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Introduction: 

 Artificially intelligent machines rely on sensors to perceive the world around 

them.  Much like our own five senses, these machines use the information they collect to 

determine what the object that they are ‘looking’ at actually is.  The machines use 

specific features of objects to come up with a probability that an object is of a certain 

type.  Using features that we have developed, the machines can distinguish one object 

class from another.  In our setup, the machines are using information collected from an 

infrared camera, but future designs will add more sensors.  We are hoping to determine 

how many features are absolutely necessary to classify objects as well as decide which 

features are redundant.   

Our experiment is now using an infrared camera to create images of everyday 

objects in hopes of being able to classify these objects.  This research will eventually be 

used to help create autonomous machines that can navigate around unstructured 

environments such as a war zone.  The machine’s ability to distinguish a tree from a steel 

pole will allow it to follow directions based upon such landmarks.  Such a machine could 

be used to pick up injured soldiers or deliver supplies to storm victims.  The type of 

object that the machine comes across could determine what the next course of action for 

the machine will be.  For example, if a machine comes upon a brick wall, it will have to 

go around it, but if it comes across a hedge, it may be able to go through it. 
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Features and k-Nearest Neighbor:

 A feature is an attribute of an object used to distinguish one object class from 

another.  Ideally these features are invariant to time of day, orientation, and temperature.  

For our experiment, we will be attempting to use thermo-physical and texture features.  

We will identify a set of features with optimal discriminating information.  For example, 

an object could have a curvature of 0.3 and an emissivity of 0.025, this feature vector 

would then be [0.3, 0.025].   

An ideal feature will group objects of one type together with minimum overlap 

between groups, as displayed in Figure 1.  Once we have constructed our feature vectors 

using our collected data, we can then come up with a probability that an unknown data 

point belongs to a certain object class using the k-nearest neighbor algorithm and Bayes’ 

Theorem.  The k-nearest neighbor algorithm takes the k nearest data points to the feature 

vector of an unknown object and calculates a probability that this new data point belongs 

to a specific object class.  The k-nearest neighbor approach, shown in Figure 2, uses the 

Euclidean distance between k points to determine which object class the new object 

should belong to. [1]   
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Figure 1: This graph plots the values 
of different features.  We are looking 
for features that group objects of the 

same type together without any 
overlap between object types.

New instance

Figure 2: When the new instance is plotted in our 
feature plot, we must determine if it belongs with 

the + or the -.                (1) Griffith

While the k-nearest neighbor algorithm works well when the features are 

correctly weighted and the object types are sufficiently spread out, it can be troublesome 

if the features chosen do not group the objects of a class together.  Usually the object 

classes overlap on the feature vectors, making the classification more difficult.  The value 

of k affects the radius of the circle used in Figure 2.  A larger k will lead to a larger radius 

and, in many cases, a better estimate of which object class a new object should belong to.  

For example, in Figure 2, if we choose k to be one the new data point would belong to -, 

since the nearest one point is a -. If k was seven, however, the point would be classified 

as +, since of the seven closest points, there are more +’s than –‘s. [2] 

 Another probability classification that we are using in our data analysis is the 

Bayesian Theorem.  Bayes’ Formula says that the probability of T given feature values F, 
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or P(T| F), depends on the probability of the feature values given T as well as the 

probability of both T and F.  Bayes’ formula is then, 

P(T| F) = P(F| T)P(T)     

                      P(F)   (1)  

 These probabilities are calculated using the k-nearest neighbor approach on 

already classified objects.  Obviously, we want to come up with features that clearly 

separate objects from one another.  The curvature of a tree would be much higher than 

that of a brick wall, so those two objects should be fairly distinguishable using a 

curvature feature.   

If a brick wall were rounded, however, this one feature may not be enough to 

clearly identify the object.  If we were to give our machine too many features to help 

classify objects, however, the computation would become never-ending.  In order to 

make real-time decisions, and thus a practical machine, the number of features analyzed 

must be limited.  Our task is to find the minimum number of features needed to 

distinguish objects and to have the acquisition of these features be practical.  If we were 

to determine that a certain feature required positioning our machine exactly 30 degrees 

from normal to that object, the feature would probably not be retained due to its 

complicated setup. 

Our research has been using an infrared camera to take pictures of very specific 

objects in order to create a data set that we will use to extract pertinent features for 

classification.  We have been collecting this data with hopes of identifying which features 

are necessary and which are not.  We hope to find features that are relatively invariant to 
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temperature, time of day, rotation and orientation.  With this information, our goal is to 

allow for an unstructured environment through which the machine will navigate.   

If our features only work when the sun is out, for example, our machine would 

not be able to classify objects at night, or if it was raining.  The objective of this work is 

to create a machine that can classify objects in an environment in which trees might not 

always be upright, and where a road may have obstacles.  If our features depend on the 

‘norm’ such as a tree’s orientation being vertical for classification, then that feature will 

not work for our application.  Finding features that are relatively invariant, therefore, is 

crucial to our experiment.       

Infrared:

 Every object is radiating some amount of thermal energy.  This energy, or 

blackbody radiation, has a maximum intensity in the infrared region of the 

electromagnetic spectrum.  Any object above absolute zero, even the coldest of cold, is 

giving off infrared radiation.  Unlike visible light, which relies on reflection, infrared 

radiation can be detected without any light source at all. [3]  Infrared cameras display 

different radiation levels as different shades of gray.  An object that was emitting highly, 

due to either a high emissivity, a high temperature, or both would be assigned a lighter 

shade of gray than a cooler, and/or less emissive object. [4]  

Our camera was initially set to automatically make the image clearer by enhancing 

the differences between two objects.  This enhancing feature is an attempt to make the 

infrared images easier to interpret visually.  Two objects at similar levels of emissivity 

and equivalent surface temperatures will be assigned similar gray levels, and will thus be 
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difficult to distinguish in the infrared image.  With the enhancing feature turned on in the 

camera, however, the objects with similar emissivity will have drastically different gray 

levels, making the slight emissivity differences very easy to detect in the infrared image.   

So an object at 20 degrees Fahrenheit (F) was nearly black when compared to an 

object at 60 degrees F.  When that same 20 degree F object was placed next to a cooler, 

less emissive 10 degree F object, however, the first object, which was nearly black a 

moment ago, became much whiter an example of which can be seen in Figures 3 and 4.  

In an attempt to keep more consistency with our data, we have turned off this ‘enhancing’ 

part of the camera so that a 20 degree F object of a certain emissivity will be assigned 

approximately the same gray level every time, thus making classification easier since 

every 20 degree F object of a certain emissivity will be assigned approximately the same 

gray level. 

Figure 3: This brick is much 

cooler than the cedar stump, 
and thus looks black.

Figure 4: This brick, slightly warmed up now 
looks white compared to the cedar stump.
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Emissivity:

The emissivity is defined as the ratio of the energy emitted by an object to that of 

a blackbody at the same temperature and wavelength. [5]  The emissivity of an object is 

an intrinsic property that is a function of surface temperature, surface texture, shape of 

the object, and viewing angle.  These properties are the reason that we are attempting to 

use emissivity as a feature in our research.  The emissivities of several common objects 

are included in Figure 5. [6] 
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Graph adapted from Holst (2)

 Emissivity, however, is not strictly a material property.  The surface of the 

emitting object can affect its emissivity.  A rough surface will emit more than a smooth 

surface since a rough surface has a larger emitting area.  The shape of an emitting object 

also changes the emissivity.  A convex object will have a lower emissivity because the 

radiation is spread out over a larger angle than a flat or concave object.  The emissivity of 

objects also depends on the viewing angle.  Some objects emit at a certain amount at a 
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normal angle and a much lower amount at an angle of forty five degrees because these 

objects do not emit the same at all angles. [7]  Usually, a curved object can be identified 

by its infrared image because they will tend to glow more on the edges in the infrared 

image than a flat object.   

Robert Madding [8] believes that the emissivity of an object can be extracted 

from a thermal image of that object as long as the background radiation, the ambient 

temperature and the reference emitter with a known emissivity are all present.  Building 

on Madding’s research, we are attempting to use his findings in our analysis of the 

emissivity feature.  Using a thermometer mounted on the robot, we are recording the 

ambient temperature at the time and location of all of the objects.  We are collecting 

images of a crinkled sheet of aluminum foil placed on the objects at the different angles 

to get an average reading of the background radiation incident on the object.  Also, by 

means of a piece of black electrical tape attached to all of our objects we hope to create a 

reference emitter that is constant on all of the objects.  Electrical tape has a very high 

emissivity which makes it a practical blackbody.  Using these tools, our initial goal is to 

recreate Madding’s findings and to be able to calculate the emissivities of our objects. 

Some of the limitations of our current setup include the uncertainty of the location 

of the reference emitter, or in our case the black electrical tape.  On some objects such as 

the hedges, the electrical tape is difficult to detect when there is no direct sunlight on the 

object.  Also, the amount of ambient light available on objects is not always uniform.  A 

tree may be glowing when looked at from one angle, and much darker when viewed from 

another angle.  Our ability to detect objects in thermal images collected in the dark 

depends on the thermal properties of the object and the time history of solar radiation. For 
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example, steel poles in particular have a tendency to heat up more slowly during the 

daytime solar cycle due to their high specific heat.   

Consequently, when a low ambient temperature exists during daylight hours, the 

steel poles emit minimal thermal radiation after sunset, making them difficult to detect in 

an infrared image.  In these images, the boundaries of the object itself are nearly 

indistinguishable from the foreground.  Also, the electrical tape is difficult to distinguish 

from the steel pole due to the approximately equivalent emissivity values of the electrical 

tape and paint on the surface of the steel pole.  Whether or not we will be able to use 

these ‘outliers’ in our data analysis still remains to be seen.  These issues imply the need 

to identify limitations on the use of emissivity as a feature in our classification process.  

Experiment:

 The ‘big picture’ explanation of our experiment is to discover features and objects 

that are relatively invariant to weather, viewing angle, size and visibility conditions.  

With these features, we hope to come up with a probability model that will help our robot 

determine if an object is of a certain class.  Since these features need to be relatively 

constant, we are collecting data at different times of the day, under different climate 

conditions, and of thermally different types of objects.  We hope to show that the thermal 

properties of a tree are different enough than those of a steel pole so that classification 

between the two will be straightforward. 

 Our experiment uses thermal images captured using our robot, rMary, shown in 

Figures 6-8. 
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Figure 7: The camera is housed securely in 

the bottom of the steel box.  On the lid of 
the box is a reflective aluminum sheet.

Figure 8: The plastic box in 

which we hold the tablet PC.

Figure 6: The white steel box on the 

front acts as a periscope on rMary. 

Using Bayes’ Theorem along with a feature vector, we hope to come up with 

probabilities that an ‘unknown’ object is of a certain type.  This theorem is helpful 

because we could use the knowledge of past data to come up with these probabilities.  

For example if T is the event that the object is a brick wall and F is the event that the 

object has emissivity 0.65, then we can use our past knowledge of the probability that a 

brick wall has emissivity 0.65 times the probability that the object is a brick wall divided 

by the probability that an object has emissivity of 0.65. 

 We are attempting to show that using the k-nearest neighbor algorithm along with 

Bayes’ Theorem, a machine can be ‘taught’ how to distinguish one object from another.  

While our current setup only uses the infrared camera, we hope to eventually add 
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different sensors such as ultrasound and perhaps even GPS to improve the robots chances 

of navigating around an unstructured environment.  

 The research that we are performing will eventually be used in real world 

situations in which a robot will need to make decisions and take action based upon 

incomplete data in an uncontrolled environment.  Such a situation could be a robot used 

in a war zone to deliver supplies to a certain location using directions that may be flawed 

or invalid due to a constantly changing environment. 

Setup: 

 Our robot, rMary is operated by a remote control which allows rMary to speed up, 

turn around, and slow down.  rMary is battery powered and equipped with a thermal 

camera as well as a tablet PC for running the camera’s software.  While large tank-like 

robots that can move at high rates of speed have their applications, our robot is designed 

to be much smaller and to move at roughly the speed of a walking human. This way our 

robots could eventually move about the pedestrian world without getting in the way of 

our daily lives.  Such a robot could be used to perform tasks alongside soldiers without 

getting in their way.  Also, a robot that moved at the speed of a truck could potentially 

cause innocent bystanders harm if the programming failed, whereas a smaller, slower 

robot in the same situation would be troublesome, but not harmful. 

Mounted on the front of the robot is a steel box with a hinged lid.  Inside the lid, 

we have attached a polished aluminum plate to serve as a reflector.  This plate, along with 

a hinge that sets the lid at a forty five degree angle, creates a periscope on the robot.  We 

designed rMary so that the infrared camera that we use to capture all of our thermal 
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images is safely placed in the bottom of the steel box.  The camera is placed on top of 

several layers of cut foam padding so that the bouncing of the robot in motion will not 

cause harm to the camera.   

The camera is aimed so that it looks straight up at the reflective aluminum plate.  

The angle of the lid can then be adjusted so that the image that the camera collects is 

either directly in front of the robot, or slightly up.  The reason that we decided to use a 

reflection rather than a direct shot was so that we could protect the camera while still 

being able to capture images.  The back side of the steel box has a hole in order to be able 

to manually adjust the focus of the camera. 

Behind the steel box, we have placed a plastic box turned on its side.  This box is 

used to hold the tablet PC as well as the battery pack while the robot is in motion.  We 

used Velcro to hold these items in place within the plastic box.  Mounted on top of the 

box, we added about two feet of PVC piping capped with a funnel shaped cone.  This was 

added to prevent glare from the sun, which had made it nearly impossible to see the 

screen of the tablet PC.  With this new setup, we are able to keep the tablet PC shaded 

while still being able to easily see the image.  We added an external mouse to the tablet 

PC in order to be able to manipulate the tablet PC without having to open the box that it 

sits in.   

Our reasoning behind this periscope design was to be able to collect data while 

the robot was in motion.  The tripod that we originally had attached to the front of the 

robot was not sturdy enough to be sure that the camera would not fall off.  With the new 

periscope design, however, the camera is securely and safely attached to the inside of the 

steel box.   
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The problem was that since the lid of the steel box was adjustable, that meant that 

the reflective plate attached to the lid was not completely stationary.  In fact, when we 

tried to collect data while driving the robot, we found that the terrain was often so bumpy 

that the lid was bouncing, and the images were shaky and blurry.  We hope to fix this 

problem in the future by securing the lid with a non-adjustable pole that can be taken off 

when needed.  In the mean time, we are left with taking still images. 

   

Procedure: 

 When taking out the robot in order to collect data, we first make sure that the 

power bank is fully charged.  Then we can turn on the robot by flipping the four switches 

on the back of the robot.  Next, we attach the tablet PC to the power bank and turn it on.  

Once the tablet PC is running, we adjust the display settings so that the software that the 

camera uses will run correctly.  The pixilation of the screen must first be set to 1024x600 

by pushing the round button on the left hand side of the tablet PC, as shown in Figure 9, 

and then clicking on 1024x600.  

Button to 
switch 
pixilation

Figure 9: The tablet PC  
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After the screen updates itself, we change the settings by clicking on the Start 

button and then selecting Control Panel.  Under Control Panel, we then select Display.  

There is a tab at the top of the Display window called Settings, which we then select.  

Under the Settings tab, we then move the Screen Resolution to 1024x768 and click on 

Apply.  Once that is done, we can plug in the camera to the right hand side of the tablet 

PC and turn it on by flipping the switch on the robot just behind the steel box.   

Finally, we start the TurtleBeach program which allows us to preview the thermal 

images on the tablet PC.  Next we attach an external mouse to the tablet PC and place the 

PC in the plastic box on the back on the robot, making sure that the screen lines up with 

the viewing tube on the top of the box.   

Once we have the camera hooked up and the robot turned on, we can begin 

collecting data.  Before we head outside, we make sure that we have our data sheet to 

record the ambient temperatures as well as any interesting or troublesome images seen 

along the way.  If we are collecting data in the dark, we must also be sure to bring a 

flashlight to be able to see the ambient temperature reading as well as the measuring tape.  

Next we must bring along the crinkled sheet of aluminum foil with duct tape on the 

corners to be used to collect data about the background radiance.  Finally, it is always a 

good idea to bring along a roll of duct tape as well as a roll of electrical tape in case the 

electrical tape on the objects has come off or the duct tape on the aluminum foil does not 

stick.   

When we finally get out the door, we first drive the robot up to one of our 

predetermined objects.  We position the robot so that it is normal to the black electrical 

tape on the object and then use the measuring tape that is attached to the front of the robot 
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to make sure that it is eight feet from the front of the object.  Once the robot is lined up 

with the electrical tape, we open up the lid to the first position, or the forty five degree 

slot.  If the image seen through the tube is off center, we then adjust the robot by pulling 

or pushing on the rear end until the image is centered.   

If the image does not clearly show where the black electrical tape is on the object, 

we then take a ball of duct tape which is easy to see in the thermal images, and place it to 

the side of the electrical tape, as shown in Figure 10.  We make sure to leave some of the 

electrical tape uncovered, and then take an image both with the duct tape and without.  It 

is important to not completely cover the electrical tape, because the duct tape tends to 

warm up the object where it is placed and causes the object to have a faint whitish spot, 

even after it is removed as shown in Figures 11 and 12.

Figure 10: Locating the 

electrical tape using duct tape

Electrical Tape Duct 
Tape
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Where Duct Tape cooled 
down the pole

Figure 12: The steel pole was heated 

up by the duct tape, as can be seen by 
the darker spot on the image.

Duct 

Tape

Figure 11: On some objects, the duct 

tape actually heats up the object and 
affects the image 

After we get the two normal images, we move the robot to a forty five degree 

angle from normal and line it up with the electrical tape once again.  Next we measure the 

distance from the object and make sure that it is about eight feet.  We use the duct tape to 

identify the electrical tape in the thermal image once again, and then capture the forty 

five degree image with and without the duct tape.  

Next, we take the aluminum foil and tape it to the object while leaving the robot 

in place at the forty five degree angle.  We then capture an image of the aluminum foil, as 

in Figure 13, making sure that a sizable portion of the image contains the aluminum foil.  

Next, we move the robot back to a normal position, making sure that it is once again 

eight feet from the object.  If needed, we can adjust the aluminum foil so that the image 

captures most of the foil.  We capture the second aluminum foil image and then record 

the ambient temperature before moving on to the next object. 
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Figure 13: Aluminum foil wrapped around the birch tree

The reason that we put the aluminum foil on last and then move the robot back to 

the normal position is that the foil heats up or cools down the object, thus changing its 

thermal properties for the next image.  By saving the foil for the end, we do not have to 

worry about any effect that it may have on the object.  

We have been collecting data on ten specific objects common to the William and 

Mary campus.  These objects, shown in Figures 14-23, include a picket fence, a hedge, a 

gray steel pole (one of the emergency poles), a brick wall, a birch tree, a basswood tree, a 

wooden wall, an octagon pole, a cedar tree, and a green steel pole.    
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Figure 14: The picket fence Figure 15: The hedge

Figure 16: The gray steel pole Figure 17: The brick wall
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Figure 18: The birch tree Figure 19: The basswood tree

Figure 20: The wood 
wall

Figure 21: The octagonal pole
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Figure 22: The cedar tree Figure 23: The green steel pole

Included in the Figures below are the normal images of all of the different object 

classes that we collected during the course of our experiment.  The images in which the 

object is hard to see were taken either before sunrise, or after sunset.  The images in 

which the object, as well as the electrical tape, is very clear were taken during the mid-

morning or the afternoon when the objects had had time to collect and then emit the 

thermal energy 
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Picket Fence Images:  
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Hedges: 
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Gray Steel Pole:
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Brick Wall:
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Birch Tree: 
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Basswood Tree: 
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Wood Wall: 
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Octagonal Pole: 
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Cedar Tree: 
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Green Steel Pole: 



37



38

Analysis:

 Once we collected all of our data with rMary, we began to analyze it to find 

features which separated the different types of objects from one another.  The feature 

vector that we are analyzing is seventeen dimensional now, but since we cannot render 

that many dimensions, we must instead look at two or three dimensional cuts of the larger 

feature vector.  For example, we can examine the emissivity feature versus the ambient 

temperature feature on a scatter plot. 

 The features that we are examining include the ambient temperature, the 

temperature rate of change, the mean radiance of the object (Lo), the mean radiance of the 

reference emitter (Lr), the quotient of the mean radiance of the object and the mean 

radiance of the reference emitter (Lo/Lr), their difference (Lo-Lr), and their standard 

deviation.  We also are examining the mean background radiance (Lb), the difference 

between the background radiance and the object radiance (Lb-Lr), the emissivity, the 

mean intensity, the average contrast, smoothness, the third moment, uniformity and 

entropy.  

 The ambient temperature is the temperature recorded using a thermometer at the 

time that the image was collected at each object.  The rate of change of the temperature 

was calculated from the KECK lab [9] using the ambient temperatures recorded at the 

time that the images were collected and thirty minutes before.  The mean radiance of the 

object is calculated by finding the mean gray level in a segmented section of the object.  

The mean radiance of the reference emitter is the mean gray level of a segmented section 

of the electrical tape on the objects.  The standard deviation is how much spread there is 

between data points in the two data sets. 



39

 The mean background radiance takes a segmented section of the aluminum foil 

that we placed on all of our objects and then calculates the mean gray level.  We calculate 

the emissivity of the objects by using the equation: [10] 

Eo = ((Lo-Lb)/(Lr-Lb)) * Er                      (2) 

where Eo is the estimated emissivity of the object, Lo, Lb, and Lr are as defined above, 

and Er is the emissivity of the reference emitter, or the electrical tape.   

 We then use a Matlab function from Digital Image Processing Using Matlab [11] 

called “statxture.”  (Appendix 1)  This function looks at several texture features such as 

smoothness, third moment, or skewness, uniformity and entropy, or randomness.  These 

features are all defined in Figure 24. [12]  Using statxture along with our other features, 

such as ambient temperature, Lo, and Lb, we were able to create a giant matrix which we 

then plotted using a program called Minitab.  

Figure 24
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With all of these features selected and all of the pertinent images collected we 

then set out to analyze the data that we collected.  Once we removed the outliers from our 

data set, we then began to analyze the relation between the features.  Most of the outliers 

we detected were collected before sunrise when the objects had already emitted most of 

the thermal energy that they had collected during the day.   We believe that we have these 

outliers because the ambient temperature and the object temperature were nearly 

identical, making it very hard to approximate some of the features.  This observation may 

prove to be a limitation of our method since we want to be able to classify objects no 

matter what time of day it is. 

 First we used a Matlab function that we wrote called “irfeatgenerator” to input all 

of our images and to properly calculate the features that we were looking for. (Appendix 

2)  This function created our multi-dimensional feature matrix that allowed us to 

graphically represent the data that we were analyzing.  With the graphs, we were 

specifically looking for features that were highly correlated, as well as ones that separated 

out the data by object type.  If any features are highly correlated, such as in Figure 25 

which plots entropy vs. uniformity, we can remove one or more of them to decrease 

redundancy in our feature vector.  This decrease in our feature vector size helps decrease 

the computation time needed for our robot to make a classification.  
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Figure 25: These two features, 
uniformity and entropy are highly 
correlated, so we can remove one of 

them to reduce repetition.
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Since we are looking for features that group objects of similar types together, 

while still keeping objects of very different types apart, we are searching for any features 

that group the different types of trees together, but separate them from the steel poles.  

Also, we hope to find features that group the trees next to the wooden wall, since they are 

made out of the same material and thus share thermal properties.  Using Minitab, we 

were able to find some of these features and plot them. In Figure 26, we are plotting the 

standard deviation of Lo and Lr vs. the average contrast vs. Lo-Lb.  These features plot the 

data points almost as vectors stemming out from a common origin.  The closer that we 

are to the ‘origin’, the worse our probability of correct classification currently appears to 

be.  If our data point is further from the origin, however, the probability that we can 
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classify the objects increases since the object classes are further from one another.  
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Figure 26: This plot shows how the 

different object types are separated 
by some of the features.

In Figure 26, we can see that the trees and the wood wall are closely grouped 

together, while the picket fence and the hedges are clearly separate.  While the objects are 

still somewhat clustered around the origin, we can identify some promising patterns.  In 

Figure 27, the objects are nicely separated with the steel poles on one side, and the trees, 

hedges, and wooden walls on the other.  This plot uses uniformity, mean intensity, and 

the standard deviation of Lo and Lr, all defined above, to create the graph.  This separation 

is again very promising for future research.  While we have removed the outliers already 

in this plot, we believe that the clustering around an origin may be due to images 

collected after dark or before sunrise, in which the objects do not seem to radiate much at 

all.  This is something that we will need to examine more carefully in the future.
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Figure 27: This plot very clearly separates 

the object types on either side of the origin.

It now seems that the texture features, such as entropy and standard deviation may 

in fact be more useful for our classification than we had hoped that emissivity would be.  

As shown by the plots above, entropy, or the randomness of an image, as well as the 

difference between the object’s radiance and that of the background, or Lo-Lb, seem to be 

some of the strongest features thus far.  Certainly we may have missed many stronger 

features in our analysis, or we may have simply not discovered them as of yet, but our 

results at this time look promising. 

Conclusions:

 Our analysis thus far leads us to believe that our hypothesis that we could use 

thermal imaging to classify objects is correct.  We believe that our robot will be able to 

use the data collected about certain objects to come up with a high probability that the 

object is of a certain type.  Our experiment, however, certainly has its limitations.  First 
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of all, our hypothesis does not seem to work very well for images collected before 

sunrise.  Also, while the features that we have chosen separate the objects very well at a 

distance from the origin, they are still tightly clustered closer to this source, making it 

very hard to distinguish these objects.   

 In future research, we plan on analyzing the outlier data points more in order to 

attempt to find a way in which we can minimize the number of outliers that we collect.  If 

we discover that the images collected before sunset do not give us very useful data points, 

we may need to use other sensors to collect the data at those times.  We are considering 

such sensors as Ultrasound Sonar [13], which would help us to discover the shape and 

texture of the objects.  Also future plans include an upgrade of rMary to allow us to 

collect data while the robot is in motion.  This data would help us explore the limitations 

and possibilities of real-time classification decisions that the robot would need to 

conduct.    

 Our hypothesis about using emissivity as a feature does not seem to work as well 

as some of the other features that we are using.  We think that this may be due to a 

limitation to the equation that we are using to calculate the emissivities, since it relies on 

the background and object radiance, which are very hard to standardize.  It seems that the 

segment size of the aluminum foil used to calculate the background radiance affects the 

feature value of the emissivity.  We plan to explore this observation more by coming up 

with a standard size for the segmentation.   

 Certainly our observations thus far lead us to believe that someday soon there will 

exist an artificially intelligent autonomous machine that will be able to make observations 

and decisions about its surroundings.  While this possibility may sound farfetched and 
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scary to some, we believe that this technology could greatly improve the lives of many.  

Being able to create a machine that could perform tasks deemed too dangerous or perhaps 

too unpleasant for mankind could help open up new opportunities for many.  We believe 

that we have proven through this experiment and many others like it, that such a ‘sci-fi’ 

world is just around the corner.  
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Appendix I: 

function[t] = statxture(f,scale)

%STATXTURE Computes statistical measures of texture in an image.

%T = STATXTURE(F,SCALE) computes six  measures of texture from an

%image (region) F.  Parameter SCALE is a 6-dim row vector whose

%elements multiply the 6 corresponding elements of T for scaling

%purposes.  If SCALE is not provided it defaults to all 1s.  The

% output T is 6-by-1 vector with the following elements:

%   T(1) = Average gray level

%   T(2) = Average contrast

%   T(3) = Measure of smoothness

%   T(4) = Third moment

%   T(5) = Measure of uniformity

%   T(6) = Entropy

%RGB = imread(im);

%f = rgb2gray(RGB);

if nargin == 1

    scale(1:6) = 1;

else % Make sure it's a row vector.

    scale = scale(:)';

end

%Obtain histogram and normalize it.

p = imhist(f);

p = p./numel(f);

L = length(p);

%Compute the three moments.  We need the unnormalized ones

% from function statmoments.  These are in vector mu.

[v,mu] = statmoments(p,3);

%Compute the six texture measures:

%Average gray level.

t(1) = mu(1);

%Standard deviation.

t(2)= mu(2).^0.5;

%Smoothness.

% First normalize the variance to [0 1] by

%dividing it by (L-1)^2.

varn = mu(2)/(L-1)^2;

t(3) = 1-1/(1+varn);

%Third moment (normalized by (L-1)^2 also).

t(4) = mu(3)/(L-1)^2;

%Uniformity.

t(5) = sum(p.^2);

%Entropy.

t(6) = -sum(p.*(log2(p+eps)));

%Scale the values.

t= t.*scale;
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Appendix II: 

function [FM, IF] = irfeatgenerator

%irfeatgenerator: Generates the classfication features from an object's

% infrared image.

%

%Outputs: (1) Feature Matrix (FM) with objects along rows and feature 

values

%along columns.  Feature values consist of Object Class Label (L), 

Current

%Ambient Temperature (deg F) from probe on rMary (Ta), First Order 

Backward

%Difference Quotient of ambient temperature (deg F) based on KECK data 

(T1),

%Estimated Emissivity of Object (Eo), and Entropy of Object (En).

%(2) Image File name (IF) of objects in column vector format.

%

% Date last modified: 9 April 2007  

% 

% [Symbols:]

% N = Number of objects in given class.

% La = Label of Object Class.

% Ta = Ambient Temperature (deg F) from probe on rMary.  Temperature 

probe

%      is mobile source to consider local ambient temperature 

measurements.

% T1 = First order backward difference quotient of ambient Temperature 

%      (deg F) based on KECK data.  KECK weather station is a fixed 

source 

%      for temperature measurements to consider global rates of change.

% Er = Emissivity of reference emitter (Scotch 700 black electrical 

tape).

% im = input RGB thermal image.

% al = imput RGB aluminum foil image.

% Lo = Mean radiance of segment of object.

% Lr = Mean radiance of segment of reference emitter (electrical tape).

% Lb = Mean radiance of segment of aluminum foil (background).

% Eo = Estimated emissivity of object (center segment of cylinders and 

%      largest possible segment of flat objects w/o foreground 

included).

% Texture Features: The following texture features are computed from 

center 

%      segment of cylinders and largest possible portion of scene 

%      containing flat object w/ foreground included (minus electrical 

tape)).

% Mo = Mean gray level of object scene.

% Co = Average Contrast (standard deviation) of gray levels of object 

scene.

% So = Smoothness of object scene.

% To = Third moment (normalized by (L-1)^2 also) of object scene.

% Uo = Uniformity of object scene.

% En = Entropy of object scene 

% FM = Feature Matrix with objects along rows and feature values along

%      columns.

% IF = Image file names associated with each object in the FM in column

%      vector form.
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%

%[Enter number of objects for given session.]

N = input('Input number of objects for given session:   ')

%

for j = 1:N;

%

%[Enter object class label.]

% 1 = Picket Fence

% 2 = Hedges

% 3 = Brown Steel Pole

% 4 = Brick Wall

% 5 = Birch Tree

% 6 = Basswood Tree

% 7 = Wood Wall

% 8 = Octagon Steel Pole

% 9 = Cedar Tree

% 10 = Green Steel Pole

%

La = menu('Choose object', 'Picket Fence', 'Hedges', 'Brown Steel 

Pole', 'Brick Wall', 'Birch Tree', 'Basswood Tree', 'Wood Wall', 

'Octagon Steel Pole', 'Cedar Tree', 'Green Steel Pole') 

%

%

%[Enter temperature feature values.]

% Ambient temperature (deg F) from probe on robot.

Ta = input('Input ambient temperature (deg F) from probe on rMary:   ')

% First backward difference quotient of ambient temp (deg F) based on 

KECK data.

Tk1 = input('Input KECK temperature (deg F) at current time (4 sig 

figs):   ')

Tk2 = input('Input KECK temperature (deg F) at current - 30 minute time 

(4 sig figs):   ')

T1 = (Tk1 - Tk2)/30;

%  

%[Generate image feature values from manually selected crop segments.]

%

%[Emissivty: Estimated emissivity of object (center segment of 

cylinders and 

%largest possible segment of flat objects w/o foreground included)]

Er = 0.97;

%Enter thermal images, crop and compute mean radiance values.

im = input('Enter thermal image file name as xxx.bmp:   ', 's')

RGB1 = imread(im);

im1 = rgb2gray(RGB1);

'Crop object for Emissivity -- Cylinder Center / w/o Foreground (press 

ENTER to continue)', pause

Ico = imcrop(im1); 

imshow(Ico);

Lo = mean2(Ico);

%

'Crop electrical tape for Emissivity (press ENTER to continue)', pause

Icr = imcrop(im1); 

imshow(Icr);

Lr = mean2(Icr);

%

al = input('Enter aluminum foil image file name as xxx.bmp:   ', 's')

RGB2 = imread(al);
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al1 = rgb2gray(RGB2);

'Crop aluminum foil for Emissivity (press ENTER to continue)', pause

Ica = imcrop(al1); 

imshow(Ica);

Lb = mean2(Ica);

% 

%Compute estimated emissivity of object.

Eo = ((Lo - Lb)/(Lr - Lb)) * Er;

%

%[Texture Features: Texture features of object (center segment of 

cylinders and largest 

%possible portion of scene containing flat object w/ foreground 

included

%(minus electrical tape))]

'Crop object scene for Texture Features -- Cylinder Center / w/ 

Foreground (press ENTER to continue)', pause

Ics = imcrop(im1); 

imshow(Ics);

%

%Obtain histogram and normalize it.

p = imhist(Ics);

p = p./numel(Ics);

L = length(p);

%Compute the three moments.  We need the unnormalized ones

% from function statmoments.  These are in vector mu from Gonzalez's

% statmoments.m code.

[v,mu] = statmoments(p,3);

%Compute the six texture measures:

%Mean gray level of object.

Mo = mu(1);

%Average Contrast (standard deviation) of gray levels of object.

Co = mu(2).^0.5;

%Smoothness of object.

% First normalize the variance to [0 1] by

%dividing it by (L-1)^2.

varn = mu(2)/(L-1)^2;

So = 1-1/(1+varn);

%Third moment (normalized by (L-1)^2 also) of object.

To = mu(3)/(L-1)^2;

%Uniformity of object.

Uo = sum(p.^2);

%Entropy of object.

En = -sum(p.*(log2(p+eps)));

%

%[Feature Matrix]

FM(j,:) = [La Ta T1 Lo Lr Lb Eo Mo Co So To Uo En];

IF{j,1} = im;

end
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