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Abstract

We present here a method of improving the Anti de Sitter/Quantum Chromodynam-

ics (AdS/QCD) model of Quantum Chromodynamics (QCD). AdS/QCD is a model

of the strong force which is approximately conformal for energies larger than the

mass of the rho meson; that is, the coupling of the strong force is constant at high

energy scales. QCD is in fact non-conformal, although it approaches conformality in

the high energy regime; however, the low energy predictions of AdS/QCD are accu-

rate to approximately 10% when compared with experimental data. We attempt to

build non-conformality into AdS/QCD by crudely accounting for the running of the

coupling. This is done by altering the AdS geometry used in the model.





1 Introduction and Background

AdS/QCD is a model that is used to approximate the behavior of the particles and

interactions of quantum chromodynamics. This model is based on the principles of the

AdS/CFT correspondence. A Conformal Field Theory (CFT) is a field theory which

behaves similarly at all length or energy scales, that is, the coupling between particles

is independent of the distance between the particles. The AdS/CFT correspondence

is a relationship between a (3 + 1) dimensional CFT without gravity and a (4 +

1) dimensional field theory in an Anti de Sitter (AdS) spacetime background, with

gravity [3]. The correspondence between these theories depends on the fact that the

conformal symmetry in a (3 + 1) dimensional CFT has the same group structure as

the set of isometries (transformations which leave the metric invariant) on (4 + 1)

dimensional AdS. Because the interactions in the theory in AdS are weakly coupled,

complex problems in CFT may be solved more easily using pertubative methods in

this model.

AdS/QCD is a model based on the AdS/CFT correspondence which approximates

the behavior of particles of QCD using (4 + 1) dimensional AdS. It is seen that this

theory provides good approximations to the observed behaviors of the particles of

QCD. This theory is conformal at high energy scales, and non-conformal at low energy

scales. QCD, however, is non-conformal even at high energy scales. It is the goal of

this project to build into this model non-conformality (or running of the coupling),

and to determine how well this new model predicts the properties of particles in QCD.

In order to model this running of the coupling in AdS/QCD, we alter the geometry

of AdS slightly, allowing it to vary as a function of the extra dimension.

3



2 Theory

Classical theories of particle interactions assume that the coupling between interacting

particles remains constant at all length scales. For example, in classical electrody-

namics, the electrostatic force between two charged particles is proportional to the

product of the charges and inversely proportional to the square of the distance be-

tween them. This force is then described using a single proportionality factor, which

is assumed to remain constant as the distance between the particles varies. However,

it is seen that at extremely small length scales, this coupling factor is not constant;

it increases as the distance between the particles decreases. The opposite effect is

seen in quantum chromodynamics. The strong coupling increases with distance, and

for large enough distances, the force acting between particles does not change with

distance. This is what gives rise to quark-gluon confinement in QCD. As two inter-

acting quarks are pulled apart, the strong field between them does not spread out,

but rather forms a “flux tube” between the quarks. The energy contained in this flux

tube increases linearly with distance. If two interacting quarks are spread far enough

apart, the energy contained in the flux tube will generate a quark and an antiquark,

breaking the flux tube and resulting in two separate quark-antiquark pairs.

AdS/QCD attempts to reformulate QCD as a string theory in (4+1) dimensional

AdS space. Interactions between a quark and an antiquark are modeled as an open

string terminating at the quarks, and extending into the extra dimension of Anti

de Sitter space. We consider a one-dimensional “slice” of the space in the extra

dimension, labeled by the variable z, and apply two boundaries to it. The ultraviolet

(UV), or high energy, boundary is placed at z = ε, where epsilon is taken to approach

zero. The reason this is done is because the metric of AdS contains a factor of 1/z, and

infinitesimal distances approach infinity as z approaches zero. The infrared (IR), or

low energy, boundary is placed at some value of z, which we call z = zm. This upper

boundary assures that the theory will be confining. If we consider two interacting
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quarks placed at the UV boundary, the string connecting them will extend into the

space (Figure 1). The string will follow a path in the space defined by the geodesic

of AdS between the two quarks, defined by the metric of AdS:

ds2 =
R2

z2
(dxµdxνηµν − dz2), (1)

where ηµν is a 4 × 4 diagonal tensor given by diag(1,−1,−1,−1). As the quarks are

separated, the string will increase in length and extend farther and farther into the

z-dimension of the space. The energy contained in the fields in QCD is related to

the length of the string in AdS. For short enough strings, as the string increases in

length, the force of attraction between the particles decreases with the square of their

distance; the attraction is thus a Coulomb attraction, and the coupling factor remains

unchanged. Once the string extends far enough into the z-dimension, it reaches the IR

boundary and cannot extend any further in that dimension. It extends linearly along

the boundary (orthogonal to the z direction), while the segments of string connecting

the boundary to the quarks remain unchanged in shape (Figure 2). Due to this, the

length of the string increases linearly, as do the energy contained in the fields and the

coupling factor. Because the coupling factor does not change when the quarks are

relatively close together, AdS/QCD is conformal in this regime.

The first part of this project involves verifying some known results of AdS/QCD.

Bound states of particles in QCD, such as ρ-mesons, can be modeled as Kaluza-

Klein modes of gauge fields in the z-dimension of AdS. This is similar to finding

the wave function of a particle in an infinite square potential well of one dimension;

certain boundaries are specified, and the function must meet certain conditions at

the boundaries. In the case of the particle in a box, the boundary conditions are

Dirichlet boundary conditions; the function must go to zero at the boundaries. In

AdS/QCD, the boundaries are the UV and IR boundaries mentioned before, and one

boundary condition is a Dirichlet, and the other a Neumann boundary condition;
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Figure 1: A string extending into the z dimension of a slice of AdS. The blue circles
represent a quark-antiquark pair, while the red curve represents the string connecting
them. Here, x labels the other three spatial dimensions.

Figure 2: The string extends linearly along the IR boundary at z = zm.
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the gauge field must go to zero at the UV boundary, and its first derivative with

respect to z must go to zero at the IR boundary. These specific conditions are chosen

since the IR boundary condition must be gauge invariant, and these are the simplest

gauge invariant boundary conditions. We want to verify the masses of ρ mesons

as predicted by AdS/QCD. The differential equation describing the transverse (z

direction) component of the gauge field for ρ mesons is [2] [4]

∂

∂z

(

1

z

∂

∂z
V a

µ (q, z)

)

+
q2

z
V a

µ (q, z) = 0, (2)

where V a
µ (q, z) is the four dimensional Fourier transform of V a

µ (x, z), which is the

vector field, and q is proportional to the mass of the ρ meson. This is an eigenvalue

problem, which has as its solutions a countably infinite number of q values corre-

sponding to an infinite tower of ρ mesons. In reality, ρ mesons are detected as peaks

in a scattering cross section with energies corresponding to the ρ meson masses. It is

observed that at higher energies, the peaks get wider, and at some point, they are so

wide as to no longer be distinguishable as mesons; therefore, there does not actually

exist an infinite tower of ρ mesons.

We may also, for example, verify the value of the ρ meson decay constant, which

determines the electromagnetic rate of decay of the ρ meson and thus its stability.

The ρ meson decay constant is given by [2]

F 2

ρ =
1

g2
5

[ψ
′

ρ(ε)/ε]
2 =

1

g2
5

[ψ
′′

ρ (0)]2, (3)

where ψρ is a solution to Equation (2), and g2

5
is given by [2]

g2

5
=

12π2

Nc
. (4)

Here, Nc is the number of colors in QCD (three); thus g5 = 2π.

The second part of this project involves altering the model in order to account for
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the running of the coupling observed in QCD. This is done by altering the geometry

of the slice of AdS used in the model, allowing its curvature to vary as a function

of the extra dimension z. It is observed that QCD is not conformal; by varying the

geometry we may build this non-conformality into the model.

3 Methods

Equation (2) is solved numerically using the numerical differential equation solver in

Mathematica. This is done via separation of variables: we assume that our solutions

are of the form

V a
µ (q, z) = V a

µn(q)ψn(z), (5)

where the subscripts n label the eigenfunctions which solve equation (2). With this

ansatz, Equation (2) yields an equation for ψn(z):

1

z

(

d2ψn

dz2
−

1

z

dψn

dz
+ q2ψn

)

= 0, (6)

subject to the boundary conditions

ψn(ε) = 0,
dψn

dz

∣

∣

∣

∣

∣

z=zm

= 0. (7)

Once a given eigenvalue q is found, we may solve for the ρ decay constant in Equation

(3).

This procedure amounts to a Kaluza-Klein decomposition of the 5D gauge fields.

Once these results were obtained and use to verify the predictions of AdS/QCD, the

model was altered and its new predictions tested. A more accurate method of includ-

ing running of the coupling would allow the geometry of AdS to vary continuously as

a function of z; here, we present a simpler method of achieving this goal. We define
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the geometry of the slice of AdS in two regions: From z = ε up to some point to

be determined, called z0, we allow the space to retain its original AdS curvature. At

z = z0, the curvature changes abruptly and remains constant from z = z0 to z = zm.

Mathematically, this is represented by changing the factors of 1/z in both terms of

Equation (2). For z < z0, it remains 1/z, and for z > z0, we use

1

z
→

r

z − (1 − r)z0
, (8)

where r is some constant which determines the ratio of the curvatures in the two

regions. The term −(1−r)z0 in the denominator here ensures that the metric remains

continuous at z = z0.

Our goal now is to attempt to determine r and z0 in order to improve the predic-

tions of this model.

4 Results

Using Mathematica, the first few eigenvalues of Equation (6) were found. These values

were q1 = 2.4048, q2 = 5.5201, q3 = 8.6537, and q4 = 11.792. It should be noted that

these are approximately the first four zeros of the J0 Bessel function. The solutions

found by this method are not normalized, since the scale of the solutions depends on

our choices of ε, zm, and df/dz at ε. In order to determine the proper value of zm,

we use the relation

zm =
q

mρ
, (9)

where mρ is the mass of the ρ meson corresponding to the eigenvalue q. The mass of

the first ρ meson is known to be 776 MeV [1] (all values stated in this section are given

in natural units; c = h̄ = 1). Using this value, along with q = 2.4048, in the above
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equation, we obtain zm = 3.10 × 10−9 eV−1. This produces masses of the second,

third, and fourth ρ mesons of 1.78 GeV, 2.79 GeV, and 3.81 GeV, respectively. This

method of determining ρ meson masses is only valid for low energies; the experimental

values of the second, third, and fourth ρ masses are 1.45 GeV, 1.70 GeV, and 2.1 GeV,

respectively. As the energy of the mesons increase, further corrections are needed.

The z-dimension gauge fields are shown in Figure 3 below.

(a) First ρ meson (b) Second ρ meson

(c) Third ρ meson (d) Fourth ρ meson

Figure 3: Wavefunctions of the first four ρ mesons

Using Equation (3) with the wave function of the lightest ρ meson, we find that

F 1/2

ρ = 329 MeV. This agrees with the value for the unaltered model stated in [2].

In order to make useful predictions about whether or not this model can be im-

proved via the methods described above, we must be able to calculate a number of

quantities which can be predicted by this new model. Since this model involves two

free parameters, r and z0, we must calculate at least two observables. Knowing one
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observable, we can determine r in terms of z0 under the condition that this observ-

able take on its experimental value. We can then fix specific values of r and z0 such

that the second observable is calculated to be as close to its experimental value as

possible. Once these values of r and z0 are fixed, we may use them to calculate the

values of many other observables using this model, which will allow us to determine

whether or not this new model is a significant improvement over the old one [2]. We

have managed to calculate two observables using this model, namely the ρ meson

mass and the ρ meson decay constant. Table 1 shows some values of r and z0 which

produce a value of F 1/2

ρ of approximately 345 MeV (its observed value [2]), along with

the values of the second ρ meson mass for these values of r and z0. As stated before,

the experimental value of the mass of the second ρ meson is 1,450 MeV. Since the

original model produces a second ρ meson mass of 1,780 MeV, it appears as though

this new model produces results less accurate than the original. In this model, it was

observed that for values of r less than one, no values of z0 would produce a value of

F 1/2

ρ of approximately 345 MeV. For values of z0 less than zm, the value of F 1/2

ρ is

significantly less than 345 MeV; for values of z0 greater than zm, F 1/2

ρ simply takes

on its value from the original, unaltered model. This is due to the fact that changes

to the AdS beyond the IR boundary do not affect our model; the string connecting a

quark-antiquark pair does not extend beyond the IR boundary. Since we have defined

that the AdS metric would remain unchanged from the previous model for z < z0, the

metric for the entire slice of AdS remains what it was in the previous model, when

z0 > zm.

There are some other interesting quantities which may be calculated using this

model. For example, one may determine the IR boundary, zm, as a function of the

geometry ratio, r, for a given geometry boundary, z0. This function is shown in figure

4 for the geometry boundary z0 = 1/400 MeV−1.

11



r 1/z0 (MeV) F 1/2

ρ (MeV) mρ2
(MeV)

2 625 345.529 1,878.13
4 549.45 345.256 1,874.12
6 531 344.714 1,868.98
8 530 345.445 1,872.08
10 524 345.153 1,869.36
15 518 344.961 1,867.07
20 515 344.848 1,865.81

Table 1: Values of r and z0 which produce F 1/2

ρ ≈ 345 MeV, and the corresponding
second ρ meson masses

Figure 4: zm as a function of r for z0 = 1/400 MeV−1

5 Conclusions

Here, we have verified some of the predictions of AdS/QCD, as well as outlined a

method of altering the model in the hopes of improving its predictions. The values

for the ρ meson masses and for the ρ decay constant that were found matched previ-

ous results. We also used our altered model in order to determine new values for the

ρ meson mass, so that we may determine how our alterations affect the model’s pre-

dictions. In fact, our alterations cause this model to produce less accurate predictions

than the original model.
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6 Further Work

There are many observables which may be calculated using the model described here,

other than those presented in this paper. It will be worthwhile to calculate more

observables using this model in future research, in order to get a better idea of how

our new model affects the predictions of AdS/QCD.

The method described here of altering the geometry of AdS is not an entirely

rigorous method of accounting for running of the coupling and is only employed for its

simplicity. As stated earlier, a more rigorous method involves allowing the geometry

to vary continuously as a function of the extra dimension. This sort of model should

be worthwhile pursuing in future research.
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