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Abstract:

 MINERvA (Main Injector ExpeRiment for v-A) is a high statistics neutrino scattering 

experiment that has been approved to operate in the Neutrino Main Injector (NuMI) beamline at 

Fermi National Accelerator Laboratory.  The goal is to build a detector to improve the 

interpretation of the data collected by the MINOS (Main Injector Neutrino Oscillation Search) 

experiment, which is currently in progress to study the phenomena of neutrino oscillations.  The 

detector will be made up of planes of scintillator strips and is currently in the prototyping phase.  

Methods for improving overall plane uniformity and fiber polishing techniques were developed, 

and a radioactive source-based quality assurance test is currently being developed.  Using a 

10µCi
90

Sr beta source, a signal from a functional fiber within a plane was found to be on the 

order of 100Hz with no significant attenuation affects along the fiber.  If the source is moved 

transversely from the fiber, there is a rapid fall-off in the signal strength.  A stronger source will 

be necessary for a full-scale quality assurance testing for finished planes before they are 

incorporated into the MINERvA detector. 
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 1. Introduction

 MINERvA (Main Injector ExpeRiment for v-A) is a high statistics neutrino scattering 

experiment that has been approved to operate in the NuMI (Neutrino Main Injector) neutrino 

beamline at Fermi National Accelerator laboratory.  A fine-grained hexagonal detector made up 

of an array of scintillator strips will be used to detect interactions in the beamline.  The goal of 

the detector is to improve the interpretation of the data collected by the MINOS (Main Injector 

Neutrino Oscillation Search) experiment, which is currently in progress to study the phenomena 

of neutrino oscillations.

Results from MINERvA will reduce errors in the measured mass splitting measurements.  

The MINERvA detector is to be placed directly in front of the MINOS Near Detector in MINOS 

Hall at Fermilab and will expand our knowledge of low energy neutrino interactions in the 1-18 

GeV energy range.  Figure 1 shows the planned detector in MINOS Hall. 

Figure 1: Schematic diagram of the MINERvA detector in front of the Near Detector in MINOS 

hall.  The smaller hexagon is the MINERvA detector (OD in blue) and the irregular octagon 

(behind) is the MINOS Near Detector. 

The two goals for this year’s research were to develop and improve assembly techniques 

and to determine a procedure for testing the finished assemblies.  Improvements in assembly 
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techniques are described later in this paper along with the current status of a quality assurance 

test for finished planes. 

2.  Detector and Technology Overview 

2.1 MINERvA Scintillator Design 

 The MINERvA detector will consist of two main parts: an outer detector (OD) and an 

inner detector (ID).  The outer detector is made up of six trapezoidal towers of scintillator and 

steel acting as a sampling calorimeter (Figure 2a).  These trapezoids fit around the six edges of 

the hexagonally shaped inner detector.  The inner detector is made up of 196 planes of 

scintillator arrays (Figure 2b).  The array is a series of 127 scintillator strips cut at varying 

lengths and arranged to form a hexagon.   

The cross section of an inner detector strip is a right isosceles triangle with a base of 

3.3cm and height 1.7cm.  The scintillator strips are made of polystyrene doped with organic 

molecules allowing for the detection of particle interactions via scintillation.  Through each strip 

is a green wavelength shifting (WLS) fiber used to collect the scintillator light.  Fibers are routed 

into groups of eight so that they may be glued into optical connectors and a signal reaching the 

fiber may be passed into a photomultiplier tube (PMT).  The array is held in place by light tight 

sheets of black Lexan polycarbonate on the top and bottom.  There is also a Lexan sheet of 

webbing throughout the plane (Figure 2c).  The Lexan functions as structural support and also 

keeps stray light from the surroundings from reaching the scintillator.   

Three prototype inner detector planes have been built to date.  The first, Plane 0, was 

completed in Fall 2006 and sent to Fermilab as a structural and handling test.  Much of the plane 

was destroyed during structural testing and mechanical autopsy by collaborators, but a large 

portion of the plane remained intact and was sent back to William & Mary for optical testing as 



7

described in section 4.4.  The other prototyping planes, Plane 1 and Plane 2, were completed in 

late Fall 2006 and early 2007, respectively.  These two planes were sent to Fermilab as the first 

fully instrumented planes. 

(a) (b)

(c)

Figure 2: (a) Schematic diagram of the MINERvA outer detector with six towers of steel and 

scintillator.  (b) Schematic diagram of inner detector with WLS fibers shown exiting the plane and 

routed into groups of eight.  (c) Schematic cross-section of part of an inner detector scintillator 

array in a plane.  The scintillator is shown as the triangles with Lexan webbing as the heavy black 

line through the triangles.  The outer Lexan skins are the lines above and below the plane. 

2.2 Detector Readout 

As a charged particle travels through a plane, it excites electrons in the doped polystyrene 

of the scintillator.  The electrons then drop back to a ground state and release energy in the form 

of ultraviolet photons.  The light gets absorbed in a WLS fiber passing through the scintillator 

and re-emitted as green light.  This change in wavelength is the result of a Stokes shift.  The light 

then travels down the fiber until it reaches a photomultiplier tube (PMT), which turns the light 

signal into an electric signal with a gain of 10
6
.  This electric signal is amplified and measured as 

a voltage. 
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2.3 Support and Fiber Routing 

 Around the array of scintillator are six pieces of foamed PVC to hold the strips in place 

and provide support.  On one side of the plane (two edges of the hexagon) the PVC is grooved to 

provide access to the fiber holes in the scintillator for epoxy injection (Figure 3a).  On the 

opposite side, where the fibers exit the plane, the PVC is grooved to provide a routing for the 

fibers to the PMTs (Figure 3b).  The side where the fibers exit the scintillator is called the 

detector readout end of the plane. 

(a)  (b)

Figure 3: (a) Foamed PVC with grooves to supply access to the fiber holes.  (b) The fibers are 

routed from the scintillator to the optical connectors in groups of eight. 

2.4 Flatness Testing 

 The plane needs to be as flat as possible for maximum density of the detector.  A smaller, 

more compact detector leads to fewer cracks around the detector and a more complete energy 

measurement.  The variations in flatness of the plane are required to be less than 0.8 mm, or 

approximately 0.03 inches, to meet specifications.  Using a set of calipers and a rigid straight 

edge, the distance from the highest point on the plane to the surface of the Lexan was measured 

to quantify the depth variation in the scintillator assembly.  The straight edge was laid across the 

plane, and the distance from the straight edge to the assembly surface was measured at various 
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points along the plane.  Figure 4 shows a schematic of the locations across the surface of the 

plane where measurements were taken, and Figure 5 is a plot of the results. 

The flatness measurements show that the depth variation in the surface of the plane was 

up to 0.16 inches.  Although the flatness of Plane 1 was an improvement over Plane 0, it was not 

satisfactory for use in the detector.  The plane appeared highest along strip 51 and lowest along 

strip 72.

Qualitatively, the flatness of each plane continues to improve due to advances in 

construction techniques.  A system of pins and fixtures was developed and used on Plane 2 to 

improve the uniformity of the plane.  The system includes fixing the PVC pieces around the 

plane to the workstation table with pins and using a set of plastic pieces to evenly space the strips 

within the plane.  After the PVC pieces have been fixed to the table, half of the scintillator strips 

are laid out in their positions on the bottom skin of Lexan.  These are the strips that are 

underneath the Lexan webbing in the plane.  Plastic combs that have been cut to the appropriate 

dimensions are then used to evenly space the strips.  The spacing is also positioned by two 

plastic pieces that temporarily replace the PVC at one end of the plane and have pins protruding 

along the inner edge that fit into the ends of the scintillator strips.  These two pieces along with 

the plastic combs force the proper alignment of the strips under the Lexan webbing.  This stage 

of the construction is shown in Figure 6.  After the bottom strips are properly aligned, the Lexan 

webbing is attached, and the rest of the strips are put in place and aligned again using the two 

plastic pieces with protruding pins.  Finally, the top Lexan skin is glued onto the surface and the 

PVC pieces around the edges are fastened to the plane. 
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Figure 4: Surface of plane showing locations of depth measurements.  Each line of measurements 

is related to a series in the graph below. 
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The delivery schedule of Plane 2 did not allow for quantitative depth variation 

measurements.  Simple tests showed that the flatness of Plane 2 had variations of about 0.05 

inches, but the measuring technique was not rigorous. 

Figure 6: A picture of a plane being constructed using the new pins and fixture system.  Half of 

the strips have been laid out and are ready for the Lexan webbing to be added.  The strips are held 

in place around the edges by PVC fixed to the table and a series of combs keep the strips properly 

spaced. 

Also to further improve flatness and uniformity for future planes, a system of aluminum 

structures has been constructed to support the workstation and new laminated tabletops that have 

been ordered.  Using these new surfaces, a plank method of plane construction will be tested this 

summer.  The plank method will consist of building smaller sections of the plane and splicing the 

sections together rather than constructing the entire plane at once.

3. Optics 

3.1 Optical Epoxy 

Inside the fiber holes, there is a cushion of air between the fibers and the scintillator.  

This has an effect on how much light from the excited electrons actually makes it into the WLS 

fiber.  Any time light is passing out of one medium into another, reflection occurs at the 

interface.  The index of refraction of each material determines how much reflection and 
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transmission occurs.  The index of refraction (n) is 1.5 for scintillator, 1 for air, 1.4 for the fiber 

coating, and 1.55 for the fiber core itself.  Applying the equation
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at each interface, where t is the transmission coefficient and n is the index of refraction for each 

medium, the theoretical transmission yield of light traveling from the scintillator into the fiber is 

63.3% for normal incidence.  If the light hits the fiber hole with an angle of incidence other than 

zero, total internal reflection causes the average transmission to drop further.  This is 

dramatically improved by filling the air in the fiber holes using a medium with an index of 

refraction much closer to that of the scintillator and fiber coating than the index of refraction of 

air.  The substance used is an optical epoxy with an index of refraction of 1.45.  Using the same 

calculations for normal incidence but replacing air with epoxy, the theoretical yield becomes 

91.6%.  Again, at varying angles of incidence, total internal reflection reduces the theoretical 

yield.

The materials employed were tested by Meghan Snyder, but the epoxy injection 

techniques she employed were not sufficient for the full scintillator strip length used in the 

planes.  The epoxy used is a mixture of 100:14 by mass Epon 815C resin to Epi-Cure 3234 

(TETA) hardener.  After the epoxy is mixed, it is poured into a syringe.  The pressure needed to 

expel the epoxy from the syringe comes from an air driven glue machine that hooks up to the 

back of the syringe.  The needle at the end of the syringe is poked through a small PCV wedge 

coated with petroleum jelly and two gaskets to serve as a stopper for backflow.  The end of the 

needle is put into the fiber hole so that the gasket is flush against the surface of the scintillator 

around the hole.  The epoxy is injected down the fiber hole until it has filled the void around the 

fiber.  A picture of the syringe is shown in Figure 7. 
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Figure 7:  An epoxy-filled syringe with needle through a schematic of PVC wedge (black), 

Vaseline (blue), and gaskets (red). 

 Originally, a silicone sealant had been used in place of the wedge and gaskets.  This 

sealant was ineffective because back pressure popped it off during injection into the longer 

strips, causing backflow and an uneven distribution of epoxy within the hole.  The wedge and 

gasket technique was developed as an effective solution to the problem and has now been 

adopted as part of the production technique. 

3.2 Optical Connectors 

 The fiber routing leads the fibers from the scintillator to the PMT.  The fibers are 

gathered in groups of eight and fed into an optical connector box.  The connector box, which 

serves as a connection between fibers coming from the plane and the fibers going into a PMT, 

consists of three parts.  First is the ferrule that holds the fibers.  The fibers are glued into the 

ferrule using the same mixing and injection methods as those used for filling the fiber holes in 

the scintillator strips with optical epoxy.  The ferrules are then snapped into a spring-loaded clip. 

Figure 8 shows the ferrule and clip pieces before and after being put together with the fibers.  

The ferrule and clip with fibers routed through are then polished using a diamond bit in a fly-

cutter.  The third part of the box is a DDK format connector box.  Clips can be inserted into 

either end of the connector so that the fibers properly align themselves for maximum light 

transmission through the connectors. 
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(a) (b)

Figure 8: DDK connector Parts.  (a) The top pieces are clips and the bottom pieces are ferrules.  

(b) The fibers have been glued into place along with the ferrules into the clips.  The left clip is in 

the connector box and the right clip has been disconnected.  When both clips are in the box, the 

fibers line up and make contact. 

4.  Assembly Testing 

4.1 Optical Connectors 

 A series of tests led to the development of a polishing technique to ensure efficient 

transmission of light through the optical connectors.  To test the technique, the transmission 

through a DDK connector box was measured on five cables, where one cable includes eight 

fibers coupled to a ferrule and clip on both ends.  Five cables of clear fiber, labeled 23-27, were 

tested at Fermilab for transmission.  These fibers were shipped to William & Mary where they 

were cut.  The cut ends were glued into new ferrules and clips using the standard optical 

coupling procedure.  The fibers were then polished using a fly-cutter with a diamond bit and an 

end mill so that the ferrules could be clipped back together using a DDK connector box.  The 

cables were sent back to Fermilab for transmission testing through the connector.  Figure 9 is a 

schematic showing the process of fiber cutting and reattachment through DDK connector. 
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Figure 9: Schematic of the transmission testing process.  a) An uncut cable is connected to a PMT 

for testing.  b) The cable is cut across all eight fibers.  c) The cut fibers are coupled with a 

connector pieces.  d) The fibers are connected and retested. 

  Cable 23 Cable 24 Cable 25 Cable 26 Cable 27 

Average 75.50% 79.70% 69.50% 82.00% 79.10% 

Standard
Deviation 2.00% 1.80% 5.50% 2.90% 1.50% 

Table 1: Raw transmission data of light through each connector after cutting. 

Figure 10: Plot of fraction of light transmitted through each fiber after cutting and calibration.  

(Calibration and graph by Howard Budd.) 
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 The results show a consistent transmission through four of the connectors.  Connector 25 

shows an overall decrease in light yield.  Examination showed a black smudge on the end of the 

fibers in that connector.  The source of this material was never identified, and it has not been 

observed in subsequent tests.  This smudge is the most likely cause for the decrease in 

transmission.   

The required specification for light yield through a connector is 75%, and the results of 

this fiber polishing technique consistently meet this specification.  The procedure was approved 

with the addition of a visual examination of the polished fiber.

4.2 Background Activity 

 Any light not coming from the particles passing through the plane degrades the signal and 

adds error to position measurements.  This light could be a result of light leaks in the plane or 

radioactivity from the surrounding material.  The background activity was measured using a 

single fiber to measure possible radioactivity of the materials being used in plane construction 

and to get a baseline value for background activity.

The materials tested included outer detector scintillator strips, Lexan, electrical tape in 

place of Lexan, Eljen paint over the end of the strip, Scotch-Weld DP-190 translucent epoxy to 

couple the Lexan to the strip, and Scotch-Weld DP-190 gray epoxy to couple the Lexan to the 

strip.  One green WLS fiber was glued into an optical connector using the standard optical 

coupling procedure.  This fiber was used to test background activity in seven combinations of 

materials to find any potential signal-degrading activity.  The ferrule was connected to a PMT by 

a DDK connector and the light captured in the fiber was measured as a current using a 

picoammeter.  Two sets of measurements were made for each combination to determine 

systematic errors.  The setup of the equipment is shown schematically in Figure 11. 
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Figure 11: Schematic diagram of background testing apparatus with green WLS fiber inserted into 

a strip and connected to a PMT.  The current is read out of a picoammeter. 

Sample Scintillator Lexan 

Electrical

Tape

Eljen

paint 

Translucent 

epoxy 

Gray 

epoxy I1 (nA) I2 (nA) 

1             4.2 3.5 

2   x         4.1 3.5 

3 x   x       3.1 3.6 

4 x x         3.5 3.7 

5 x x   x     3.8 3.7 

6 x x     x   3.4 3.7 

7 x x       x 3.5 3.5 

Table 2:  Background activity using a fiber in different materials. 

 Sample 1 is the control sample with only the light-tightened fiber.  The results show no 

evidence that any of the materials tested give enough radioactivity to degrade the signal above 

the level seen in sample 1.  The readings were all between 3.1nA and 4.2nA, which falls in the 

same range as general background activity after light tightening.  The lowest reading came from 

the strip wrapped in electrical tape, which is believed to be the most light-tight wrapping 

technique.  The highest reading came from the bare fiber on the first reading, which is most 

likely due to a small light leak that was addressed before the second trial.  Any variation in the 

current read by the ammeter was within the variation in the control sample.  All the materials 

tested were found to be suitable for use in the MINERvA detector. 

4.3 Source Based Quality Assurance 

 A source based quality assurance test needs to be designed to assess each plane for 

optical defects prior to shipping.  The main concern is the condition of the fibers, which lose 
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their function if they are over-bent or broken.  A light source is necessary because the plane 

assemblies are light-tight.  A radioactive source allows light to be generated in the scintillator 

and be trapped in the fiber.  This light will show up as a signal after passing through a PMT, and 

the signal will give confirmation that the fiber is intact and working. 

A series of tests were run on what was left over of Plane 0 to gather data on what 

properties can be expected from an actual plane.  The same fiber used to test background activity 

was used to determine the properties of a functional fiber in Plane 0.  When exposed to the 

source, one end of the fiber was inserted into a scintillator strip and the other was connected to a 

PMT and picoammeter.   

A radioactive source was used to stimulate the scintillator.  The initial experiment used a 

10µCi
137

Cs source, a gamma source that would penetrate deep into the plane, illuminating both 

top and bottom strips.  This source, however, was not active enough to induce a significant 

signal.  The hotter gamma sources available were not practical for use in this test due to the 

cumbersome 80 pound tungsten shielding required.   

Instead, a beta source, 
90

Sr, was available.  Beta particles are quickly attenuated in the 

material, but those from 
90

Sr have a high enough energy to be useful.  Also, collimated beta 

sources tend to continue traveling in one direction beyond the collimator, where the gamma 

particles would spread out over a large number of strips due to Compton scattering. 

Three tests were run with a collimated 10µCi 
90

Sr beta source placed on the top surface 

of the plane above the fiber.  The first test consisted of a series of measurements taken to find 

what kind of signal could be expected from a particle hitting the plane at various locations along 

the surface.  The second test was a measurement of light output versus transverse source position 
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on a top and bottom strip of the plane.  The third test was to determine the attenuation properties 

of the fiber.

The fiber was inserted into the strip to be tested and connected to the PMT using an 

optical connector, just as in the background activity tests.  The signal from the PMT was then 

amplified by three 10x amplifiers and sent through a discriminator.  The discriminator was set to 

cut out any signal below 1.5 photoelectrons to reduce noise from single photoelectron sources.  

Beta sources should give signals of many photoelectrons.  The signal was then counted by a 

scaler, which was set to measure counts in 10 second periods.  The test configuration is shown in 

Figure 12. 

Figure 12: Schematic diagram of source tests with Plane 0 with green WLS fiber inserted into a 

strip and connected to a PMT.  The PMT is connected to a series of 3 10x amplifiers, a 

discriminator, and the measurements are made using a scaler. 

Each time data was recorded, five measurements were taken and averaged.  Before each 

set of five measurements were made, the plane was light-tightened and a set of five background 

readings was taken.  This assured that the background activity could be accurately subtracted 

from the data collected. 

4.3.1 Range of Signals 

 In the first test, measurements were taken to get an idea of the number of signals that 

could be expected at different points along the surface of the plane.  The goal was to find a 

dynamic range of values, so measurements were taken near the readout end of short strips as well 
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as long strips using the full length of the fiber.  The fiber was inserted into strip 110, which was a 

short top strip near an edge of Plane 0.  The source was placed 11cm from the readout end of the 

strip and readings were taken.  Measurements were also taken at 54cm and 146cm of the same 

strip.  The fiber was then removed from strip 110 and moved into strip 65, the longest top strip in 

the plane.  The source was placed near the end of the fiber at approximately 190cm from the 

readout end of the strip and measurements were taken.  Each of the measurements made in the 

top strips 110 and 65 were repeated in their adjacent bottom strips 109 and 64. 

The readings showed a range from on the order of 100Hz above background down to 

near background levels.  The highest reading, 104Hz, came from the short top strip where the 

source was close to the readout end of the strip. The higher values close to the readout end of the 

strips compared with the far end are most likely due to some attenuation in the fiber.  As 

expected, the lowest readings came when using the bottom strip.  These low rates indicate that a 

stronger source will be required to get statistically significant readings. 

4.3.2 Count Rate vs. Source Position 

 To measure signal counts versus position, only one top strip and one bottom strip were 

used.  The fiber was inserted into a top strip and the source was placed directly over the fiber in 

the center of the strip.  The source was then moved transversely in 4mm increments up to 20mm 

in each direction perpendicular to the strip.  The fiber was then moved to an adjacent bottom 

strip and each measurement was repeated. 

 The results for the top strip show that there is a rapid falloff as the source is moved from 

directly above the fiber.  The strips are only 33mm wide, so when the source is no longer above 

the strip at +/- 17mm, the signal falls back to background levels.  Apart from the reading at 
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Signal Counts vs. Source Position          

Top Strip Count Rate (Hz) 

Source Position (mm) -20 -16 -12 -8 -4 0 4 8 12 16 20 

Count Rate (Hz) -2 11 51 3 49 43 32 20 21 14 -1 

Error 2.16 2.23 2.32 2.33 2.33 2.30 2.29 2.30 2.23 2.23 2.21 

                        

Bottom Strip Count Rate (Hz) 

Source Position (mm) -20 -16 -12 -8 -4 0 4 8 12 16 20 

Count Rate (Hz) 6 0 8 2 8 12 2 -5 3 0 5 

Error 1.61 1.60 1.60 1.62 1.61 1.64 1.60 1.59 1.55 1.55 1.57 

Table 3: Count rate above background of source above background resulting from changes in 

source position. 

Count Rate vs. Source Position for Top Strip
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Figure 13: Count rate as a function of transverse position of the source using a top strip. 

-8mm, the results are smoothly distributed, given that the 0mm mark may not be the exact center 

of the strip.  The point at which the signal drops to background levels appears very close to the 

edges of the strip.

The center of the strip was found by locating the edges of the strip under the Lexan and 

approximating the middle, which is a possible source of error in these measurements.  A better 

fixing technique will need to be developed to more accurately find the center of strips relative to 

their edges. 
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 The results from the bottom strip with this source showed small signals and give little 

useful information.  The only significant signal occurs very close to the center of the strip.  The 

beta particles coming from the source do not allow penetration deep into the scintillator, so small 

count rates are expected.  In the top strips, the data was still useful until the edge of the strip 

because the beta particles could still stimulate the electrons in the scintillator.  In the bottom 

strips, a stronger source is needed to collect useful data to check light yields for quality assurance 

purposes.

4.3.3 Fiber Attenuation 

 In measuring the attenuation properties of the fiber, the fiber was placed in one of the 

longest top strips in the center of the plane, and measurements were taken with the source at 

10cm increments along the length of the strip.  The first measurement was 10cm from the 

readout end of the strip and the final was at 190cm, near the end of the fiber within the strip. 

Count Rate vs. Source Distance
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Figure 14: Count rates at varying distances along the length of a top strip. 

 The results show little attenuation along the fiber within the strip even at large distances.  

A possible source of error may be that the source was not directly above the fiber at each point.  

The only significant drop-off in signal occurs at 190cm, which is at the very end of the fiber. 
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5. Conclusions

 The MINERvA detector is currently in the prototyping phase.  Three inner detector 

planes have been completed during this project.  Each successive plane provided an opportunity 

for improving construction techniques as well as assessment of the resulting assembly. 

 The flatness of Plane 1 was assessed quantitatively, and although there was significant 

improvement over the uniformity of Plane 0, Plane 1 was not satisfactory for use in the 

functional detector.  A system of pins and fixtures was developed to enhance uniformity in future 

planes and was put to use during the building of Plane 2.  The flatness was improved, and higher 

quality workspaces and a plank system for construction may allow for further improvement. 

An effective polishing technique for the optical connectors in the detector was also 

developed and tested.  Using a diamond bit in a fly-cutter to polish the fibers, the transmission 

through these connectors meets the specifications required for use in the detector.

Background activity was tested using the materials that are being used during plane 

construction.  The results show no evidence of potential signal-degrading radioactivity in the 

selected materials. 

 Three tests were run on Plane 0 using a 10µCi
90

Sr beta source, as the available gamma 

sources were not practical for testing due to the heavy shielding required.  First was a test to find 

a range of signal counts that can be expected by placing the source at various locations over the 

surface of the plane.  The maximum values show a signal on the order of 100Hz while using a 

top strip.  The second test displayed the effects of the transverse position of the source relative to 

the center of the strip.  Clearly the signal is strongest when the source is over the fiber rather than 

toward the edges of the strip.  In both of these tests, the lower values resulting from using a 

bottom strip suggest that a stronger source will be required for a useful source-based quality 
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assurance test.  The third test using a source was determining the attenuation properties of the 

fiber.  The results show little evidence of any significant attenuation along the fiber when using a 

90
Sr source and a 1.5 photoelectron threshold. 

 The next step is to find a practical source that can be used to test future planes.  The 

source must be strong enough to interact with both top and bottom strips to give useful 

information on the condition of the fibers.  The source must be set up so that it can accurately 

test different locations over the surface of the plane.  Finally, the procedure for a full-scale 

quality assurance test must be developed to ensure the functionality of the finished planes that 

will be used in the MINERvA detector.  
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