′|

)
|un〉 =

e−Ent |ψn〉. Thus, [1]

C (t0) |un〉 = e−Ent0 |ψn〉 = e−En(t0−t)e−Ent |ψn〉 = e−En(t0−t)C (t) |un〉 (4.11)

Thus, the generalized eigenvalues are e−En(t−t0), and the generalized eigenvectors
are |un〉. Using the same fitting techniques that we’ve used to extract masses out
of the two-point functions, we can extract these energy levels, and analyze them as
necessary.

We would need to have all L3 energy levels in order to properly get every eigenvalue
out of this matrix. However, because the matrix is symmetric, we can exploit a feature
of Hermitian matrices called eigenvalue interlacing. In a given N × N Hermitian
matrix H, there are N , real eigenvalues, which can be ordered λ1 ≤ λ2 ≤ · · · ≤ λN .
If we were to consider any N − 1×N − 1 principal submatrix of H (H ′), then again
there are N − 1 real eigenvalues which can be ordered λ′1 ≤ λ′2 ≤ λ′N−1. Eigenvalue
interlacing tells us that [4]

λ1 ≤ λ′1 ≤ λ2 ≤ λ′2 · · · ≤ λN−1 ≤ λ′N−1 ≤ λN (4.12)

It can further be shown that in our Correlation function matrix, low momenta
of the φφ state do not correlate highly to higher momenta. Thus, we can essentially
consider the “lower momentum state matrix” to be embedded in the entire matrix
C(t), with eigenvalues determined almost solely by this embedded matrix. This is of
course, not true, because in an N ′ × N ′ submatrix of an N × N matrix, the lower
few may be uniquely determined by the N ′×N ′ matrix, but state N ′ will clearly not
be, as it is relatively strongly correlated to states outside of the matrix. Combining
the notions of interlacing with this idea of embedded matrices, we can determine that
even if there are L3 energy states, we can get good signals on the first few, lowest
states without having to measure every higher fourier transform.

4.4 Code Specific Optimizations

We made several optimizations within the code that reflect a need to speed up com-
puter time and do not reflect important pieces of the theory. Firstly, because we are
working in a 0 momentum frame for the purposes of this work, we recognize that

φ̃ (~p, t) φ̃ (−~p, t) =

(∑
~x

ei(~x·~p)φ (x, t)

)(∑
~x

e−i(~x·~p)φ (x, t)

)
=
∣∣∣φ̃ (p, t)

∣∣∣ (4.13)

For this reason, we only fourier transformed half of the non-zero momenta, choosing
not to record the Fourier Transforms corresponding to negative momenta already
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checked., and never recorded the complex value of the of the fourier transform, but
only its absolute value. This reduced the run time of our program by approximately
half.

Secondly, in the analysis stage of our regime, we averaged over rotated momenta
(ie, (1, 0, 0) , (0, 1, 0) , (0, 0, 1) in the construction of our correlation matrix.This re-
duced our analysis time by approximately half, although in the future for larger
momenta spectrum, this optimization has the potential to reduce that time even fur-
ther. By making this average, we can maintain the reduction we would otherwise
have in statistics without having to construct a very large matrix with some rows /
columns that are very similar to each other.

Finally, after some problems with memory management in the C++ programs we
were using, we switched to Python scripts for most of our data retrieval and analysis.
Python was significantly faster (one script finished in less than 15 minutes what it
had taken the C++ program an entire day to do). A possible continuation of this
work could be to combine these two to interface with each other, as C++ is certainly
a more powerful language, or perhaps even fix some of memory management issues
that the C++ programs were having.
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Chapter 5

Results

5.1 Masses

Figure 3.4 shows some of the results we obtained for masses. The point of these plots
was to probe how the different parameters we used in our model (κφ, κρ, g) effected the
masses. For the most part, these signals were relatively clean - there were typically
only two strong exponentials that seemed to contribute to the decay of the two-point
function. Clearly, with more time spent on running the program and collecting data,
the one clear signal would prevail, and with higher statistics. However, as it stands,
the two contributions were typically very distinct and, and it was easy to tell which
was the correct signal. All these datasets come from a volume of length L = 16.
These three plots reveal interesting facts about how the model works. For instance,
in the plot of mass v. κρ, we can see that there is a maximum mass of the ρ particle
achieved at a value of κρ = 0.0718. This shows the importance of the phase transition
: We can expect the masses to be [3]

1

m0

∝ ξ ∝ 1

|κ− κc|ν
(5.1)

where κc is the κ value at which the phase transition occurs, ξ is the correlation
length, defined by equation 5.1, and ν is a critical exponent, dependent on the nature
of the system. Thus, we can expect that κρ = 0.0718 is very close to the critical κ
value and the point at which the phase transition occurs. We can also see that the
mass of the φ increases as a function of κφ monotonically on the interval we plotted.
This also fits into our model, and suggests that κc for the φ is outside of the range
we plotted.

Slightly disconcerting within these two plots is the effect of the mass whose pa-
rameter is not being changed. In plotting mass v. κρ, we see that the φ particle is
relatively constant, reflecting that κρ doesn’t effect the mass of φ much. However,
when we plot mass v. κφ, we see the ρ particle’s mass changing erratically, and not
even increasing or decreasing monotonically. The data seems to suggest that κφ is

18



significantly involved in the mass of ρ. To explore this some more, we want to inves-
tigate the one point at κφ = 0.0735 where ρ’s mass decreases, as well as investigate
some intermediary points on these plots.

Another thing I decided to check was how the mass of the particles was effected
by spatial length. The results here are slightly erratic (fig 5.1), suggesting that we
may need to re-examine the data. Part of the problem is that, though we ran the
simulation on lengths less than L = 14, there was no stable way to extract a good
exponential fit on these data sets. This is most likely due to “interactions around the
world”, in which the periodic boundary conditions of our lattice have too much of an
effect on each other, and lead to unreliable signals (fig 5.1).

5.2 Other Energy Levels

After finding a good fit for the mass, we then proceeded to turn our attention to
plotting the other energy levels. Figure 5.3 shows the results from those finds, which
were run with the parameters κφ = 0.07325, κρ = 0.0718, g = 0.008. We let each
lattice run for approximately 800 computer hours, resulting in about 5600 hours of
computer time being spent. However, because we could run the machine in parallel,
this took only 200 hours in actual time.

When we began to plot the energy levels, however, it became apparent that some-
thing had gone awry. figure 5.3 shows the non-interacting energy levels in black,
suggesting that the green data set (on the bottom) is the ground-state. What may
have happened, then, is that the blue dataset below that set is the ρ particle. Because
it is lighter than φφ (The green line corresponding to the ground state is, to accuracy
of 94% or higher (depending on the length) twice the value determined by fitting the
two-point function : the 6% margin of error is likely explainable by the interference
of higher order energy levels in equation 4.2), there is no chance that it can occur as
a resonance - in fact, it occurs in this simulation as a stable particle. Clearly, we need
to go back and choose other parameters (κφ, κρ, g) such that the ρ mass is greater
than twice the φ mass.
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Figure 5.1: Plots of the two masses as a function of length. The erratic behavior
of the ρ particle (green) as compared to the relatively constant mass of the φ (red)
suggests that this data should be re-evaluated.

Figure 5.2: This shows the two-point function for L = 12. Notice that even though
the error bars on every point are very small, suggesting that the data is “correct”, the
two-point function is too rounded at its bottom, and not flat enough to extract a good
exponential fit. Though it is harder to tell by inspection, it also seems that the decay
is also not exponential. The rounded nature of this graph has to do with “interactions
felt around the world” : That is, because of the periodic boundary conditions on time,
the signal is interfering with itself too much to get a good exponential fit.
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Figure 5.3: The non-interacting energy levels En = 2
√
m2
φ + p2

n are plotted in black,

corresponding to p2
n = 0, 1, 2, 3 from the bottom down. The energy levels are plotted

as functions of length. As you can see, several of the calculated energy levels match
very closely non-interacting energy levels, as would be expected. Here
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Chapter 6

Conclusion

As it stands, this project can have no actionable conclusion - that is to say, we cannot
say whether or not Also, we would have liked to explore other decay processes : as
the simulation stands now, only decays of the form φφ → ρ → φφ can be studied.
However, we could also study other structures where there is more than one decay
product, or other variations on the same idea.

The physical model aside, this project has pieced together, pretty much from the
ground up, a complicated interplay of C++ programs which run the simulation and
other scripts which then analyze the data to extract meaningful data from the simu-
lation. Careful thought has been put into optimizing not only the analysis portion of
the process for speed by means of using Python, but also into speeding up the simu-
lation itself. In this respect, future works include trying to implement an alternative
update mechanism, using a two-level algorithm, which will allow for greater statistics
to be achieved in shorter times.
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