
Search for Dark Matter

in Globular Clusters

A thesis submitted in partial fulfillment of the requirement
for the degree of Bachelor of Science in

Physics from the College of William and Mary in Virginia,

by

Lloyd Jones

Advisor: Dr. Carl Carlson

Williamsburg, Virginia
May 8, 2006



Abstract

Globular clusters are effectively approximated by using a King-Michie distribution. Sherbakov
proposed that identifying the possible amount of dark matter present in globular clusters would
improve understanding of their behavior. This thesis examines the properties of one-component
and two-component models in order to maximize the percentage of dark matter. We find that
we can obtain excellent density fits for some globular clusters (e.g., NGC 288 and NGC 6981)
with up to 95% of the matter being dark. On the other hand, for at least one globular cluster
(NGC 5824) we have not found solutions with more than 50% dark matter.
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Figure 1: Omega Centauri, NGC 5139
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1 Introduction

This thesis attempts to approximate the observable density distributions of globular

clusters that are poorly described by current astronomical models by allowing for

the presence of dark matter. By adding enough matter to create closer fits to clus-

ters that are inadequately modeled; as well as those well-fit by current models, it is

possible to suggest maximum densities of dark matter within globular clusters. An

extension of this thesis could be to compare these models with those suggested by

more complicated force laws.

1.1 History

Many scientists have tried to discover patterns behind the behavior of globular clus-

ters, since they have been resolved. The first clusters were mistaken at first, for

luminous spots and patches by the great English scientist, Edmund Halley, in the

Royal Societys Philosophical Transactions in 1715. It was not until the German-born

English astronomer, William Herschel, with sufficient time and equipment, that these

luminous spots could be discerned into individual stars.

As technology improved, some 150 globular clusters were discovered in the Milky

Way, but more interestingly, similar formations were found around other galaxies,

usually in amounts proportional to the galaxies size. Around the nearby Andromeda

for instance, there are some 250 known clusters; while larger galaxies, such as M87,

have tens of thousands of globular clusters in orbit. [7]

Naturally, scientists have attempted to apply physical principles to form models

that explain the distribution of globular clusters. An early model, suggested by H.C.

Plummer in 1911 is based on the assumption that the potential is:

V = − GM√
r2 + a2

(1)
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and by applying Poissons equation, the density profile is:

ρ(r) =
3M

4πa3
(1 +

r2

a2
)−5/2 (2)

But while the Plummer Model appeared accurate enough in 1911, new data pro-

vided by more powerful telescopes proved the model ineffective near the center and

tail of most distributions.

While many more models were presented which proposed unusual force laws or po-

tentials, King and Michie, in the 1960s advocated different methods to describe the

organization of globular clusters. Their idea was to focus on the observable density

profile, by creating a reasonable numerical distribution based on principles of statis-

tical and classical mechanics. Then, by solving Poissons equation self-consistently, it

was possible to find the approximate potential for the cluster, and then the actual

stellar density.

The disadvantage of this method is that there are several initially unknown pa-

rameters within the integration and solution of the differential equation, which must

be matched to observational data.

2 The King-Michie Method

The King-Michie method, soon to be described, received support more recently from

the works of Kent and Gunn [5] and Grillmair et al. [3], who found that such models

could match closely with experimental evidence. While Kent and Gunn found that

the King model was adequate for many globular clusters, Grillmair et al. noted

that several clusters were poorly mapped with the King Method. But as the Michie

model is a more versatile approach, which uses an extra parameter not accounted for

by Grillmair, it seems reasonable that a model that takes into account only visible

matter may be able to successfully describe the stellar distribution of globular clusters.
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This approach was attempted by Sherbakov [4] with some success.

The general method used to solve explicitly for models of this type is to begin

by identifying certain observable conditions, which can be exploited for the solution.

The model can be solved by imposing several such restrictions, including: the tidal

radius, a limit to the size of the cluster, beyond which all stars are considered to be

separated from the cluster; the core radius, the point at which the surface density

is estimated to fall by half; and the anisotropy radius, the point at which the radial

component begins to dominate the velocities of stars in the globular cluster. As the

later King Model does not account for anisotropy, the King model can be considered

a Michie Model as the anisotropy radius approaches infinity.

The distribution for the Michie model, presented in 1961, is

f(~r,~v) = ke−j2L2/r2
a

(
e−j2(2V (r)+v2) − 1

)
θ(−2V (r)− v2) (3)

where k is a normalization constant, j is a constant proportional to the velocity

dispersion (Sherby), L is the angular momentum, ra is the anisotropy radius, V(r) is

the gravitational potential, and v is the velocity. The step function is imposed so that

any star with a velocity greater than the classical escape velocity is not included.

The number distribution is then normalized over all positions,

N =
∫

d3x d3v f(~r,~v) (4)

Which is proportional to the density,

ρ(r) = m
∫

d3v f(~r,~v)

= m
∫ 1

−1
2πd(cos θ)

∫ 1

2
v dv2f(~r,~v)

= 2πmkj−3 1

2

∫ 1

−1
dy
∫ W

0
dη η1/2 e−α2η(1−y2)

(
eW−η − 1

)
(5)

The integration is then performed by introducing several placeholder variables:

W = −2j2V (r)
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η = j2v2

α =
r

ra

y = cos θ (6)

The density integral becomes, then,

ρ(r) = 2πmkj−3 eW
∫ W

0
dη η1/2

(
e−η − e−W

) ∫ 1

0
dy e−α2η(1−y2) (7)

Then, by applying Poissons equation

∇2
r V (r) = 4πGρ(r) (8)

Substituting W (r), and R = r/rc, where the value of 8πj2r2
cρ0 = 9, was defined by

King’s observations.

∇2
r W (r) = −8πj2Gρ

R =
r

rc

∇2
R W (R) = −8πj2r2

cGρ

(9)

and, taking the following condition, defined by King

8πj2r2
cGρ0 ≡ 9

(10)

In spherical coordinates,

∇2
R W (R) = −9

ρ(r)

ρ0

(11)

This differential equation is solved with the help of Mathematicas NDSolve. The

initial condition of W determines the tidal radius, Rt, while the values of Ra and rc
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Figure 2: The behavior of the model as Ra and W0 are increased

are adjusted so that the data is matched as closely as possible. Usually this method

is applied so that the slope on a log-log plot of the data is identical to that of the

model. The slope between two points on the cluster can be matched by varying W0

and Ra which show the general trend of increasing Rt when W0 is increased and when

Ra is decreased. Both have the effect of flattening the model, but an increase in Ra

is bound by the King model as Ra goes to infinity.

3 Evidence

The data provided by Grillmair, which compares the stellar distribution of seven

clusters in the Milky Way galaxy with the King model, is successful for NGC 2808

and NGC 4590, but fails near Rt for NGC 288, NGC 362, NGC 1904, and NGC 3201,

and misses entirely for NGC 7089. In all circumstances, particularly NGC 288, the

approximation is improved when the Michie model is applied. Above is a good fit

using the King Model [4]

The next best approximation method, the Michie model, improves the accuracy by

adding the additional constraint, ra. Even under the best circumstances, the Michie

model does not perfectly match actual data

Interestingly, there are a variety of good fits to the data provided for every value
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Figure 3: King Model with Rt = 9.28, and Michie Model with Ra = 1.3887 and W0 = 3.643

of rc, and since the value of rc is uncertain, there are a very large number of possible

conditions which produce equally good fits. Without more accurate determination of

the stars at the boundary of the cluster, it becomes difficult to find which curve is the

correct model, only a range of curves, and an even greater range of possible initial

conditions.

4 Dark Matter

The remaining question, introduced in the introduction, is how the presence of dark

matter, a massive but not luminous component of the globular cluster, affects the

accuracy of these models. When an observed distribution continues with a strict

power law dependence in the tail of the distribution, particularly in clusters like

NGC 288 and NGC 5824, it becomes necessary to alter the King-Michie model to

include an extra matter distribution to produce accurate fits.

The two-component model, developed by Roueff et al. [2], suggests that there is

another dark-matter based solution to Poissons equation, which can be modeled by

extending the Michie Method. In effect, it serves to increase the number of parameters

to flexibly modify a one component model, while at the same time, allowing the

tidal radius to be shifted outward by increasing the dark matter ratio. Since the

model is nonlinear, it is not generally possible, except for special cases, to find a
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one-component model that matches the two-component model exactly. The added

dark matter component serves to increase the number of possible solution curves.

Considering the great uncertainties in observing low mass stars, and of accounting

for fluctuations in the stellar background near the cluster’s edge, it seems reasonable

to consider the possibility of an unknown mass within the cluster. This method

does not; however, allow for the density profile to exceed a power-law distribution, a

possibility suggested by Kent and Gunn [5].

Rouef et al. [2] compared the change in the velocity dispersion along the line of

sight using a two-component Michie model, while adjusting the anisotropy radius,

and the light to dark matter ratio. They concluded that while a model with large

anisotropy radii would allow for large changes in the tail as the dark matter ratio

was increased by a factor of ten, the effect was negligible at low anisotropy radii.

They suggested that either a change in the distribution function, or some new factor

outside the tidal radii, such as a tidal tail, might be needed to accurately model

globular clusters.

This idea was explored earlier by Moore [10], who suggested that there might

be a surrounding dark-matter halo which serves to stabilize the stellar distributions

of globular clusters, and through the works of Grillmair [8] [9] and Leon, Meylan,

& Combes [6] who observed tails around numerous clusters, in the Milky Way and

Andromeda galaxies.

The difficulties faced in matching the two-component model to observational data

are similar to those encountered with the one-component, except that finding a good

fit near the tail of the distribution becomes increasingly difficult. Since these tails are

observed to extend far beyond the imposed tidal radius condition, a perfect model

remains elusive. The question becomes then, if current models can suggest a limit to

the amount of dark matter present in globular clusters.
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5 The Two-Component Method

The two-component method was developed by Roueff et al. specifically to better

describe the velocity dispersion profiles within globular clusters, and includes the

addition of a second, possibly non-luminous, stellar density profile, with an unknown

mass.

The Michie profile, defined above, can be conveniently written in terms of the

function,

H(W, α) = eW
∫ ∞
0

dη η1/2
(
e−η − e−W

) ∫ 1

0
dy e−α2η(1−y2) (12)

Where the constant of the first model has been absorbed by the integral, and the

stellar density is derived from the number distribution.

f(r, v) = ke−j2L2/r2
a

(
e−j2(2V (r)+v2) − 1

)
θ(−2V (r)− v2) (13)

The second mass system, with a similar form for the number distribution, has poten-

tial and kinetic energy proportional to the ratio between the two masses,

M = m2/m1 (14)

as follows,

f2(r, v) = k2e
−Mj2L2/r2

a2

(
e−Mj2(2V (r)+v2) − 1

)
θ(−2V (r)− v2)

= k2e
−Mj2v2r2 sin2 θ/r2

a2

(
e−j2(2V (r)+v2) − 1

)
θ(−2V (r)− v2) (15)

where we have allowed for a different anisotropy radius ra2 and a different normal-

ization. The number distribution is then simplified by substituting the following

placeholder variables:

η = Mj2v2

W = −2j2V (r)

α2 = r/ra2

y = cos θ (16)
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So the distribution, f2(r, v) becomes

f2(r, v) = k2e
−α2

2η(1−y2)
(
eMW−η − 1

)
θ(MW − η) (17)

And the density,

ρ2(r) ≡ m2

∫
d3v f2(r, v)

= m2k2

∫ 1

−1
2πd(cos θ)

∫ v2
e

0

1

2
vdv2 e−α2

2η(1−y2)
(
eMW−η − 1

)
= 2πm2k2M

−3/2j−3eMW
∫ M

0
Wdη η1/2

(
e−η − e−MW

) ∫ 1

0
dy e−α2

2η(1−y2)(18)

Using the function definition H(W, α), the density distribution of the second stellar

mass component is given by,

ρ2(r) = 2πk2m2 (m2/m1)
−3/2 j−3H(

m2

m1

W, α2) (19)

Imposing the scaling factor, of the central density of the cluster,

ρ2(r) = ρc2
H(m2W/m1, α2)

H(m2W0/m1, 0)
(20)

Poisson’s equation becomes,

∇2
rV (r) = 4πGρ(r)

In terms of W (r)

∇2
rW (r) = −8πj2G (ρ1(r) + ρ2(r))

(21)

And substituting the additional scaling factor,

R =
r

rc

(22)

The equation becomes

∇2
RW (R) = −8πj2Gr2

c (ρ1 + ρ2) (23)
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Figure 4: The behavior of the model as the proportion of dark matter is increased

And defining rc from the requirement

8πj2r2
cGρc1 ≡ 9 (24)

With the result,

∇2
RW (R) = −9

ρ1 + ρ2

ρc1

= −9

(
H(W, α1)

H(W0, 0)
+

ρc2

ρc1

H(m2W/m1, α2)

H(m2W0/m1, 0)

)
(25)

Which can be solved using Mathematica’s NDSolve.

The improved model shows a regular change, as the ratio of dark matter to light

matter is increased, which parallels the trend observed for an increase in W0.

When M = 0 the two-component model returns to the one-component, and as M

is increased, solutions become increasingly difficult to determine using NDSolve. For

example when Ra1 and Ra2 are set equal to one, the Mathematica code is limited

to considering solution curves to Poisson’s equation until M = 9. While this ratio

can be increased further by changing the anisotropy radius of either the visible or

dark matter component, it does not allow for the overall percentage of dark matter

to increase. It becomes more difficult to accurately fit real distributions when this

percentage is high, and so perhaps, the region beyond Mathematica’s range can be

considered past the boundary of a realistic fit.
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Figure 5: Modeled with rc = 3.2,M = 0.1,W0 = 11, Ra1 = Ra2 = 1

It is not usually necessary to consider a high dark matter in order to find a good fit,

as shown by Sherbakov [4] who was successful in modeling many clusters, including

NGC 288. Above is her two-component fit, and the resulting density profile, where the

outer curve represents the total matter distribution. Such a distribution represents a

cluster that is 95.5% dark matter.

The most interesting part of this model is that at sufficiently large anisotropy

radii, it reduces to the original King Model, and is therefore consistent with clusters

previously successfully modeled with one-component models. For NGC 6981, a cluster

well-fit by the King Model, there is the following two-component fit and density

profile, with 94.9% dark matter:
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Figure 6: Modeled with rc = 1.5,M = 0.2,W0 = 10.085, Ra1 = Ra2 = 1
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Figure 7: Modeled with rc = 1.33,M = 0.5,W0 = 0.098, Ra1 = 0.012, Ra2 = 0.009

It is reasonable to conclude that other clusters well-fit by King Models can con-

tain equally large percentages of dark matter. Another cluster poorly fit by a one-

component model is NGC 5824. Above is a reasonably close fit, with 53% dark

matter.

Unfortunately, although the first consideration was to maximize the percentage of

dark matter by setting the anisotropy radii equal, it was difficult to find a curve that

would break as quickly as observation. It appears that NGC 5824, unlike every other

cluster presented by Grillmair, can contain much less dark matter, unless the center

of the distribution has been incorrectly identified.

6 Conclusion

The results of this analysis reveal that if several distributions are considered inde-

pendently with varying anisotropy radii, there are a variety of possible selections of

parameters which fit with observational stellar density profile data. More interest-

ingly, the model allows for a great deal of dark matter, for example NGC 288 and

NGC 6981, to exceed 90% of the total mass within the cluster and still provide ac-

curate fits. However for at least one globular cluster, NGC 5824, we have not found

solutions that match the density profile data that have more than 50% dark matter
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by mass, although we are not at the moment able to prove as a theorem that more

than 50% dark matter is impossible.

To optimize approximation curves it will be necessary to construct better computer

programs which can minimize the statistical fluctuations between a model and actual

data. Although Mathematica is unable to solve over the entire range of possibilities, it

would be useful to develop a program which can guess, check, and guess again with less

human intervention. Since there are many added solutions for each added component,

it would also be interesting to develop a model which considers more sub-groups and

then executes the same optimization routine. With enough components, it would

be possible to perfectly match any distribution derived from statistical mechanics,

and when compared with new experimental results, to make better predictions about

cluster behavior.
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