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Abstract

Modern physical theories such as string theory and theories of quantum
gravity suggest the existence of a minimal observable physical length. A
nonzero minimum spatial uncertainty can be incorporated into traditional
non-relativistic quantum mechanics via a modification of the position oper-
ator. We explore the implications of this new quantum mechanics, which in
essence has a spatial fuzziness when observed on the minimal length scale.
In particular, we aim to bound the size of the minimal observable length
via applications to atomic and elementary particle systems. Also, we study
the effects of minimal length uncertainty on a free particle encountering a
one-dimensional potential barrier.
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1 Introduction

The need for a minimal observable length has been suggested in modern
physical theories [9]. String theory suggests that matter is composed of vi-
brating strings which themselves have a fundamental size. Because of this,
arbitrarily small distances cannot be probed via string-string scattering. In
theories of quantum gravity, this minimal length regulates unwanted diver-
gences. Consulting the traditional quantum mechanical uncertainty relation1

∆x∆p ≥ 1

2
(1.1)

we see after rearranging that

∆x ≥ 1

2∆p
, (1.2)

implying that position uncertainty can be made to vanish simply taking the
limit ∆p → ∞. We thus see that the traditional formulation of quantum
mechanics is an inadequate theory for dealing with this minimal observable
length. It is easy to see that altering the uncertainty principle so that

∆x∆p ≥ 1

2

(
1 + α2(∆p)2

)
, (1.3)

where α is a parameter with units of length, implies that ∆x ≥ α. Note
that it is a non-trivial assumption that a minimal observable physical length
should be manifest as a minimal uncertainty in the position operator [8].
Nevertheless, consulting the generalized uncertainty principle [5] for two op-
erators A,B acting on a Hilbert space, we see that

∆A∆B ≥
∣∣∣∣ 12i 〈[A,B]〉

∣∣∣∣ . (1.4)

It is thus obvious from Eq. (1.4) that we must change our position and/or
momentum operators in order to arrive at the uncertainty relation given in
Eq. (1.3). Again from Eq. (1.4) we see that for our new operators xnew and
pnew we have the equality

1

2

(
1 + α2(∆pnew)2

)
=

∣∣∣∣ 12i 〈[xnew, pnew]〉
∣∣∣∣ . (1.5)

1We follow the particle physics convention of setting ~ = c = 1.
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We should also note that we would like our new momentum and position
operators to reduce to the traditional operators in the α→ 0 limit. A number
of ways to satisfy Eq. (1.5) have been studied in the literature. We shall
choose the simplest in which the momentum operator remains unchanged
and the position operator remains Hermitian [4]. Our new operators are
given by

xnew = x+ α2pxp (1.6)

pnew = p (1.7)

where x and p = −i d
dx

are the traditional position and momentum operators.
Other possibilities have been discussed in the literature such as

xnew = x+ α2p2x (1.8)

pnew = p (1.9)

given in [8] and the more general

xnew = x+ α2p2x+ iγp (1.10)

pnew = p (1.11)

which is given in [3]. Our choice has the natural generalization to three
dimensions given by

xi
new = xi + α2pjxipj (1.12)

pi
new = pi (1.13)

where the indices i and j range over all spatial coordinates and repeated
indices are summed over according to the Einstein summation convention.
We comment that these modifications to the position operators will also lead
to a nontrivial commutation for the spatial coordinates:

[xi, xj] 6= 0 for i 6= j. (1.14)

Thus theories with minimal length uncertainty relations are noncommu-
tative generalizations of traditional quantum mechanics. With our theory in
place, we will now study quantum mechanical systems. In the past, general
properties of the Hilbert space underlying these theories was studied in [8].
In more concrete applications, the hydrogen atom has been studied in both
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[1] and [4]. In [1] and [8], a momentum space representation is utilized to
analyze these problems. It is natural (but difficult) to work in momentum
space as position wavefunctions lose some physical meaning in theories in-
corporating minimal length uncertainty. This is seen by noticing that we can
approximate a position eigenstate as the limit of position space wavefunc-
tions [8], however, a position eigenstate will contradict our minimal length
uncertainty relation. We shall follow [4] in using perturbation theory to ad-
dress many issues. We begin by applying our new physics to the diatomic
molecule, in specific diatomic hydrogen, in an attempt to bound the size of
the minimal length parameter α. We also analyze the elementary particle
system of quarkonium. In both these systems, we calculate the energy shifts
due to our new physics and use them to bound the minimal length parame-
ter. Finally, we will use numerical methods to study a one-dimensional free
particle encountering a potential barrier.
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2 The Diatomic Molecule

The traditional treatment of diatomic molecules is given in [2]. We begin
with the Schrödinger equation for the relative motion of the nuclear masses
M1 and M2 given by[

−1

2M
∇2 + U(R)

]
ψ(R, θ, φ) = Eψ(R, θ, φ) (2.1)

where R is the separation of the nuclei and M is the reduced mass given by

M =
M1M2

M1 +M2

. (2.2)

Utilizing the standard central force separation [5] we find that[
−1

2M

d2

dR2
+ U(R) +

1

2M

l(l + 1)

R2

]
u(R) = Eu(R) (2.3)

where U(R) is the one-dimensional inter-nucleon potential, u(R) = Rr(R)
for the radial wavefunction r(R), l is the azimuthal quantum number and
R = xixi, where the repeated indices are again summed over. The inter-
nucleon potential can be approximated well for low electronic states by the
Morse Potential, given by:

U(R) = U0

[
e−2(R−R0)/a − 2e−(R−R0)/a

]
. (2.4)

We can combine terms to write an effective one-dimensional potential as

U ′(R) = U(R) +
1

2M

l(l + 1)

R2
(2.5)

which can be expanded about its minimum (at R = R1) to give:

U ′(R) ' U ′
o +

1

2
k(R−R1)

2 + b(R−R1)
3 + c(R−R1)

4, (2.6)
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where

R1 = R0 +
l(l + 1)a2

2MR3
0U0

(2.7)

U ′
0 = −U0 +

l(l + 1)

2MR2
0

− l2(l + 1)2a2

4M2R6
0U0

(2.8)

k =
2U0

a2
− 3l(l + 1)

MR2
0a

2

a

R0

(
1− a

R0

)
(2.9)

b = −U0

a3
(2.10)

c =
7U0

12a4
. (2.11)

We now observe that Eq. (2.6) appears like the potential to a simple harmonic
oscillator with cubic and quartic perturbations. We can analyze the system
utilizing perturbation theory. Recall that for a Schrödinger equation of the
form

Hψ = Eψ (2.12)

if we perturb the Hamiltonian so that H → H+H ′, then the first order shift
in energy is given by

∆En = 〈ψn|H ′|ψn〉 (2.13)

where En is the energy corresponding to the nth eigenstate ψn. The energy
spectrum can be found in this way to give

En = U ′
o +

(
k

M

)1/2(
n+

1

2

)
− b2

Mk2

[
15

4

(
n+

1

2

)2

+
7

16

]
(2.14)

+
3c

2Mk

[(
n+

1

2

)2

+
1

4

]
. (2.15)

Our strategy now is to introduce our new position operators and retrieve the
potential given in Eq. (2.6) plus additional terms which we will again treat
with perturbation theory. We let

xi
new = xi + α2pjxipj (2.16)

for i, j = 1, 2, 3. We will discard terms of order O(αn) for n ≥ 4 throughout
our consideration, as these terms are extremely small. We now have
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Rnew =
√
xi

newx
i
new (2.17)

=
√

(xi + α2pjxipj)(xi + α2pjxipj) (2.18)

=
√
xixi + α2(xipjxipj + pjxipjxi) +O(α4) (2.19)

'
√
R2 + α2(xipjxipj + pjxipjxi) (2.20)

= R

√
1 +

α2

R2
(xipjxipj + pjxipjxi) (2.21)

' R

(
1 +

α2

2R2
(xipjxipj + pjxipjxi)

)
(2.22)

= R +
α2

2R
(xipjxipj + pjxipjxi). (2.23)

Now let β = xipjxipj + pjxipjxi to simplify notation. We will use the ap-
proximations

R2
new = R2 + α2β (2.24)

Rnew = R +
α2

2R
β. (2.25)

We will now insert these new operators into our potential, aiming to retrieve
our old potential, plus terms which can be viewed as additional perturbations.
We begin with the quadratic term:

1

2
k(Rnew −R1)

2 =
1

2
k
(
R2

new − 2R1Rnew +R2
1

)
(2.26)

=
1

2
k

(
(R−R1)

2 + α2

(
1− R1

R

)
β

)
, (2.27)

(2.28)

so our quadratic perturbation is

H ′
2 =

1

2
kα2

(
1− R1

R

)
β. (2.29)

Now we consider
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R3
new =

(
R +

α2

2R
β

)3

, (2.30)

which can be expanded to give

R3
new = R3 +

α2R

2
β +

α2

2
βR +

α2

2R
βR2 +O(α4) +O(α6). (2.31)

Now our cubic term in the potential becomes

b(Rnew −R1)
3 = b

(
R3

new − 3R1R
2
new + 3R2

1Rnew −R3
1

)
(2.32)

= b

[
(R−R1)

3 + α2

(
R

2
− 3R1 +

3R2
1

2R

)
β +

α2

2
βR +

α2

2R
βR2

]
,

giving a cubic perturbation:

H ′
3 = bα2

(
R

2
− 3R1 +

3R2
1

2R

)
β +

bα2

2
βR +

bα2

2R
βR2. (2.33)

We must now only consider the fourth order term. First, we see

R4
new =

(
R2 + α2β

)2
= R4 + α2R2β + α2βR2 +O(α4), (2.34)

so the fourth order term in the potential is

c(Rnew −R1)
4 = (2.35)

c((R−R1)
4 + α2R2β + α2βR2 − 2α2R1Rβ

−2α2R1βR−
2α2R1

R
βR2 + 6α2R2

1β −
4α2R3

1

R
β).

The quartic perturbation is thus given by

H ′
4 = cα2

(
R2 − 2R1R + 6R2

1 −
2R3

1

R

)
β− 2cα2R1βR+ cα2

(
1− 2R1

R

)
βR2.

(2.36)
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We can combine (2.29), (2.33), and (2.36) to give the total perturbation:

H ′ = (2.37)

α2

(
k

2
− kR1

2R
+
bR

2
− 3bR1

)
β

+

(
3bR2

1

2R
+ cR2 − 2cR1R + 6cR2

1 −
2cR3

1

R

)
β

+ α2

(
b

2
− 2cR1

)
βR + α2

(
b

2R
+ c− 2cR1

R

)
βR2.

We now aim to simplify the quantity β. We have (where i is the imaginary
unit when not an index)

β = xipjxipj + pjxipjxi (2.38)

= xi(xipj − [xi, pj])pj + pj(pjxi + [xi, pj])xi (2.39)

= xixipjpj − iδi,jx
ipj + pjpjxixi + iδi,jp

jxi (2.40)

= −R2∇2 −∇2R2 + i[pi, xi] (2.41)

= −R2∇2 −∇2R2 + 3 (2.42)

= −(R2∇2 +∇2R2 − 3), (2.43)

following from the canonical commutation relation given by[
xi, pj

]
= iδi,j. (2.44)

We wish to compare to the pure vibrational spectrum (l = 0), which is
approximately given by:

E = −
[√

U0 −
1

a
√

2M
(n+

1

2
)

]2

. (2.45)

Since Y00 =
(

1
4π

)1/2
, the Laplacian in our perturbation will act only on the

radial wavefunctions, we see that our energy shifts are given by

∆En = 〈un(R)|H ′|un(R)〉, (2.46)
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where un(R) are the wavefunctions for an unperturbed simple harmonic os-

cillator. For t =
√
Mω(R − R1) and ω =

√
k
M

, the first few wavefunctions

are given by:

u0 =

(
Mω

π

)1/4

e−t2/2 (2.47)

u1 =

(
Mω

π

)1/4
1√
2
2te−t2/2 (2.48)

u2 =

(
Mω

π

)1/4
1

2
√

2
(4t2 − 2)e−t2/2 (2.49)

u3 =

(
Mω

π

)1/4
1

4
√

3
(8t3 − 12t)e−t2/2 (2.50)

u4 =

(
Mω

π

)1/4
1

8
√

6
(16t4 − 48t2 + 12)e−t2/2 (2.51)

u3 =

(
Mω

π

)1/4
1

16
√

15
(32t5 − 160t3 + 120t)e−t2/2 (2.52)

(2.53)

and more generally by:

un(t) =

(
Mω

π

)1/4
1√
2nn!

Hn(t)e−t2/2, (2.54)

where Hn(t) is the nth Hermite polynomial. In order to compute the pertur-
bations, we need to find numerical values for the parameters in the potential.
With l = 0, the parameters of interest are U0, a, and R0. Considering di-
atomic hydrogen, we consult [2] to find that R0 = 375.012 MeV−1. We
compare to the experimental data for the vibrational spectra to find the re-
maining two parameters. We extract the first few vibrational energies given
in [7] in Table 1.

Using least squares methods, we fit the pure vibrational spectra given
in Eq. (2.45) with this data to find the values U0 = 4.73049 eV and a =
258.759 MeV−1. Also, M = mh/2 where mh = 938.272029 MeV, the mass of
a hydrogen nucleus. Using these values, we evaluate the inner products to
find the values of our perturbations, summarized in Table 2. Considering the
relatively large experimental error in the spectrum data, and the fact that
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Quantum Number (n) Vibrational Energy (in eV) Error (in eV)
0 −4.46607 ±6.05245× 10−6

1 −3.94957 ±2.00196× 10−5

2 −3.46204 ±4.26775× 10−5

3 −3.00326 ±8.14753× 10−5

4 −2.57302 ±1.43863× 10−4

5 −2.17109 ±2.37287× 10−4

Table 1: Vibrational Energies for H2

n ∆En00

0 −143.601 eV (α/ eV−1)2

1 −134.231 eV (α/ eV−1)2

2 −103.091 eV (α/ eV−1)2

3 −46.0552 eV (α/ eV−1)2

4 41.5616 eV (α/ eV−1)2

5 167.154 eV (α/ eV−1)2

Table 2: Perturbations to the Hydrogen Spectrum

the perturbations are only on the eV scale, we do not expect a particularly
strong bound on the minimal length parameter α. Nevertheless, we can still
approximate a bound. We can require the perturbations to the energy to
be smaller than the error in the experimental data. Considering the ground
state we thus have

143.601 eV ×
( α

eV−1

)2

≤ 2× 6.05245× 10−6 eV = 1.21049× 10−5 eV

giving a bound
α ≤ 290.337 MeV−1

or restoring ~ and c to give standard units

α ≤ 5.73× 10−11 meters

which is a weaker bound than given in the literature [4]. A slightly tighter
bound can be found using data from [10]. In this paper the ground state

10



energy for molecular hydrogen is measured accurately to ±1×10−8 eV which
gives

143.601 eV ×
( α

eV−1

)2

≤ 2× 10−8 eV

giving a bound for α of
α ≤ 11.801 MeV−1

or
α ≤ 2.33× 10−12 meters.

Although our quantitative analysis does not enable us to bound α tightly,
we still can comment qualitatively. In Figure 1 we have plotted E(α) as a
function of α.

Figure 1: E(α) versus α in eV

Note that for the first four energy levels, the energy spectrum shifts neg-
atively, but then a sign change occurs and the next few energy levels shift
positively. This behavior is expected, as in [4] it was shown that the perturba-
tions to the energy levels for a simple harmonic oscillator grow as a function
of the principal quantum number. Also, note that Eq. (2.45) implies that
the energy spacing between quantum levels decreases as the quantum level
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increases. With sufficiently precise data, it is our hope that we can exploit
these counteracting effects to bound the minimal length parameter tightly.
Unfortunately, the energy data we have presented is the most precise found in
the literature. To estimate the precision needed in the spectrum of diatomic
hydrogen to give an interesting bound, we consider a plot of |E(α)−E(0)|

E(0)
versus

1
α

given in Figure 2.

Figure 2: |E(α)−E(0)|
E(0)

versus 1
α

in eV

We see that in order to bound α on the TeV scale, we would need precision
in the diatomic hydrogen spectra data better than 10−22 eV. We are interested
in energy scales on the order of TeV not only because such a bound would
be tighter than those found in the literature, but also because this scale
corresponds to the energies of the current highest energy particle colliders.
It is our hope that these results will motivate future experiments to more
accurately measure the vibrational spectrum of diatomic hydrogen.

12



3 Quarkonium

The elementary particle system of a quark-antiquark pair known as quarko-
nium has been modeled using non-relativistic quantum mechanics. The
Hamiltonian for this system is given in [6] and appears hydrogen-like with a
number of perturbative terms, as well as a linearly confining term. Dropping
the perturbative terms, we find the potential to be given by

V (r) =
−4as

3r
+ Ar

with the parameters as (the strong coupling constant) and A as given in [6].
Recall that the Coulomb potential is given by

V (r) =
−e2

r

so we can utilize the energy shifts found in [4] for the hydrogen atom simply
by making the parameter substitution e2 → 4as

3
, and then viewing the linear

term as a perturbation. The energy shifts due to minimal length uncertainty
for the hydrogen spectrum were found to be

∆E100 =
5e2

a2
0

α2

∆E200 =

(
19 +

√
12544 + 18π2

8

)
e2

48a3
0

α2

∆E21±1 =

(
19−

√
12544 + 18π2

8

)
e2

48a3
0

α2

∆E210 =
5e2

48a3
0

α2

with a0 = 1
µe2 where µ = memp

me+mp
is the reduced mass of the system (me and

mp are the electron and proton mass respectively). It follows that taking
a0 → 1

µ( 4as
3

)
and µ = mq

2
for quark mass mq gives the shifts for quarkonium
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due to the hydrogen-like term:

∆E100 =
160m3

qa
4
s

81
α2

∆E200 =

(
19 +

√
12544 + 18π2

8

)
2m3

qa
4
s

243
α2

∆E21±1 =

(
19−

√
12544 + 18π2

8

)
2m3

qa
4
s

243
α2

∆E210 =
10m3

qa
4
s

243
α2.

For the shifts due to the linear term, we use perturbation theory on hydrogen-
like wavefunctions. These functions are given by

ψnlm(r, θ, φ) =

√(
2

nb

)3
(n− l − 1)!

2n[(n+ l)!]3
e−r/nb

(
2r

nb

)l [
L2l+1

n−l−1(2r/nb)
]
Y m

l (θ, φ)

where b = 3
4µas

, Li
j are associated Laguerre polynomials, and Y i

j are spherical

harmonics [5]. We now recall from our previous discussion that

rnew = r +
α2

2r
β

so our perturbation in the energy due to minimal length uncertainty resulting
from the linear term is given by

∆Ẽnlm = 〈ψnlm|A
α2

2r
β|ψnlm〉.

We find that

∆Ẽ100 = 0

∆Ẽ200 =
mqAas

4
α2

∆Ẽ21±1 = ∆Ẽ210 =
5mqAas

12
α2.

We now consider the systems of charmonium (a charm quark-antiquark pair)
and bottomonium (a bottom quark-antiquark pair). For charmonium, we

14



Charmonium Shift Bottomonium Shift
∆E100 0.0816 GeV (α/ GeV−1)2 1.50 GeV (α/ GeV−1)2

∆E200 0.0319 GeV (α/ GeV−1)2 0.2656 GeV (α/ GeV−1)2

∆E21±1 0.0363 GeV (α/ GeV−1)2 0.1318 GeV (α/ GeV−1)2

∆E210 0.0364 GeV (α/ GeV−1)2 0.1324 GeV (α/ GeV−1)2

Table 3: Energy Shifts for Bottomonium and Charmonium

have mq = 1.2 GeV, as = 0.392, and A = 0.177 GeV2 and for bottomonium
we have mq = 4.78 GeV, as = 0.288, and A = 0.177 GeV2. Combining our
two energy shifts, we summarize the results in Table 3. Although precise
experimental data is not available, we can still place an approximate bound
on the size of the minimal length parameter α. The ground state energy for
bottomonium is known to be approximately E100 = 9 GeV. Assuming this
energy can be measured with ten percent accuracy, we have

1.5 GeV×
( α

GeV−1

)2

≤ 0.9 GeV

giving a bound of
α ≤ 0.775 GeV−1.

or simply
α ≤ 1.53× 10−16 meters.

While this estimate is rough, it is much stronger than the bound placed
using diatomic hydrogen due to the high energy scale of the quarkonium
system. It is our hope that this preliminary consideration will motivate future
research into a more rigorous consideration of the application of minimal
length uncertainty to the quarkonium system, possibly in the framework of
relativistic quantum mechanics.
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4 One Dimensional Barrier

In a typical course in quantum mechanics, the system of a free particle en-
countering a one-dimensional barrier is studied. In such a problem, we have
a potential given by

V (x) =

{
V0 if 0 ≤ x ≤ a
0 otherwise.

It is not obvious how to introduce minimal length uncertainty into this prob-
lem as the Hamiltonian does not explicitly depend on position. Instead, we
choose to analyze the one-dimensional system given by

V (x) =

{
Ax+ V0 if 0 ≤ x ≤ a

0 otherwise.

Taking the limit A→ 0 will reduce to our original problem, and the system
will be a good approximation to the constant barrier provided the slope A is
not too large. The Schrödinger equation for this system is given by

−1

2m

d2ψ

dx2
= Eψ

in the regions where the potential is zero. The solutions are well known to
be plane waves given by

ψ(x) = c1e
ikx + c2e

−ikx

where k =
√

2mE. In the intermediate region, we have the equation

−1

2m

d2ψ

dx2
+ Axψ + V0ψ = Eψ. (4.1)

We now introduce minimal length uncertainty, taking xnew = x + α2pxp.
This leads to the following Schrödinger equation in the intermediate region:

−1

2m

d2ψ

dx2
+ Axψ − α2 d

dx

(
x
dψ

dx

)
+ V0ψ = Eψ.

Expanding, we see this equation takes the form

−1

2m

d2ψ

dx2
+ Axψ − α2dψ

dx
− α2x

d2ψ

dx2
+ (V0 − E)ψ = 0. (4.2)
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Traditionally, our method for analyzing this system would be to solve equa-
tion (4.1) and then match the boundary conditions to the solutions where
the potential is zero. If we assume an incident particle traveling from the
left, these solutions take the form

ψ(x) =

{
eikx +Re−ikx for x < 0

Teikx for x > a

where we have fixed c1 by normalization, and assumed that there is no inci-
dent wave from the right [5]. The quantities of interest are then given by |R|2,
the reflection coefficient, and |T |2, the transmission coefficient, representing
the probabilities that the wave is reflected and transmitted respectively. Un-
fortunately, there is no simple solution to equation (4.2), so we must pro-
ceed numerically. To do so, we alter our strategy slightly. Traditionally, we
matched at the boundary by setting

ψleft(0) = ψmiddle(0)

ψ′
left(0) = ψ′

middle(0)

ψmiddle(a) = ψright(a)

ψ′
middle(a) = ψ′

right(a).

Since we do not know the solution in the intermediate region, we must nu-
merically search for the best solution by testing a variety of values for R. We
solve the differential equation (4.2) with initial conditions ψ(0) = 1 +R and
ψ′(0) = ik(1 − R), the analog of matching boundary conditions at x = 0.
To match boundary conditions at x = a, we search for a solution such that
ψ′(a) = ikψ(a). This calculation is carried out using Mathematica, with
sample code below:

m = 1/2;

Energy = 2;

V = 1;

A = 1/100

a = 10

theta = 0;

k = sqrt(2*m*Energy);

alpha = 1;
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B = 0;

Do[

R = 0;

Do[

Clear[F];

Clear[B];

Clear[solution];

solution =

NDSolve[{-1/(2m)*y’’[x] + A*x*y[x] - alpha^2*y’[x]

- alpha^2*x*y’’[x] + (V - Energy)*y[x] == 0,

y[0] == 1 + Re^(i*theta), y’[0] == i*k*(1 - Re^(i*theta))},

y,{x,0,a}];

F = y[a]/.solution;

B = Min[Abs[(i*k*y[a]/.solution)-(y’[a]/.solution)],

0.01];

If[B!=0.01, Print[B, Abs[R], Re^(i*theta), Abs[F],F]];

R=R + 1/200, {i,200}];

theta = theta + pi/256, {i,512}]

Note that we input values for R such that |R| ≤ 1, as it would be unrea-
sonable for the probability of the wave being reflected to be greater than 1.
In essence, we stratify the unit disk and search for the value for R such that
ψ′(a) best matches ikψ(a). The code outputs all values for the difference of
these two values which are sufficiently small (about 1− 2 percent of ψ′(a)).
We then choose the smallest and take the corresponding values for |R| and
|F | to analyze the system.

We now pose the question, what happens when the length of the barrier
a shrinks smaller than the minimal length parameter α? To analyze this
situation, we simply run the code above for a variety of values of a, keeping
the other parameters constant. We let m = 1/2, Energy = 2, V0 = 1, α = 1,
so all our energy scales are comparable, and take A = 1

100
, so our barrier is

relatively flat. The values for |R| and |T | are given in table 4
We plot this data in Figure 3 to easily observe the overall behavior of the

transmission and reflection coefficients as the width of the barrier varies.
Notice that as the barrier shrinks to a size smaller than that of the mini-

mal length, |T | (and thus |T |2) approaches 1, while |R| (and |R|2) approaches
zero. It seems that when the barrier is smaller than the fundamental length,
the incident wave ‘sees’ less of the barrier, and thus travels right over the
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a |R| |T |
10 0.775 0.197
9 0.740 0.212
8 0.695 0.241
7 0.620 0.277
6 0.505 0.326
5 0.415 0.372
4 0.460 0.396
3 0.545 0.419
2 0.560 0.480
1 0.435 0.636

0.5 0.265 0.788
0.25 0.145 0.884
0.1 0.060 0.952
0.01 0.005 0.996

Table 4: |R| and |T | for various values of a

barrier with nearly perfect transmission.
Taking a more careful look at the data in Table 4 we see a peculiar

result. Notice that the transmission coefficients are |R|2 and |T |2. In the
traditional case, it was always the case that |R|2 + |T |2 = 1. This is the
conservation of probability current for the system, which can be derived
from the Schrödinger equation. However, our numerical solution appears to
show that we are altering the Schrödinger equation in such a way as to alter
the conservation of probability current. To check that this is not simply a
flaw in the numerical methods, we took the limit α → 0 in the code and
ran similar simulations for this potential as well as many other shapes. In
each of these cases, probability current was verified to be conserved. This
peculiarity suggests that either probability current is not conserved in this
theory or that the statistical interpretation is not entirely valid. It is our
hope that future work in this direction will shed light on this phenomenon.
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Figure 3: |R| and |T | as a function of a
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5 Conclusion

We were able to successfully explore the quantum mechanical structures of
a space in which there is a nontrivial lower bound on position uncertainty.
Through applications to molecular and elementary particle systems, we were
able to not only bound the minimal length parameter α, but also to motivate
the experimental investigation of precise data on diatomic and quarkonium
spectra. Finally, we were able to explore the underlying effects of minimal
length uncertainty of the traditional structure of quantum mechanics by ex-
ploring the one-dimensional barrier. Hopefully, this investigation will prove
helpful in future investigations of scattering in minimal length theories.
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