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Abstract 
 

Avalanche models occur in a variety of physical processes, including the electron 
avalanches in “avalanche” detectors, which are commonly used to detect photons, electrons, or 
ions.  We are interested in modeling this avalanche process to understand the statistics of 
amplitudes in MALDI-TOF spectra.  MALDI-TOF mass spectrometry stands for matrix assisted-
laser desorption time-of-flight mass spectrometry.  During this process, proteins are accelerated by 
an electrostatic potential and identified when they cause an electron avalanche in the detector. The 
number of electrons at the end of the avalanche is recorded and a MALDI spectra is obtained for 
the sample.  We propose to model this electron avalanche, finding an equation that expresses the 
probability distribution that for m initial ions at the start of the avalanche, there are n electrons at 
the end. By understanding the avalanche dynamics of the detector, a better estimate of peak 
height, and therefore a more accurate protein distribution can be obtained from the MALDI spectra, 
even for small data sets. 
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1 Introduction and Motivation 

 Avalanche models occur in a variety of physical processes, from grains of rice being added 
to a pile to avalanches in a MALDI-TOF detector.  There are a variety of different equations that fit 
various avalanche processes.  The process I will be modeling is from MALDI-TOF (matrix-assisted 
laser desorption ionization-time of flight) spectra.  This spectrum is obtained from blood and tissue 
samples collected and prepared by research associates at Eastern Virginia Medical School.  The 
samples are then analyzed using a MALDI-TOF instrument at EVMS.  

 Mass spectrometry is used to determine the chemical composition, inferred from the 
charge-to-mass ratio, of a sample.  It has replaced chromatography, electrophoresis, and DNA 
sequencing because these methods work well for low thoroughput diagnostics only, or those where 
only small amounts of information can be gained from a sample.  They are also costly and 
insensitive7.    However, mass spectrometry is extremely rapid, can analyze data in a very short 
time period, and has sensitivities in the femtomolar, or 10-15 molar, range.  It has become especially 
promising in cancer diagnostics6.  Currently, the most reliable, sensitive, and widely available tests 
to detect cancer are protein-ligand assays, used to detect proteins in a sample, which require a 
single analyte, or one particular protein that is being examined, that has been authenticated in 
addition to a well-characterized, high-affinity antibody to detect the analyte.  Thus, such methods 
require a great deal of time and effort for only one sample.  Therefore, mass spectrometry has 
become the preferred method in proteomics research, including cancer detection7.   

MALDI-TOF is one of the most widely used mass spectrometry methods.  The advantages 
of MALDI is that it is easy to use, is very sensitive, can be used for heavy particles (>20,000 kDa), 
is able to determine sample components’ molecular mass values with extremely high accuracy and 
has a high tolerance to contaminants6.  A MALDI matrix is first deposited on the sample, in this 
case, blood or tissue, and allowed to crystallize.  The matrix is of low molecular weight to allow 
easy vaporization but large enough not to evaporate during sample preparation.  It is acidic and 
acts as a proton source to aid in ionization of the sample.  When mixed with the analyte, the matrix 
allows strong absorption in the UV light range.  It contains an organic solvent to allow the 
hydrophobic molecules to dissolve but is an aqueous solution to allow hydrophilic molecules in the 
sample to dissolve as well.  The mixture of matrix and analyte is then put onto a MALDI plate, a 
pre-made specifically designed surface for use with MALDI spectrometry, and the solvents 
vaporize, allowing the matrix to recrystallize along with the analyte molecules.  A laser is then fired 
at the matrix, heating the matrix, and causing it to desorb.  The matrix transforms the laser energy 
into excitation energy for the sample.  The matrix allows efficient energy transfer and spares the 
analyte molecules from excessive direct energy that could cause them to decompose into smaller 
particles.  Through collision processes during ionization, the proteins embedded in the sample 
become charged.  There is a desorption, in which atoms are ejected from a solid target, of analyte 
and matrix ions from the surface of the mixture and a resulting plume of ions2.   

The resulting ions are then accelerated by an electrostatic potential.  The velocity of the 
particle accelerated by the electric field of the analyzer depends on its charge to mass ratio (m/z).  
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where E is the energy of the particle, q is the charge of the particle, V is the electrostatic potential, 
m is the mass of the particle, and v is the velocity of the particle after it is accelerated.  The 
electromagnetic energy of the particle is equal to the kinetic energy, and used to derive the m/z 
ratio by manipulating the equation into the form 
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The m/z ratio is derived from the time it takes the particle to reach the detector.  The particles are 
detected when they cause an electron avalanche in the detector.  The detector is a microchannel 
plate detector, used because Time of Flight Mass Spec requires high temporal resolution.  The 
ions from the MALDI instrument first strike the converter, which converts these ions into electrons 
that then interact with two microchannel plates in a chevron configuration, which means they are in 
series with their channels directed in opposite directions1.   

 

Figure 1:  (a) A schematic diagram of a chevron detector.  (b) A photograph of a chevron detector6.  

The microchannel plates are a mechanism to amplify an initial electron event into an avalanche.  
Each plate, consisting of a two dimensional periodic array of very small glass capillaries fused 
together, is sliced into a thin plate.  An electron enters a channel and then emits another electron 
from the channel wall.  Secondary electrons knocked from the walls of the channels are then 
accelerated by an electric field due to an applied voltage.  The secondary electrons in turn continue 
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to cause new electrons to be emitted from the channel walls producing more secondary electrons.  
Thus an avalanche is created.  A readout device, in this case, a metal anode, is located at the end 
of the detector to detect the avalanche1.  The number of electrons at the end of the avalanche is 
recorded and a MALDI spectra is obtained for the sample based on each particle’s m/z ratio and 
relative abundance3. 

After correction for background noise, the spectra are then analyzed.  Each peak is 
normalized, based on calibration data.  There is an observed variability in the detector, proposed to 
be due to the avalanche dynamics.  The data shows a long tail at high amplitude and a hard zero 
at low amplitude, which yields an asymmetric distribution.  This irregularity can cause poor 
estimates of peak height for small sample sizes.  The avalanche dynamics studied are thought to 
affect quality control spectra.  These spectra are obtained from blood sera from several hundred 
individuals that are randomly selected and believed to be healthy.  The blood sera is pooled 
together and mixed completely.  Many spectra are obtained from the pooled sera, which should 
have identical spectra.  However, there are observed variations in the spectra.  This may be 
explained by shot to shot variations of the laser or the biochemistry on the MALDI plate.  Our 
hypothesis is that it is that the avalanche statistics, which produce a variable number of final 
electrons for each number of initial electrons, contributes to the observed variability in the acquired 
data5.  Through Matlab modeling of the avalanche dynamics in the detector, a thorough 
mathematical understanding of the avalanche process can be gained.  Through modeling and 
thoroughly understanding the avalanche process, better estimates of peak height can be obtained 
for small sample sizes.  Thus, the data obtained might be corrected in order to obtain a more 
accurate spectrum.  

2 Monte Carlo Simulation of Avalanches 

 The detector has 30 stages.  In each stage, an electron can be reabsorbed into the wall of 
the detector, creating 0 from 1, remain unchanged, or knock another electron from the walls of the 
detector, producing 2 from 1.  Each of these three options occurs with specific probabilities, 
denoted p0, p1, p2.  The detector outputs a gain of approximately 106 (i.e. 106 electrons at the end 
of the avalanche for every initial electron)4.  By writing a program that repeats for 30 stages with 
varying absorption and creation probabilities, from 0 to 0.8, with increments of 0.01, probabilities 
were chosen that yield a gain of 106.  A Matlab program was then written with a 10% probability of 
absorption, a 70% probability of creation, and a 20% chance that the electron remains unchanged.  
This gives a gain per stage of 1.6: given one electron, the expected number of electrons at the 
second stage is n’=0*p0+1*p1+2*p2=1.6.  The proper probabilities characteristic of the detector are 
unknown, but initial probabilities were chosen and will be used throughout the rest of the 
calculations.  Beginning with a specified number of electrons, the program randomly selects either -
1, 0, or 1 for each electron in each stage of the detector with the specified probabilities and sums 
the number of electrons at the end of each stage, for 30 stages.  Thus, the program outputs the 
number of electrons at the end of the detector beginning with 1-10 electrons.  This process is then 
repeated 10,000 times to output a probability distribution that for ni starting electrons, nf electrons 
reach the end of the detector.  The number of electrons at the end of the detector was counted in 
increments of 100,000 to obtain the probability distribution.    
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Plots were produced for a starting number of electrons from 1 to 10 using the data 
obtained from the Matlab program.  The number of electrons was counted in increments of 100,000 
to obtain a percentage of outputting n electrons.   

 

 

 

Figure 2: A figure of the avalanche data for an avalanche starting with 1 electron with a condensed 
range to illuminate curve behavior.  The average number of electrons at the end of an avalanche 
beginning with one electron, denoted <n>1=1.3*106, which is observed in the figure. 

 

 

Figure 3: Percentage of avalanches having nf electrons at the end of an avalanche beginning with 
2 electrons.  The average number of electrons at the end of an avalanche beginning with two 
electrons, denoted <n>2=2.6*106=2<n>1, is observed in the figure. 
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Figure 4: A figure of the avalanche data for an avalanche starting with 2 electrons with a 
condensed range to illuminate curve behavior.  The average number of electrons at the end of an 
avalanche beginning with two electrons, denoted <n>2=2.6*106=2<n>1, is observed in the figure. 

 

 

 

 

Figure 5:  Percentage of avalanches having nf electrons at the end of an avalanche beginning with 
5 electrons.  The average number of electrons at the end of an avalanche beginning with five 
electrons, denoted <n>5=6.6*107=5<n>1, is observed in the figure. 
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Figure 6: A figure of the avalanche data for an avalanche starting with 5 electrons with a 
condensed range to illuminate curve behavior.  The average number of electrons at the end of an 
avalanche beginning with five electrons, denoted <n>5=6.6*107=5<n>1, is observed in the figure. 

 

 

Figure 7: Percentage of avalanches having nf electrons at the end of an avalanche beginning with 
10 electrons.  The average number of electrons at the end of an avalanche beginning with ten 
electrons, denoted <n>10=1.3*107=10<n>1, is observed in the figure. 
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Figure 8: A figure of the avalanche data for an avalanche starting with 10 electrons with a 
condensed range to illuminate curve behavior.  The average number of electrons at the end of an 
avalanche beginning with ten electrons, denoted <n>10=1.3*107=10<n>1, is observed in the figure. 

Beginning with 1 electron, there is a high probability of having 0 electrons at the end of the 
detector.  Starting with 2 electrons, a clearly defined distribution arises clustered around 2.5 million.  
As the beginning number of electrons increases, the average value of the distribution increases 
and the range increases, spreading the curve. 

 

3 Maximum Entropy Analysis of the Monte Carlo Results 

 In order to study maximum entropy methods, a preliminary example was first evaluated.  
Let A1, A2,…, AM be an alphabet with M symbols to represent the output of an experiment with M 
possible outcomes.  The probabilities that each of these outcomes will occur are p1, p2,…, pm, 

where  

∑ = 1kp  with 0≠kp and k=1…M.          (3) 

In this thought experiment, there are N independent observations, where a random symbol from 
the alphabet is observed, or a random output of the experiment is observed, where N can be 

greater than, equal to, or less than m.  These observations are 
Niii AAA ,...,,

21

or written more 

compactly i1, i2,…,iN. 

An example of the observed outcomes would be 5, 32, 6,…, M-1, 16, where the integers correlate 
to the outcomes of the experiment.   

There are MN possible symbol strings.  We next determine an equation for how many symbol 
strings have Ak occur Nk times, where: 

.∑ = NN k              (4)
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 This equation is a multinomial expression  

,
!!...!

!

21 MNNN

N
             (5) 

which is the number of symbol strings with Ak occurring Nk times. 

Next we must find how many observed symbol strings are consistent with our assignment of the 
probabilities p1, p2,…, pM.  Consistency means   

.~ NpN kk              (6)
 

We can then define a function )( pNΩ that is the number of strings of length N consistent with p1, 

p2,…,pM: 

)!)!...(()!(

!
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21 NpNpNp

N
p

M

N =Ω .          (7) 

Using Stirling’s approximation, we find that  

)(
~)(

pNH

N epΩ
    as N � ∞.        (8)

 

Here  
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and is the Shannon entropy, it is the “growth rate” of )( pNΩ as N is increased.  It is called an 

entropy because entropy is used to find the number of microstates consistent with the macro 
knowledge and external constraints of a system. 

Maximum entropy methods are used to assign the probabilities of a probability distribution 
when the probabilities are unknown, but some properties of these probabilities are known.  For 
example, suppose the probabilities p1, p2,…, pM are unknown quantities but the following are known 
about them: 
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where µ  is the mean of the probability distribution.  The probabilities must be chosen subject to 
these constraints, while biasing the result as little as possible.  Thus, the probabilities must be 
assigned by maximizing the number of symbol strings consistent with these constraints.  The 
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number of strings grows like the entropy, hence the name maximum entropy methods.  The 
probabilities are then assigned in order to maximize the Shannon entropy while satisfying the 
constraints. 

Example 1:  

In this example, we have no knowledge other than the fact that pk are probabilities. We will 
use the method of Lagrange multipliers to maximize the Shannon entropy by setting the derivatives 
with respect to each variable equal to zero.  We define a quantity 

).1()ln(),(
1

0

1

0
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k

k

M

k
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Taking the derivative with respect to λ0 gives the constraint
 

.10
10

∑
=

=⇒=
∂

∂ M

k

kp
λ

ε

         (13) 

Using the fact that the pk are independent:
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We find:
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Therefore

 

,01)ln( 0 =+−− λjp

           (16) 

which gives

 

.1)ln( 0 −= λjp
          (17)

 

 

Therefore pj is independent of j.  We now fix pk by normalizing: 

M
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 In order for the entropy to maximized, each possible symbol string or experimental 
outcome will appear with equal probability.   

Example 2: Given knowledge of the mean, we then use another Lagrange multiplier to add the 
constraint  

.
1
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kkp µ
            (19) 

So that now we have two Lagrange multipliers: 
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This gives:
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for our two constraints.  Now taking the derivative with respect to pj we find 
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Therefore:

 

,1)ln( 10 jp j λλ ++−=
          (24) 

or
 

.101 j

j ep
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           (25)
 

In this case, the probability distribution is an exponential in j.  We can fix the values of λ0 and λ1 in 
the following manner.  Writing 

,))(( 101 jjee αβλλ =+−

          (26) 

we normalize to get 
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And fix the mean by requiring:
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We know that 
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Thus, we find 

              (33) 

and finally, 
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Now we must apply this to our avalanche problem.  We can assign each outcome of our avalanche 
a symbol.  The following statements: 

A0=0 electrons at the end of the avalanche given 1 electron at the beginning of the avalanche 

∑ +−=− 1
1)1(

Mj βββ
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A1=1 electron at the end of the avalanche given 1 electron at the beginning of the avalanche 

A2=2 electrons at the end of the avalanche given 1 electron at the beginning of the avalanche 

. 

. 

. 

AM=M electrons at the end of the avalanche given 1 electron at the beginning of the avalanche 

Therefore, we know the mean value and the maximum number of electrons at the end of the 
avalanche.  Now to treat the probabilities as a continuum and, thus, pj becomes p(x).  Our 
variational principal becomes 

∫ ∫∫
∞ ∞∞
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Where the notation ε([p], λ0, λ1) indicates that ε is a function of λ0 and λ1, but a functional of p(x) 

(i.e. a function of an infinite number of variables, one for each value of x). 

Taking the derivative with respect to λ0  we find
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taking the derivative with respect to λ1 we find
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We then introduce a variation on p(x) 
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where the quantity in brackets is defined to be the variational derivative of ε with respect to p(x) 
denoted 

.01))(ln(
)(
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δ
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We set  

0
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=
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             (42) 

and find 

.1))(ln( 10 xxp λλ ++−=
         (43) 

Therefore, p(x) is exponential in x.  The most general form is given by 

 

            (44) 

 

We now can use this expression that represents the probability of having x electrons at the end of 
the avalanche beginning with 1 electron to find expressions for avalanches starting with any 
number of electrons.   

First 

),1|()( xpxp =               (45) 

where x should be interpreted as the statement 
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Here x is the number of electrons out that lie between x and x+dx and <x>1 is the average number 
of electrons out, given 1 electron at the beginning of the avalanche. 

Now we find an expression that represents the equation for the probability that x electrons are 
found at the end of the avalanche with two electrons at the beginning and an average output for the 
single electron initiated avalanche of µ  

).2|( 12 µ=>< xandinelectronsoutelectronsxp       (47) 

We assume that the two avalanches are additive and independent.  The joint probability of x1 
electrons in avalanche 1 and x2 electrons in avalanche 2 is then derived. 

.
1

)( µ

µ

x

exp
−

=



15 

 

).,1|(),1|(

)1|,(

21

121

µµ

µ
−−

==><

expexp

bothforxandavalanchesbothstartingelectronxxp

                   (48) 

This can then be written as  
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Where x1+x2=x represents the length of a line between x1 and x2 that grows linearly with x. 

 

 

Figure 9: Plot demonstrating the additive properties of x1 and x2.  The lines here represent 

x=x1+x2, where the length of the lines are growing linearly with x. 
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From figure 9 it is shown that the integrals over x1 and x2 convert to a finite integral over x, 
due to the change of variables.  Treating each avalanche as separate and independent we can 
determine an expression for the probability distribution starting with any number of electrons.  We 
claim this expression to have the form 
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where the normalization c is fixed by requiring 
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As N approaches infinity p(x|Ne-,µ )  will look like a Gaussian centered around µ  and the width of 
the Gaussian will be easily predicted. 

In order to determine c, we must take this integral, which returns a gamma function 
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becomes 
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The resulting figures using this formula to determine the probability of having x, which represents 

nf, electrons at the end of an avalanche beginning with N electrons are shown below.  These 

figures represent the theoretical probability densities and curves we would expect our avalanche 

data to possess.    
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Figure 10: A figure comparing the theoretical probabilities based on maximum entropy calculations 
with the probabilities based on Monte Carlo simulations of having a certain number of electrons at 
the end of an avalanche beginning with 1 electron.  In the maximum entropy calculations, the 
probabilities were multiplied by a bin width of 100,000 to match that of the Monte Carlo 
calculations. 

 

 

 

Figure 11: A figure comparing the theoretical probabilities based on maximum entropy calculations 
with the probabilities based on Monte Carlo simulations of having a certain number of electrons at 
the end of an avalanche beginning with 2 electrons.  In the maximum entropy calculations, the 
probabilities were multiplied by a bin width of 100,000 to match that of the Monte Carlo 
calculations. 
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Figure 12: A figure comparing the theoretical probabilities based on maximum entropy calculations 
with the probabilities based on Monte Carlo simulations of having a certain number of electrons at 
the end of an avalanche beginning with 5 electrons.  In the maximum entropy calculations, the 
probabilities were multiplied by a bin width of 100,000 to match that of the Monte Carlo 
calculations. 

 

 

 

Figure 13: A figure comparing the theoretical probabilities based on maximum entropy calculations 
with the probabilities based on Monte Carlo simulations of having a certain number of electrons at 
the end of an avalanche beginning with 10 electrons.  In the maximum entropy calculations, the 
probabilities were multiplied by a bin width of 100,000 to match that of the Monte Carlo 
calculations. 

Figures 10-13 are from maximum entropy calculations and model the Monte Carlo 
simulations that were performed.  The fit for avalanches beginning with 1 electron is not a good fit, 
and though the Monte Carlo simulations show a basic exponential shape, the dip in the middle is 
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not present in the maximum entropy calculations.  For avalanches beginning with two electrons, 
the maximum entropy calculations are shifted to the left and have a longer tail with a less steep 
slope.  The fit has the general shape of the simulations, but it can not be concluded that the fit is 
good.  For avalanches beginning with 5 electrons, the fit has the same general shape, but the peak 
height is too low, as is the case for avalanches beginning with 10 electrons.  Therefore, the 
maximum entropy calculations are not good approximations for the Monte Carlo simulations. 

 

4 Markov Analysis of Avalanche Dynamics 

As another approach to the study of avalanches, an equation to model the evolution of the 
probability distribution from one stage to the next was obtained.  Next, the chance that n electrons 
will reach the end of the detector can be predicted from an avalanche beginning with any number 
of electrons.  Starting at step t, with a number of ni electrons, step t+1 will have nf electrons, from 
an equation of the form 

if nnnn ++−= 20            (68) 

where n0 represents the number of reabsorbed electrons, n2 the number of electrons that knock off 
another electron and n1 the number of unchanged electrons.   

The probability that nf electrons are produced at the t+1 stage that began with ni electrons will be 
obtained.  The equation will be a sum over the following quantity: 
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210

210
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nnn

nnn

i

if ppp
nnn

n
nnp ∑=

          (69) 

With p0 representing the probability that an electron is absorbed, p1 the probability an electron is 

unchanged, and p2 the probability that an electron produces another electron.  

The previous equation rests on the following conditions. The number of electrons reabsorbed, 

unchanged, and added, must add to the initial number of electrons.  The difference between the 

number of electrons added during this time-step and the number of electrons reabsorbed must be 

equal to the difference between the final number of electrons and the number of electrons at the 

beginning of the time-step: 

innnn =++ 210             (70) 

if nnnn −=−
02             (71) 

Because of these conditions n0 and n2 can be represented in terms of ni, nf, and n1. 
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 The equation 

P(n0n1n2|nip0p1p2)            (74) 

represents the probability of obtaining a particular number of reabsorbed, unchanged, and knocked 

off electrons, knowing the number of initial electrons and the probability of an electron being 

reabsorbed, unchanged, or knocking off another electron.  A particular sequence probability is 

represented by  

210

210

nnn
ppp

             (75)
 

which is multiplied by the number of sequences of ni electrons with a particular n0, n1, and n2.  
Thus,  

210

210

210 !!!

! nnni ppp
nnn

n
             (76) 

represents the probability of having a particular absorbed, unchanged, and created combination 
starting with ni initial electrons and the assigned probabilities.  This quantity is then summed over 
all possible numbers of absorbed, unchanged, and created electrons starting with ni electrons and 
having nf electrons at the next time step. 

For example, starting with ni=2, nf=0, 1, 2, 3, 4.  For nf=0, n0=2, n1=0, and n2=0.  Thus the equation 
becomes  

01.7.2.1.
!0!0!2

!2 002 =
            (77) 

With nf=1, n0=1, n1=1, and n2=0.  The probability of this particular sequence is then 

04.7.2.1.
!0!1!1

!2 011 =
            (78) 

With nf=2, n0=0, n1=2, and n2=0 or n0=1, n1=0, and n2=1, with a probability equation of 

18.14.04.7.2.1.
!1!0!1

!2
7.2.1.

!0!2!0

!2 101020 =+=+
        (79)
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If nf=3, n0=0, n1=1, and n2=1.  The probability of this particular sequence is then 

28.7.2.1.
!1!1!0

!2 110 =
            (80)

 

When nf=4, n0=0, n1=0, and n2=2, with a probability equation of 

49.7.2.1.
!1!0!0

!2 200 =
            (81) 

The probabilities of all possible nf with an initial ni of 2 add to 1, as expected.  This calculation for all 

ni and nf was performed using Matlab for ni from 1 to 150 to form the Markov matrix discussed 

below.   

 A Markov matrix was constructed that summarizes the single step transition probabilities.  
It is a left stochastic matrix, a square matrix whose columns consist of nonnegative real numbers 
whose sum is 1.  The matrix is a transition matrix for a finite Markov chain, or, more specifically, 
describes a Markov chain over a finite state space.  Starting with ni electrons, the matrix will 
summarize the probability that you get nf electrons out in the next time step.3  The Markov matrix 
equation of interest is  

p’f= Mfi pi             (82) 

where p’f is a vector with the probabilities of obtaining nf electrons and pi is a vector with the 
probabilities of starting with ni electrons.  Mfi is the Markov matrix of interest.  In order for this matrix 
to map probabilities to probabilities, the column sum is always unity 

.1 iallforM
f

fi∑ =           (83) 

The Markov matrix was first constructed as a 10 by 10 matrix, calculating each entry for a specific 
ni, the number of electrons at the beginning of the time step, and nf, the number of electrons at the 
end of the time step.  Each entry was calculated using equation (69) where p0 is the probability of 
an electron being reabsorbed, p1, the probability and electron is unchanged, p2, the probability that 
an electron produces another electron, n0, the number of reabsorbed electrons, n1, the number of 
electrons unchanged, and n2, the number of electrons that create another electron.  For each 
matrix entry of having nf electrons at the end of a time step beginning with ni electrons, the 
probabilities from each combination of n0, n1, and n2 are summed.  It is ensured that the columns 
add to one.   

This matrix was then expanded into a 150 by 150 matrix and a heat map was produced from the 
resulting matrix.  Selecting columns and rows from the matrix, Gaussian plots were produced to 
model the behavior across a row or down a column.  In order to better approximate the infinite 
matrix, with a goal of finding an accurate equation to model the matrix’s behavior, Stirling’s 
approximation was used for n0, n1, and n2 greater than 10.  Stirling’s approximation is used to 
approximate factorials and has the form 
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            (84) 

 

Now each term in the matrix for n0, n1, and n2 greater than 10 is represented by 
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This was determined to be an accurate approximation.  In order to model the avalanche for multiple 
time steps, this matrix was multiplied by itself, and heat maps were produced for the results.  The 
resulting matrices from these multiplications were found to also display Gaussian behavior across 
the rows and down the columns.  Heat maps were produced for each iteration of the multiplication.   

Though a Markov matrix is finite, this matrix will be manipulated to approximate an infinite 
matrix, following the same conditions of a Markov matrix, which will serve as the transition between 
two infinite probability vectors, each represented by a finite approximation.  Multiplying the matrix 
for multiple time steps will be used to determine the behavior of the electron avalanche throughout 
the 30 stages of the detector.  The asymptotic behavior of the matrix from the heat maps will be 
determined in order to formulate an equation to approximate the behavior of the avalanche that can 
be applied to a growing number of electrons through the 30 stages.  A function that represents the 
probability distribution will be acquired, where the probabilities must add to 1.  The function at the 
next time step, with nf electrons is then represented by the sum 
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 In order to form an equation to approximate the matrix and determine the most probable 

number of electrons at time step t+1, knowing the number of electrons at time step t, the natural 

logarithm of each term in each matrix entry was taken.  So now, the dominant term in the sum is 

represented by the equation  
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Given ni and nf, with n1 as our only free variable, we can write n0 and n2 as in equations 72 and 73.  
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Next, the derivative of each term in this function with respect to n1 was taken and set to zero to 

determine the value of n1 where the maximum term in the sum occurs for each term in the matrix. 
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After substituting in the equations for n0 and n2 in terms of n1, ni, and nf, so the function has only 
these three variables.  Consequently, for each term in the matrix, with known ni and nf, n1 is the 
only variable.  . 

The natural log of this function is 
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The derivative of this function is 
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A Matlab program was then written to determine the maximum value of n1 using the above 
equation for specified values of nf and ni.  Another program was then written to determine the 
maximum n1 value for all nf and ni values.  This program creates a three-dimensional matrix p(nf, ni, 
n1) that represents all ln[f(n1)] values.  It then finds the maximum value of the matrix with respect to 
the third dimension, or n1.  In other words, for each pair of ni and nf, the program determines the 
maximum value of f(n1).   The matrix index of this value is determined, since the index represents 
the value of n1, and in this case, [n1]max.  A matrix is then created of size (nf, ni) to store the index 
values for all n1.  However, the minimum value n1 can have is 0.  Matrix indices begin at 1, so a 
matrix of ones must be subtracted from the index matrix in order to determine the true maximum 
values of n1.    

Next, an approximation was found for the function ln[f(n1)].  
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After exponentiating each side of this approximation, an approximation for f(n1) was acquired. 
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Figure 14: Heatmap of Markov Matrix showing the probability of having nf electrons at the next time 
step starting with ni electrons 
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Figure 15: Gaussian Plot of Column 50 of the Markov Matrix demonstrating matrix behavior down a 
column 
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Figure 16: Gaussian Plot of Column 100 of Markov Matrix demonstrating matrix behavior down a 
column 

 

Figure 17: Gaussian Plot of Row 50 of Markov Matrix demonstrating matrix behavior across a row 
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Figure 18: Gaussian Plot of Row 100 of Markov Matrix demonstrating matrix behavior across a row 

Figures 15-18 demonstrate that the Markov matrix displays Gaussian behavior across its columns 
and rows.  This demonstration of Gaussian behavior will be useful in developing a model to 
represent the probability distribution of electrons through 30 time steps.  Gaussian behavior was 
also demonstrated for the Markov matrix representing 2 time steps.   
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Figure 19: Gaussian Plot of Column 50 of Markov Matrix squared, representing 2 time steps, 
demonstrating matrix behavior down a column 

 

Figure 20: Gaussian Plot of Row 50 of Markov Matrix squared, representing 2 time steps, 
demonstrating matrix behavior across a row 

 

 



31 

 

 

 

Figure 21: Heat map of Markov Matrix raised to the 4th power, representing 4 time steps 
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Figure 22: Heat map of Markov Matrix raised to the 7th power, representing 7 time steps, with an 
adjusted colorbar to better reveal matrix behavior 

 

5 Summary and Conclusions 

 The avalanche statistics in a MALDI-TOF detector were examined by comparing Monte 
Carlo simulations with maximum entropy analysis and the use a Markov matrix approximation, both 
in hopes of determining a simple and accurate model for the electron avalanches occurring in the 
detector.  Monte Carlo simulations were first performed for avalanches with a beginning number of 
electrons from 1 to 10, with specified absorption, stable, and creation probabilities p0, p1, and p2 
chosen to yield a gain of 106 at the end of the 30 stages in the detector.  Maximum entropy 
analysis was performed in the hopes of finding a simple approximation for the Monte Carlo 
simulations.  The maximum entropy calculations for avalanches beginning with 1 electron do not 
approximate the Monte Carlo simulations well, and though the Monte Carlo simulations show a 
basic exponential shape, the dip after the initial exponential decay is not present in the maximum 
entropy calculations.  For avalanches beginning with two electrons, the peak of the maximum 
entropy calculations is shifted to the left, though the fit has the general shape of the simulations, 
but with a longer exponential decay.  It can not be concluded that the maximum entropy 
calculations approximate the Monte Carlo simulations well.  For avalanches beginning with 5 
electrons, the fit has the same general shape and the average values are very close, but the peak 
height is too low, as is the case for avalanches beginning with 10 electrons. Thus, this method is 
not a good model for the Monte Carlo simulated avalanches. 
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 Markov matrix analysis was used in the hopes of determining an equation to model the 
evolution of the probability distribution from one stage to the next.  The Markov model was able to 
produce accurate heat maps, demonstrating a gain of 1.6 in each stage of the detector, 
demonstrated through the heat maps produced.  We were also able to determine the behavior of 
the rows and columns of the Markov matrix, which were closely approximated to be Gaussian in 
shape.  With further work, the demonstration of Gaussian behavior could be used to develop a 
model to represent the probability distribution of electrons through 30 time steps.  Gaussian 
behavior was also observed down the columns and across the rows of a Markov matrix 
representing 2 time steps.   

Multiplying the Markov matrix for multiple detector stages will be used to determine the 
behavior of the electron avalanche throughout the 30 stages of the detector.  However, multiplying 
the matrix for multiple time steps did not reveal matrix behavior and more work needs to be done to 
modify the matrix to better reveal matrix behavior through more stages.  The asymptotic behavior 
of the matrix from the heat maps could be determined in order to formulate an equation to 
approximate the behavior of the avalanche that could be applied to a growing number of electrons 
through the 30 stages.  With more time, using further analysis of the Markov matrix to determine a 
simple approximation of the matrix could be performed.  Using Stirling’s approximation and 
reworking the equations for each matrix entry to be in terms of the only free variable, n1, 
calculations were performed to determine the maximum value of n1.  In future work, the value of 
each matrix entry can be approximated using equation 88 to determine a simple and accurate 
approximation of the Markov matrix.  A function that represents the probability distribution will be 
acquired where the probabilities must add to 1.  The function at the next time step, with nf  electrons 
is then represented by equation (86).  Accurate approximations of the functions representing the 
probability distribution will be found that will represent the infinite sum in a manageable manner.  
These functions will be used to determine the expected number of electrons at the end of an 
avalanche for any ni and will be used for accurate peak height analysis. 

With further work, an accurate model of the avalanche statistics in the detector can be 
obtained.  This model will be used to understand variations in quality control spectra.  After the 
variations in quality control spectra, which should be identical across all spectra, are understood, 
variations resulting from avalanche statistics can be applied to other spectra for use in biomarker 
analysis.  Accurate peak heights are essential for proper data analysis.  Biomarker analysis can be 
used to compare tissue or blood samples, such as by evaluating the discrepancies between 
spectra obtained from a cancerous sample to that from healthy tissue.  By accumulating data from 
multiple samples, proteins occurring in diseased individuals, but not in healthy ones, can be 
determined, or discrepancies in the abundance of certain proteins can be analyzed.  However, for 
rare conditions, few samples can be obtained.  By understanding the avalanche dynamics of the 
detector, a better estimate of peak height, and therefore a more accurate protein distribution can 
be obtained, even for small data sets.  Through accurate measurements of protein distribution, 
researchers will gain a greater understanding of diseases, particularly those that are rare, which 
can be applied to more accurately diagnose diseases, develop treatment options targeted to 
proteins and to develop ways to treat patients with uncommon conditions7. 
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