
Warp Duality in Braneworlds

Andrew B. McGowan

September 14, 2007

Abstract

In recent years there have emerged numerous models of space-

time that include extra dimensions. In particular there have been a

variety of ‘brane-worlds,’ scenarios in which we live on a 3+1 dimen-

sional subspace of a higher dimensional spacetime. More specifically,

in the Randall-Sundrum 2 braneworld there are five dimensions, but

at lower energies gravity approximately obeys the four-dimensional

Einstein’s Equations. We investigate the possibility that multiple five

dimensional spacetimes could give rise to the same four-dimensional

physics. If so, it would be more difficult to experimentally determine

the shape of any possible extra dimensions.
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1 Introduction

1.1 The History of Extra Dimensions

The history of modern approaches to physical questions employing the use

of extra dimensions begins with Gunnar Nordstrom, who in 1914 attempted

to unify gravity and electromagnetism with the addition of a fourth spatial

dimension [1]. While in some ways Nordstrom was successful, his work came

before the discovery of General Relativity, so his understanding of gravity was

limited to an approximate theory. Nonetheless, he established an important

precedent of looking for answers in extra dimensions.

The next watershed event occurred in 1921, when Theodor Kaluza discov-

ered that the equations of General Relativity with an extra spatial dimension

could include Maxwell’s Equations [2] [3]. The problem was that Kaluza had

to assume that none of the fields in the universe varied over the extra di-

mension. In 1926, Oscar Klein offered a solution to this quandary with the

suggestion that, if the extra dimensions were very small compared to the

distance scales we normally observe, then the fields would remain constant

over the extra dimension [4]. We now know the resulting theory as ‘Kaluza

Klein’ theory.

Kaluza Klein theory, however, had numerous problems [5], not the least

of which was that its prediction for the unit of charge was many times smaller

than the charge of the electron, so the idea of extra dimensions largely fell by

the wayside for many years until the advent of String Theory in the 1960’s.
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Initially String Theory was an effort to describe the strong force, but it later

became a candidate for a Quantum Theory of Gravity [6].

While initially String Theory appeared to be quite promising, in early

formulations it suffered from a number of problems, which physicists slowly

resolved through the 70’s and 80’s. The solutions, however, required at least

ten dimensions, so the idea of extra dimensions came back onto the scene [6].

In the 1990’s, Horava and Witten [6] (among others) discovered that

string theory contained objects called ‘p-branes,’ which are essentially p-

dimensional generalizations of membranes. As it turned out, many p-branes

have the property that open strings can end on them, and that the oscilla-

tions of these open strings contain modes that resemble the electromagnetic

field. This discovery suggested a new way to look at the possibility of extra

dimensions: the ‘braneworld.’ [6]

In braneworld scenarios, we live on a 3+1 dimensional p-brane, which is in

turn embedded in some higher dimensional space [6]. It is these braneworld

scenarios that are the subject of our investigation. In particular, we are

interested in variations on the Randall-Sundrum braneworlds [7] [8], which

provide two possibilities of braneworlds that would be consistent with our

observed universe. More specifically, we investigate whether there might be

dualities in the Randall-Sundrum braneworlds–whether it is possible that

different extra-dimensional geometries give rise to the same four-dimensional

observed physics. If it is, then it may not be possible to experimentally de-

termine the shape of the extra dimensions. If the Randall-Sundrum scenarios

3



are unique, then they are more likely experimentally verifiable.

1.2 Motivation for Extra Dimensions

There are a number of motivations for exploring extra dimensions. The first

is the hierarchy problem for the relative strength of the forces: why is gravity

so weak? Essentially, the idea is that extra dimensions may provide a way

to dissipate the strength of gravity. Since gravity is a property intrinsic to

space itself, it might be free to flow into the extra dimensions while the other

forces would be stuck in our ordinary, four-dimensional spacetime. Thus, the

strength of the other forces would be concentrated where we could measure

it, while the strength of gravity would be diluted into the extra dimensions,

where we cannot yet measure it [9].

A second motivation is a much more serious hierarchy problem: the cos-

mological constant. Naive estimates of the cosmological constant are off by

factors as large as 10120. It is possible that the vacuum energy could somehow

dissipate into the extra dimensions [9].
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2 The Scale Hierarchy Problem and The Randall-

Sundrum Braneworlds

2.1 The Scale Hierarchy Problem

Traditionally there are at least two fundamental energy scales in particle

physics, the electroweak scale, Mew = 246 GeV , and the Planck scale, MPl =

1.22× 1019 GeV . The electroweak scale is the scale at which electricity and

the weak interaction are the same strength, while the Planck scale is the

scale at which gravity and the gauge interactions are the same strength. The

question of why these scales are so disparate is called the hierarchy problem.

In 1998, Arkani-Hamed, Dimopoulos, and Dvali (ADD) wrote a paper [10]

suggesting that the weak scale may in fact be the only fundamental scale in

nature. At the time of the ADD paper, while the electroweak interactions

had been probed at distances on the order of 1
Mew

, gravity had not yet been

probed at any distance even remotely approaching 1
MPl

[10]. Thus, the as-

sumption of MPl as a fundamental energy scale required that gravity remain

unmodified over more than thirty three orders of magnitude. But a 2001

paper by a collaboration from the University of Washington, Seattle [11]

pushed the distance down by a factor of a thousand, leaving us in a situation

in which gravity is only assumed to be unmodified over more than thirty

orders of magnitude. Nonetheless, the ADD model remains relevant, if in a

slightly modified form, and the original is important in understanding the
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variations on the Randall-Sundrum models that are the principal focus of

our investigation.

The ADD model employs N ≥ 2 extra dimensions to create a situation in

which gravity and electromagnetism are of equal strength at the Electroweak

scale, while gravity retains its ordinary 1
Mpl

strength at larger distances. The

ADD model is as follows [10].

Consider a world with n extra compact spatial dimensions. Give each of

these dimensions a radius ∼ R. Then, set the 4+n-dimensional Planck scale

on the order of the electroweak scale [10]

MPl(4+n) ∼Mew (1)

In this model gravity behaves very differently at distances smaller than

the radius of the extra dimension, but behaves normally at distances larger

than the radius of the extra dimensions.

Consider two test masses much closer to each other than the radius of the

extra dimensions. Since the masses are well within the radius of the extra

dimensions, the flux lines are free to propagate through the extra dimensions

and the potential is given by Gauss’ law in 4 + n dimensions [10]

V (r) ∼ m1m2

Mn+2
Pl(4+n)

1

rn+1
, (r � R). (2)

But if the masses are much farther apart than the radius of the extra

dimensions, the flux lines cannot travel through the extra dimensions to get
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from one mass to the other, so the potential is given by Gauss’ law in 4

dimensions [10]

V (r) ∼ m1m2

Mn+2
Pl(4+n)R

n

1

r
, (r � R) (3)

If we set these two equations equal to each other for the n = 0 (d = 4)

case, we see that the effective 4 dimensional MPl must be [10]

M2
Pl ∼M2+n

P l(4+n)R
n. (4)

Then, we set the higher dimensional Planck scale on the order of the

weak scale, MPl(4+n) ∼Mew as we did earlier, and solve for the radius of the

extra dimensions so that the effective four-dimensional Planck scale matches

observation [10]

R ∼ 10
30
n
−17cm×

(
1TeV

Mew

)1+ 2
n

. (5)

For the case with only one extra dimension the radius would have to be

on the order of R ∼ 1011 m in order for the Planck scale to be on the order of

the weak scale, implying deviations from Newtonian gravity for distances on

the order of the size of the solar system, so n = 1 is not possible. At the time

of the ADD paper, for all n ≥ 2 the modification of gravity would only take

place at distances smaller than had previously been explored experimentally.

ADD, then, put forth a model in which there were two compact spatial

dimensions [10]. They also pointed out that experiments in preparation at
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the time of their paper would probe this scale, but those experiments [11]

showed that gravity remains unmodified down to at least 218µm, requiring

more than two additional extra dimensions.

2.2 Randall-Sundrum 1

In 2006 Lisa Randall and Raman Sundrum introduced the first of their

‘Randall-Sundrum’ models. In this model the extra dimension is relatively

small, but the mass hierarchy is large because the extra dimension is warped

[7].

While the ADD paper offered one approach to the hierarchy problem,

gravity ultimately proved to continue to exhibit 1
MPl

behavior at distances

smaller than allowed by the case with only two extra dimensions. Also, as

Randall and Sundrum pointed out [7], in the ADD case the radius of the

extra dimension would have to be much larger than 1
Mew

, and since particle

physics has been probed up to and beyond the weak scale the standard model

particles and forces (that is, everything but gravity) must be confined to a

four-dimensional subspace within the higher dimensional spacetime. Every-

thing but gravity must be bound to a brane, otherwise we would have already

experimentally detected the effects of the extra dimensions.

In the Randall-Sundrum 1 case, the spacetime is a slice of anti de Sitter

space with a ‘3-brane’ at each end.
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Figure 1: The Randall-Sundrum 1 Model. The lines show how the metric is
warped along the extra dimension by the factor e−A(z).

2.3 Randall-Sundrum 2

While in their first collaboration Randall and Sundrum put forth a model

that offered ‘a large mass hierarchy from a small extra dimension,’ [7] in their

second collaboration they offer ‘An Alternative to Compactification.’ [8] This

model is basically equivalent to the Randall-Sundrum 1 model, except that

the second brane is taken to be infinitely far away from the brane with the

gravitational bound state, effectively removing it from the spacetime. The

extra dimension is then infinite in extent in both directions, but the spacetime

9



appears, for the most part, to be effectively four-dimensional. Then scenario,

then, overturns the previous assumptions that there must be precisely four

non-compact dimensions, and that the higher dimensional Planck scale is

directly proportional to the volume of the extra dimension. [8].

Figure 2: The Randall-Sundrum 2 Model. The lines show how the metric is
warped along the extra dimension by the factor e−A(z).

3 Warp Duality

We consider whether it is possible that there are multiple five dimensional

spacetimes that give rise to the same effective four-dimensional physics. In

order to investigate this possibility, we begin with the most general class of

five-dimensional conformally flat backgrounds which have a four-dimensional
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Poincaré symmetry,

ds2 = e−A(z)
(
ηab dx

a dxb − dz2
)
, (6)

Where a, b = 0, 1, 2, 3 label the directions along the brane, and z labels

the extra dimension. The fluctuations of this metric are [12]

−1
2
∂ρ∂ρ h̃µν +

[
9
32
∂ρA∂ρA− 3

8
∂ρ∂ρA

]
h̃µν = 0 . (7)

We then look for solutions of the form h̃ab(x, z) = ȟab(x)ψ(z) with �xȟab(x) =

m2ȟab(x), employing the fact that ∂ρ∂ρ = −�x −∇2
z, where �x = −ηab∂a∂b

and ∇2
z = ∂2

i . to find: [12]

−d
2ψ(z)

dz2
+
[

9
16
A′(z)2 − 3

4
A′′(z)

]
ψ(z) = m2ψ(z) (8)

This has the form of a Schrödinger equation for the “wavefunction” ψ(z),

“energy” m2 and potential

V (z) = 9
16

(A′(z)2 − 3
4
A′′(z)) (9)

.

The gravitational potential (as distinct from the Schrödinger potential)

is given by [12]
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U(r) ∼ GN
M1M2

r
+

1

M−3
Pl(5)

M1M2e
−mr

r
ψm(0)2 (10)

When we examine the equation for the Schrödinger potential [9] we see

that a second order differential equation on A(z) gives the potential; thus

there should be multiple solutions for A(z) that give rise to the same po-

tential. If we then take this potential and put it back into the ‘Schrodinger’

equation [8], we see that if the potentials are the same, the fluctuations are

the same.

In order to begin with a potential that we know gives rise to a four-

dimensional effective physics in agreement with experiment we first take the

expression for V (z) in the Randall-Sundrum 2 case [8].

V (z) =
15k2

8(k|z|+ 1)2
(11)

And then substitute this expression in for V (z) in [9] to obtain

15k2

8(k|z|+ 1)2
=

9

16

(dA
dz

)2

− 3

4

d2A

dz2
(12)

Consequently, there is a range of possible A(z)’s, each corresponding to a

different solution to [11], that all give rise to the same ‘potential,’ and since

we showed that the four-dimensional gravitational modes are a function of

this ‘potential,’ it is possible that there are multiple five dimensional warped

spacetimes that give rise to the same effective four-dimensional physics.

In order to determine whether there are viable spacetimes that meet this
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requirement, I solved the above differential equation, first numerically, in

order to obtain an idea of the behavior of the system, and then analytically.

The boundary conditions must be chosen to preserve the brane tension;

thus, the total discontinuity in the derivative of the warp factor (A(z)) at

zero must be constant, and is equal to 2k. From this point forward, we choose

units so that k = 1 for simplicity.

In order to test my code, I first evaluated the symmetrical, Randall-

Sundrum 2 case, which generated figure 3.

Figure 3: The Symmetrical Warp Factor

After then relaxing the requirement that the warp factor be symmetrical

about the brane I obtained a family of plots with the appearance of figure 4.
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Figure 4: The Asymmetrical Warp Factor

Note the two distinct types of behavior on either side of the brane at z=0.

It is also possible for this appearance to be flipped, depending on which side

of the brane you decide to make steeper than the Randall-Sundrum 2 case.

We discuss each of the behaviors in detail below.

3.1 |A′(0)| > 2

On the side where A′(0) > 2 the warp factor goes to infinity in finite distance.

This means that the spacetime is cutting itself off in finite distance–that

there is a boundary of the spacetime where the warp factor goes to infinity.

Consequently, new boundary conditions will have to be imposed, and the

spacetime will support different spacetime fluctuations.

In order to explore the behavior in this region further, we solve for the

general solution and find
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A(z) =
16

3
ln(2)−2

3
ln(

(−16− 24z3 + 12z3s0 − 6z4 + 3z4s0 − 24z + 12zs0 − 36z2 + 18z2s0)
2

(z + 1)3
)

(13)

where s0 is the value of A′(0) from the right. The warp factor goes to infinity

precisely where the argument of the natural log is equal to zero, namely

z∞ =
1

3

27
1
4

(
(10 + 3s0)(−2 + s0)

3
) 1

4

−2 + s0

(14)

Where z∞ denotes the value of z for which a warp factor with a given s0 goes

to infinity. If we then plot this expression over the possible values of s0 we

obtain figure 5.
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Figure 5: s0 v. z∞

Note that as we approach s0 = 2, the value for the symmetrical, Randall-

Sundrum case, the distance from the brane at which the warp factor blows

up to infinity. Note also that for values of s0 less than two this expression

is undefined. The reason is that, in these cases, the warp factor exhibits the

behavior seen in the |A′(0)| < 2 direction, which we discuss now.

3.2 |A′(0)| < 2

In the negative z direction of the above plot we see an example of the be-

havior of the warp factor when |A′(0)| < 2. This direction also appears
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problematic, primarily because it appears that there is a violation of the null

energy condition, in which case the geometry of the spacetime is most likely

unstable.

In order to determine whether there is a violation of the null energy

condition, we have to determine whether A′′(y) is ever less than zero [13],

where y is a coordinate related to z by [8]

z ≡ sgn(y)(exp |y| − 1) (15)

We then substitute this value for z into the general solution for this

direction:

A(z) =
2

3
ln(− 256(z − 1)3

(16− 24z3 − 12z3s0 + 36z2 + 18z2s0 + 6z4 + 3z4s0 − 24z − 12zs2
0)

2

(16)

And obtain

A(y) =
16

3
ln(2) + 2|y|+ 2

3
ln
( 1

(10 + 6e4|y| − 3s0 + 3s0e4|y|)2

)
(17)

In order to test this expression I first substituted in the symmetrical,

Randall-Sundrum value for s0 and then plotted it, obtaining figure 6, which

agrees with the Randall-Sundrum 2 warp factor A(y) = −2ky. [7]
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Figure 6: A(y) (Randall-Sundrum 2 case). This is anti de Sitter space, with
a negative constant curvature.

I then tested and plotted the asymmetrical case, obtaining figure 7, which

clearly has a second derivative dipping below zero at some points, and is thus

in violation of the null energy condition.
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Figure 7: A(y) (Asymetrical case). Note that A′′(y) dips below zero, violating
the null energy condition.

4 Conclusions and Prospects for Future Re-

search

Given the enormous problems discussed above with the candidate geometries,

it appears that warp dualities of the kind sought are not viable candidates

for our observed world. Nonetheless, it may be possible to construct related

spacetimes that are viable candidates for the observed world. One possibil-

ity is to cut off the asymmetrical spacetimes with additional branes prior to
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the problematic behavior, but this approach necessarily changes the gravita-

tional fluctuations because there will be the addition of numerous boundary

conditions, and the warp factor is still highly unstable.

Another approach is to relax the requirement that the potential take the

same value as that of the Randall-Sundrum case. In order for there to be four-

dimensional gravity, there must be a normalizable, zero mass gravitational

fluctuation. In order for this to happen, V(z) and A(z) are subject to the

following restrictions [12]:

The zero-energy state is:

ψ0(z) = exp
[
− 3

4
A(z)

]
. (18)

In order for this to be normalizable, exp[−3
2
A(z)] must fall off faster than

1
z

[12].

Moreover, if V (z) > 0 as |z| → ∞, then ψ̂0(z) is always normalizable. If

V (z) < 0 as |z| → ∞, then ψ0(z) is not normalizable and therefore cannot

describe localized four-dimensional gravity. The V (z) = 0 as |z| → ∞ case

is perhaps the most interesting. The Randall-Sundrum 2 case falls into this

category, as well as the other geometries I explored above [12].

These requirements are relatively open, so there are a great many possi-

bilities to explore in the future.
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