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1 Introduction

As a newcomer to computational cell biology, I spent the entirety of the first semester and

much of second semester learning about modeling techniques using Matlab, the physiology

of intracellular calcium dynamics, and the various types of models already in use. To begin

with I learned about Euler’s explicit method and the Crank-Nicholson implicit method for

numerically solving diffusion equations and implemented these methods in a Matlab code to

model the one dimensional spatio-temporal ”cable equation”. By the end of first semester,

I had a spatially extended (in one dimension) model of intracellular Ca2+ concentration

([Ca2+]) that included stochastic independently gating two-state channels. While the for-

mulation of this model was crucial to the development of my understanding of models of

intracellular Ca2+ handling, it was preliminary work. The main goal of my research was to

conduct a parameter study to compare two different modeling approaches used in the study

of intracellular [Ca2+] oscillations.

Dr. Smith was interested in testing a specific model that he and a graduate student,

Blair Williams, had recently developed. This model utilized a so-called ”probability density

approach” (PDA) to track the probability of channel opening. [5] However, the method does

not explicitly account for the spatial dependence of [Ca2+] in cells. To determine the valid-

ity of neglecting spatial aspects in the PDA model, I created a corresponding model that

explicitly included one spatial dimension to serve as the standard by which the Monte Carlo

version of Blair’s probability density model could can be compared.

I shall organize the rest of the paper in the following way. First, I will introduce some

background information about Ca2+ dynamics and intracellular Ca2+ channel modeling.

I will then briefly introduce the complete spatio-temporal model developed in Fall 2005 -
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Spring 2006. Next, I will discuss the comparison of my full spatial model to Blair’s non-spatial

reduced model. Finally, I will present results and conclusions concerning the agreement and

disagreement between the two approaches.

2 Background: Calcium Dynamics

There are various kinds of intracellular calcium behaviors such as spiking, regular oscilla-

tions, waves, puffs, and sparks. The type of behavior observed in living cells is dependent on

the type(s) of plasma membrane and intracellular Ca2+ channels involved, the distribution

of channels along the endoplasmic reticulum (ER) membrane, and the kinetics of channel

gating. Here we are focused on oscillations of cytosolic calcium concentration ([Ca2+]cyt) as a

function of time due to release from ER stores through intracellular calcium channels. These

oscillations are crucial to cell signaling and are therefore important to model accurately and

understand.

The two physiological compartments in the models presented below are the cytosol and

the ER. The Ca2+ concentration in the ER is much higher than that of the cytosol, but

the volume of the cytosol is much larger than that of the ER. Since we will be dealing with

a closed cell model in which Ca2+ ions can neither enter nor leave the cell by traversing

the plasma membrane, [Ca2+]cyt can only change when Ca2+ ions flow between the cytosol

and ER. These two compartments are separated by the ER membrane that contains Ca2+

channels, through which Ca2+ ions diffuse from the ER into the cytosol. The two main Ca2+

channels are the ryanodine receptor Ca2+ channels (RyR) and the inositol 1,4,5-trisphosphate

receptor (IP3R), each with their own unique gating properties. [1] Both the PDA model and

the spatio-temporal model will be using the gating properties of IP3R channels. Gating is
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the process by which channels change state according to their specific transition properties.

Gating properties of Ca2+ channels include the transition rates into and out of the allowed

channel states as well as any Ca2+ dependencies of these transition rates. The gating prop-

erties of the IP3R channels will be discussed and detailed later in section 2.3.

In the closed cell model, there are only three fluxes that contribute to changes in [Ca2+]cyt.

The first flux term, Jpump, flows against the resting Ca2+ concentration gradient and pumps

Ca2+ ions from the cytosol into the ER. The transporters responsible for this pumping of

Ca2+ ions against the concentration gradient to replenish [Ca2+]ER are called the sacroplas-

mic/endoplsamic reticulum Ca2+ ATPases (SERCA pumps). The second flux term, Jleak, is

a leakage flux directly proportional to the difference in concentration between the ER and

cytosol. The third and final flux term, Jrel, is also proportional to the Ca2+ concentration

difference between the ER and cytosol. Unlike the other two fluxes, Jrel is dependent on

the presence and specific location of Ca2+ channels along the length of the ER membrane.

That is, the Ca2+ ions carried by Jrel can only flow when IP3Rs are located at that spatial

position and only when these channels are in the permissive or open state.

2.1 The four compartment model

So far, we have been considering a two compartment model of intracellular Ca2+ han-

dling. While we are only considering [Ca2+] in two membrane-deliniated compartments (the

ER and cytosol), to accurately represent certain aspects of the dynamics of local Ca2+ sig-

naling near clusters of IP3Rs the Smith lab often introduces two additional compartments

in order to distinguish between the Ca2+ concentration in areas far away from intracellu-

lar Ca2+ and the Ca2+ concentration in areas nearer the channels. Immediately following
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channel opening, Ca2+ ions from the ER flow into the cytosol, therefore it is reasonable to

assume that the concentration just outside this open channel is effectively higher than the

concentration in the rest of the cytosol or ER. We call the areas far away from the channels

the ”bulk”, and the areas near the channels the ”domains”. Hence, the compartmental mod-

eling that follows includes a bulk cytosol concentration ([Ca2+]cyt), a bulk ER concentration

([Ca2+]ER), a domain cytosolic concentration ([Ca2+]dcyt) and a domain ER concentration

([Ca2+]dER).

When we are only dealing with two compartments, there was only one flux (Jrel) that

was dependent on the location and state of channels along the ER membrane. In this four-

compartment model, we must divide that original flux into three separate but related and

interdependent fluxes. The first new flux (Jer) flows between the bulk ER and the domain

ER. When the channel is open, Ca2+ ions flow between the two domain compartments via

(Jrel) at a rate proportional to the concentration gradient between the two domains. Finally,

there is a flux between the domain cytosol and the bulk cytosol (Jcyt). The bulk concentra-

tion is only increased by Jcyt, while the values of Jcyt will depend on the cascading effects

of Jer and Jrel. Note that each of these four compartments are spatially extended along the

length of the membrane. See Figure 1 for a visual representation of the four -compartment

model.
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Figure 1: Visual representation of the four-compartment model. The black horizontal line represents

the ER membrane.

2.2 Stochastic and Deterministic Modeling Approaches

Models of intracellular Ca2+ signaling can be either deterministic or stochastic. Deter-

ministic models are often governed by a system of coupled differential equations and each

simulation with identical parameters ought to yield exactly the same results. To simulate

deterministic systems, one need only to insert the differential equations and parameters into

an ODE solving program (e.g. XPP or Matlab) and plot the results. These packages provide

various options allowing the user to select a numerical method (e.g. forward Euler) appro-

priate for the ODE system of interest. Conversely, stochastic models always involve at least

one random variable.

The spatial model of intracellular Ca2+ handling that I developed this year is a stochastic

model, but the stochastic aspect is restricted to one compartment: the gating of the intra-

cellular Ca2+ channels. It is conventional and experimentally supported to model the gating

of intracellular Ca2+ channels in a stochastic fashion. In fact, it is important to do so when

the number of intracellular Ca2+ is small. In other respects the model is deterministic, for
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example, the diffusion of Ca2+ along the length of the cell in the cytosolic and ER compart-

ments is simulated using a system of deterministic nonlinear ODEs. The following section

describes in detail both the stochastic and deterministic aspects of the model.

2.3 The IP3R Channel Model

Channel gating is the process by which channels change state or remain in the same

state. The dynamics of this gating process are conventionally represented by a Markov

chain model. [4] In the simplest possible scenario, a modeler might employ a two state model

where one state represents the channel being open (1) and the other represents the channel

being closed (2).

k12

(1) 
 (2)

k21

In this two-state model the a channel changes state according to forward and reverse rate

constants (k12 and k21 respectively) that can be defined in terms of probability fluxes in an

ensemble of identical and independent channels.

In the model of [Ca2+]cyt oscillations presented here, we have chosen to employ a four-

state IP3R channel model that corresponds to a simplified version of the DeYoung-Keizer

IP3R model. This four-state model is minimal in two distinct ways. First, it represents the

IP3R as a collective entitty, as opposed to the DeYoung-Keizer model that explicitly mod-

eled multiple IP3R subunits. Secondly, the four-state model used here assumes IP3 is at high

concentration and thus IP3 binding to the channel does not have to be explicitly modeled. [3]
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In spite of these simplifications, the four-state model is similar to the DeYoung-Keizer model

in that it accounts for the fast calcium activation and fast calcium inactivation of IP3R. The

transition-state diagram for this four-state model is

k+
23Caη

(open) 2 
 3 (inactivated)

k−32

k+
12Caη �� k−21 k−34 �� k+

43Caη

k−41

(closed) 1 � 4 (inactivated)

k+
14Caη

When the channel is closed or inactive, Ca2+ ions cannot flow between the bulk ER and

the bulk cytosol through the channel. The difference between ”closed” and ”inactivated” is

that ”inactivated” implies a longer mean dwell time. That is, the channel is likely to remain

closed for a long time, but ”closed” states can be very short-lived.

The four-state IP3R model has both unimolecular (k21, k32, k34, and k41) rate constants

and bimolecular (k12, k23, k42, k14) rate constants with units of s−1 and µM−1s−1 respectively.

The unimolecular rate constants are appropriate when transitions between two states are

calcium-indepenent. The bimolecular rate constants are used when the transitions between

those states are calcium-dependent (that is, they involve the association of Ca2+ with the

IP3R). In cases of calcium-dependence, the Ca2+ concentration used is the value of the

values of [Ca2+]dcyt, the cytosolic domain concentration associated with that channel. The

calcium-dependent rate constant between states 1 and 2 corresponds to ”Ca2+ activation”

and opening of the IP3R channel. Conversely, the Ca2+-dependent rate constant between
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states 2 and 3 corresponds to Ca2+ inactivation of the IP3R. Both calcium-activation and

calcium-inactivation are experimentally observed phenomenon responsible for the well known

bell-shaped curve. [2]

The process of calcium-activation and inactivation lead to oscillations in [Ca2+]cyt in the

models. Assuming the channels along the ER membrane start in the closed state, an increase

in [Ca2+]cyt causes transition into state 2, which in turn increases in [Ca2+]cyt. But this trend

cannot last because the channel is also calcium-inactivated on a slower time scale. Therefore,

when [Ca2+]cyt gets large enough, the channels inactivate and remain closed for a long time.

This allows the [Ca2+]cyt to return to low values, the depleted [Ca2+]ER to replenish, and

the IP3R channels return to state 1. The process can then repeat giving rise to oscillations

in [Ca2+]cyt .

It is important to note that in this IP3R model seven of the rate constants parameters

are ”free” (constrained only by experiment), while the eighth parameter is restricted by the

thermodynamic constraint that detailed balance be satisfied when all the Ca2+ binding sites

of the IP3R experience the same Ca2+ concentration. That is,

k41 =
k21k32k43k14

k12k23k34

(1)

Also note that in the four-state model, calcium-dependent transitions occur at a rate

proportional to [Ca2+]ηcyt. The exponent η corresponds to the cooperativity of Ca2+ binding

to the IP3R. For systems of [Ca2+] oscillations we assume that the cooperativity of Ca2+

binding is η = 2for both the Ca2+ activation and inactivation processes.
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2.4 Monte Carlo Simulations

We employ the conventional Monte Carlo method to simulate the channel gating. The

method determines the state of a given channel after a discrete time step (∆t) given that the

original state of the channel is known. This method requires both the discretization of time

into units of ∆t and knowledge of the state of each channel at time t = 0. To determine if the

channel changes state or not, a random number between 0 and 1 is compared to the product

of ∆t and the appropriate rate constant and, if required, a factor corresponding to the cal-

cium dependence. If the random number is less than this product, the channel changes into

the state indicated by the rate constant. Otherwise, if the random number is greater than

that product, the channel remains in the same state. For example, in determining whether

or not a channel in state 2 remains in state 2 or changes state into state 1 or into state 3,

the method is as follows.

� Pick a pseudo-random number (x) uniformly distributed between 0 and 1.

� If x < k21∆t, then change to state 1.

� else if x < k21∆t + k23Caη∆t, then change into state 3.

� else, the channel remains in state 2.

Note that the product of unimolecular rate constants with ∆t (s−1×s) is a dimensionless

number between 0 and 1, as is the product of the bimolecular rate constants with [Ca2+]ηcyt

and ∆t (µM−1s−1 × µMs).

This Monte Carlo method is known to be first-order accurate and is applied to every

channel along the length of the membrane at each time step ∆t throughout the entire sim-
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ulation. When ∆t is very small (on the order of 1× 10−5 seconds, as it must be for reasons

discussed later), the number of calculations to run a simulation gets to be extremely large

resulting in longer run times for the simulations.

2.5 The Mass Balance Equations

The deterministic component of the model of intracellular Ca2+ handling the differential

”mass balance equations” that determine the rate of change of [Ca2+] in each of the four

compartments as a function of time. These equations include both diffusion terms and

reaction terms. The diffusion terms describe the diffusion of [Ca2+] in each compartment

along the length of the ER membrane. The reaction terms correspond to the stochastic gating

of the channel states. Because [Ca2+] is changing with respect to time in four compartments,

there are four mass balance equations that take the form

∂[Ca2+]cyt

∂t
= D

∂2[Ca2+]cyt

∂x2
+ Jcyt + Jleak − Jpump (2)

∂[Ca2+]ER

∂t
= DER

∂2[Ca2+]ER

∂x2
+

1

λ
(Jpump − Jleak − JER) (3)

∂[Ca2+]dcyt

∂t
=

1

λ1

(Jrel − Jcyt) (4)

∂[Ca2+]dER

∂t
=

1

λ2

(JER − Jrel) (5)

Note that the Equation 2 and 3 contain a diffusion term while Equations 4 and 5 do

not. This implies that diffusion between the domain compartments along the length of the

membrane must occur between the bulk.
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The λ factors appearing in Equations 3, 4 and 5 are volumetric scaling constants given

by the ratio of cytosolic volume to the volume of each compartment. These scaling terms are

needed because the volumes occupied by the compartments are different and it is the total

number of Ca2+ ions (not their concentration) that is conserved in the ”closed cell” model

with no plasma membrane fluxes.

The flux equations that appear in Equations 2 - 5 are given by

Jleak = vleak([Ca2+]ER − [Ca2+]cyt) (6)

Jpump =
vpump([Ca2+]cyt)

2

k2
p + ([Ca2+]cyt)2

(7)

Jrel = povrel([Ca2+]dER − [Ca2+]dcyt) (8)

Jcyt = vcyt([Ca2+]dcyt − [Ca2+]cyt) (9)

Jer = ver([Ca2+]ER − [Ca2+]dER) (10)

In equation 8, the po term represents whether or not the channel is open at that time.

If open, po = 1 then Ca2+ ions flow between the domain compartments, otherwise po = 0,

the channel is closed, and Ca2+ ions cannot flow between these compartments. Equations

9 and 10 do not depend on whether or not the channels are open, but they do depend on

the concentration gradient between their respective bulk and domain concentrations, which

will only be different during (or immediately following) channel opening. Most of these

fluxes depend on a concentration gradient. The exception is equation 7, which represents

the SERCA Ca2+-ATPase (i.e pumps) flux that works against the concentration gradient

between the bulk ER and the cytosolic Ca2+ concentration. The flux, Jpump replenishes

[Ca2+]ER and is a sigmoidal function of [Ca2+]cyt.
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The parameters in these equations for the fluxes (vleak, vpump, kp, vrel, vcyt and vER) depend

on the particular cell type one is modeling. Some have been estimated experimentally while

others are essentially determined by known quantities such as the resting Ca2+ concentrations

in the bulk compartments and are presented in Table 1.

2.6 The Mesh

A mesh is an important aspect of modeling a spatially dependent system. In this case,

the mesh points are the specific locations along the length of the membrane where the Ca2+

concentrations will be approximated by our numerical scheme. The length of the membrane

(L) is divided into N equal regions of length l = L
N

. To incorporate the location of the

channels in the mesh, we introduce the idea of channel clusters. Channel clusters are areas

along the membrane consisting of large numbers of release cites clustered together. These

regions of length l each contain x (where x = y + z) mesh points, the first y of which cor-

respond to release sites, while the remaining z mesh points correspond to the gaps between

the channel clusters where intracellular channels are absent. That is, each group of y mesh

points represents a channel cluster along the ER membrane. The result is a distribution

of regularly spaced channel clusters along the length of the cell. Increasing N results in a

larger number of release sites, while maintaining the faction of the membrane occupied by a

release site constant ( y
y+z

).

There are a total of J = Nx mesh points, each of which can be indexed with a subscript j.

At each mesh point we solve for the four Ca2+ concentrations. As time evolves, the structure

of the mesh is maintained but the four concentrations at each spatial location are updated
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Figure 2

via the diffusion and reaction terms of the mass balance equations. The mesh diagram has

periodic boundary conditions (meaning that the mesh point after the Jth point is identified

with the first mesh point), a choice that minimizes ”edge effect” in the model that are not

of interest.

2.7 Modeling Ca2+ Diffusion

For simplicity we implemented an explicit numerical scheme to solve Equations 2- 5.

Taking the dependent variable [Ca2+](x, t), as an example, the scheme uses the values of

[Ca2+]cyt(x, t) to predict the unknown values [Ca2+]cyt(x, t + ∆t). This method requires the

discretization of both time and space, the later being provided by the mesh diagramed in
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Figure 2. For simplicity, the time-step is chosen to be a fixed value ∆t, rather than adaptive.

To solve for the diffusion terms in the mass balance equations, we use a forward first

difference in time (first order accurate) and a centered second difference in space (second

oder accurate) approximation given by

∂[Ca2+]

∂t

∣∣∣∣
j,t

≈ ∂2[Ca2]

∂x2

∣∣∣∣
j,t

[Ca2+]tj−1 − 2[Ca2+]tj + [Ca2+]tj+1

∆x2
(11)

Substituting and rearranging Equation 11 to solve for the unknown mesh point [Ca2+]n+1
j ,

find

[Ca2+]t+∆t
j = [Ca2+]tj +

D∆t

∆x2
([Ca2+]tj−1 − 2[Ca2+]tj + [Ca2+]tj+1) (12)

This method is applied at each mesh point and for each of the four compartments of the

model. There is a condition of crucial importance on the numerical stability of this explicit

numerical scheme: the time step must be small enough to satisfy the following inequality

D∆t

∆x2
<

1

2
. (13)

Thus, when modeling the mass balance equations it is imperative to choose the relative

size of D,∆x and ∆t appropriately.

3 The Spatio-Temporal Model

The spatio-temporal model is a complete model in the sense that it explicitly accounts

for both space (along the length of the ER membrane) and time. The PDA model is a
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simple model in that it ignores the spatial dependence. One goal was to compare a Monte

Carlo version of the PDA model to the corresponding one-dimensional spatial model in order

to clarify the effect of ignoring space on the accuracy of the probability density approach.

Therefore, all the parameters in both models will be the same and the only difference will

be the inclusion of the spatial dependence in the complete spatio-temporal model (hereafter

referred to as the 1D model). The parameters common to both models are given in Table

1.

The 1D model is built with the intention of limiting the dependence of [Ca2+] on the lo-

cation along the membrane. The less dependent on location, the more likely the two models

are to agree. In this 1D model, there will be N = 1000 channel clusters. In addition, there

will be no space between these channel clusters, therefore every mesh point corresponds to

a release site. This is equivalent to setting z = 0 in the formulation of the mesh diagram.

This results in an ER membrane that is entirely covered with channel clusters. The serves

to reduce the dependence of [Ca2+] on the location along the membrane since every mesh

point is identical. The two channel-independent fluxes Jpump and Jleak are also present at

all locations along the membrane. Concentrations in neighboring domains do not directly

interact with each other via diffusion, but may influence on another via the bulk cytosolic

and ER Ca2+ concentrations. Figure 3 is a visual schematic of the final 1D model with a

resistor symbol indicating model fluxes.

Initially we force 10% of the channel clusters to be in state 1, while the remaining 90% of

the channels are in state 4. The 10% of channel clusters in state 1 are randomly distributed

along the length of the membrane. The initial [Ca2+] values are homogeneous along the

length of the membrane with [Ca2+]cyt = [Ca2+]dcyt = 0.1 µM and [Ca2+]ER = [Ca2+]dER = 9
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Table 1

Parameter Value Units
N 1000
k12 500 µM−1s−1

k23 4 µM−1s−1

k34 1000 s−1

k14 4 µM−1s−1

k43 500 µM−1s−1

k32 0.1 s−1

k21 1000 s−1

k41
k21k14k43k32

k12k23k34

s−1

η 2 —–

µM.

To further reduce the spatial-dependence of [Ca2+] we incorporate parameters to make

the spatial-profile of [Ca2+] at any given time to be as flat as possible. A flat spatial profile

would indicate that regardless of location along the membrane, the [Ca2+] value is more or

less the same. To promote this spatial homogeneity, we make the diffusion between the bulk

mesh points very fast along the length of the membrane (D and DER). Figure 4 shows the

effect of the diffusion coefficients on the spatial profiles two seconds into the simulation.

We have found it informative to report the data from the 1D simulations using three

different types of graphs: [Ca2+]cyt vs. time, spatial profiles and histograms.

3.1 [Ca2+] as a function of time

By explicitly keeping track of the various concentrations at each time, we can plot the

time evolution of the average values of [Ca2+]cyt as in Figure 5.
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Figure 3: Schematic of the 1D model

Figure 4: The figure on the left shows the spatial profile of the model at a time t = 2s with diffusion

coefficients D = DER = 50µm2s−1. The figure on the right shows the spatial profile of the same model

except with diffusion coefficients D = DER = 500µm2s−1. Notice that the figure on the right is much

flatter than the figure on the left. The solid line in these figures is the [Ca2+]cyt while the x’s are values

of [Ca2+]dcyt at those locations.
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Figure 5: Plots of [Ca2+]cyt as a function of time in the four-compartment 1D spatial model. This plot

shows stochastic oscillations mediated by fast Ca2+ activation and slower Ca2+ inactivation of IP3Rs
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To make these figures, we have to take the average [Ca2+]cyt value along the length of

the membrane at each time. For simulations where the [Ca2+] along the length of the mem-

brane is fairly homogeneous, as is the case for extremely fast diffusion, the averaging does

not introduce very much error. The more non-homogeneous the spatial profiles, the more

error is introduced by the averaging. Therefore, the averaging will constitute one source of

discrepancy between the 1D model and the PDA model.

Figure 5 shows the calcium oscillations that we have been trying to model. The fairly

regular frequency indicate that the model is working properly. That is, all the channel

clusters are gating appropriately and all the concentrations are changing as we would expect.
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These figures will serve as one way of comparing the results from the PDA and 1D modeling

approach

3.2 Spatial Profiles

Spatial profiles are a good way of seeing how [Ca2+] is dependent on the location along

the membrane as well as the state of the corresponding release site. Figure 6 gives an exam-

ple of how we plot the spatial profile of a simulation at a particular time. Figure 6 contains

three subplots. The top subplot shows both [Ca2+]cyt (o’s) and [Ca2+]dcyt ( x’s) at each mesh

point along the length of the membrane (in this case 500 µm). For most of the mesh points,

the bulk and domain cytosolic concentrations agree, which is why see one line and a few

points outside that line. The x’s above the dominant line show that [Ca2+]dcyt > [Ca2+]cyt at

those mesh points. In addition, the x’s indicate that the channel cluster is in the open state.

The second subplot plots the state of each channel cluster along the length of the mem-

brane. In this model of 1000 channel clusters, there are a thousand channel clusters, each

of which independently transition between the four states. In Figure 6 most of the channel

clusters are inactivated, while a small percentage remain open.

The bottom subplot shows [Ca2+]er (o’s) and [Ca2+]dER (x’s) at each point along the

length of the ER membrane.

3.3 Histograms

At any given time, there are 1000 channel clusters each of which can be in any of the

four channel states. The histograms require segregating the channel clusters according to
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Figure 6: Spatial Profile of a 1000 channel cluster model at time t = 5s. Note that channel clusters in

state 2 correspond to elevated [Ca2+]dcyt values in the top graph, which serve to increase [Ca2+]cyt at

those locations. Also notice the inverted symmetry between the top and bottom plots.
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channel state and then plotting the distribution of the domain values in each of those states.

Projecting the distribution of the [Ca2+]dcyt values down onto a histogram that plots the

number of channel clusters with [Ca2+]dcyt values within particular value ranges, gives us a

probability of any channel cluster being in the state x with a certain [Ca2+]dcyt. Similarly,

projecting the distribution of the [Ca2+]dcyt values across onto a histogram that plots the

number of channel clusters with [Ca2+]dER values within particular value ranges, gives us a

probability of any channel cluster being in the state x with a certain [Ca2+]dER.

Figures 7 and 8, show the histograms for the crest and trough of the first oscillation

in Figure 5. Figure 7 corresponds to t = 5 s and Figure 8 corresponds to t = 7 s. The

resulting histograms are particularly informative. It can tell us the probability of any channel

being open at these times, or the probability of any channel having a particular [Ca2+]dcyt or

[Ca2+]dER value. In these figures, n gives the number of channels (out of 1000) in each state.

In Figure 7, nearly all of the channel clusters have inactivated. At this time, the [Ca2+]

has nearly reached its maximum, therefore most [Ca2+]dcyt values are larger at this time than

when [Ca2+]cyt is low. This is verified in comparing Figures 7 and 8, where nearly all of the

[Ca2+]dcyt values in Figure 7 are larger than the [Ca2+]dcyt values in Figure 8.

In Figure 8, virtually all of the channel clusters are still in the inactive state and the domain

concentrations have returned to their original values as specified by the initial conditions.

At this time, the system is ready to begin another oscillation.
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Figure 7
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Figure 8
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Figure 9: Results from the PDA model (solid line) and the 0D Monte Carlo model (gray boxes) with

identical parameters. Graph provided by Blair Williams
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4 The Comparison and Results

4.1 PDA and Zero-Dimensional Monte-Carlo Model Equivalence

The PDA model outputs data that is fairly difficult to compare to the 1D Monte-Carlo

model. Therefore, we will compare the 1D model to a Zero dimensional monte-carlo model

(0D model) that is equivalent to the PDA results. To show this equivalence see Figure 9.

The black solid line corresponds to the results from the PDA model. The gray boxes cor-

respond to results from the 0D Monte Carlo model. There is significant agreement so we

can accurately compare the 1D model to the PDA model indirectly through a comparison

between the 1D model and the 0D model
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4.2 Comparison Techniques

To get a sense of how the 0D model’s exclusion of the spatial dimension along the length

of the membrane affects its accuracy, we will simulate the 1D model with two distinct param-

eter sets. The first set will be for fast diffusion between bulk concentrations along the length

of the membrane. As discussed earlier, we expect fast diffusion to reduce the dependence

of [Ca2+] on the location along the length of the membrane. The second parameter set will

be for slow diffusion between bulk concentrations along the length of the membrane. By

slowing down this diffusion, we expect the concentrations to be more dependent on location

along the membrane. That is, we expect more variance between concentrations at different

locations along the membrane. By performing the simulations in these two parameter sets,

we can at least get a sense of how the agreement between the two models depends on the

spatial dependence of the 1D model.

4.3 Fast Diffusion

To simulate fast diffusion along the length of the membrane, we set D = DER = 500.

For Diffusion coefficients this large, we had to restrict our time step ∆t to be very small

as required by Equation 13. In our model, ∆x = 0.1µm. Therefore, Equation 13 requires

∆t = 10−5s. These simulations took about 14 hours per run on an Apple X-serve G5 with

dual 2.3 GHz processors with G5 PowerPC chips and 2GB of RAM.

Figure 10 puts the plots of [Ca2+]cyt vs. time for both models together on the same

scale. A visual comparison of these two plots show a few key and obvious similarities. First,

both graphs have three oscillations and occur at roughly the same frequency. Neither graph
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Figure 10: [Ca2+]cyt for both the 1D (solid) and the 0D (dotted) models.
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has all of its peaks reach the same amplitude. In the 0D simulation, the first two peaks

reach about 0.9 µM while the last peak only goes up to about 0.8 µM. In the 1D simu-

lation, the first peak reaches about 0.8 µM while the other two peaks only reach 0.7 µM.

These similarities indicate that the two models are showing equivalent dynamics (the oscil-

lations) with nearly the same properties (amplitude and frequency). Despite this level of

agreement, there are also some obvious dissimilarities between the two. The amplitudes in

each simulation disagree. The amplitudes in the 0D model are higher than the amplitudes

in the 1D model. Finally, though the oscillations have nearly identical frequencies, they

oscillations are out of sync. In the 0D model, the amplitude of the first oscillation peaks

at about 6 s. The amplitude of the first oscillation in the 1D model peaks a little earlier

at about 5 s. There is every reason to believe that if the diffusion coefficients were made

larger, the spatial profiles of the bulk cytosolic and ER Ca2+ concentrations would become

more uniform, and the 1D model would exhibit responses even more similar to the 0D model.

4.4 Slow Diffusion

To simulate slow diffusion along the length of the membrane, we set D = DER = 50

µm2s−1, ten times slower than in the previous example. Using diffusion coefficients that are

ten times smaller allows for time steps that are ten times larger, according to Equation 13.

Consequently these simulations ran ten times faster than did the simulations with faster

diffusion.

Looking at Figure 11 it is clear that there is considerably less agreement between the 0D

model and slow diffusion 1D model than there is between the 0D model and the fast diffusion
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Figure 11: [Ca2+]cyt for both the slow 1D (solid) and the 0D (dotted) models.
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1D model. In this case, the similarities seen before are not seen here. The two graphs in

Figure 11 do not have even comparable amplitudes. The peaks in the 0D simulation have

amplitudes near 1 µM, while the tallest peak in the 1D model has an amplitude of about 0.7

µM with all the later peaks at even lower amplitudes. Furthermore, not even the number of

oscillations between these two models is consistent. As before, there are only three oscilla-

tions in the 0D simulation. This 1D model, however, shows almost four oscillations. Finally,

one does not even see the even spacing between the oscillations in this 1D simulation, where

as the fast diffusion 1D model had much more evenly spaced oscillations.

5 Discussion

We have shown reasonable levels of agreement between the 0D and 1D models in the fast

diffusion case, and further shown that the value of the diffusion constant in the 1D model

plays a significant role in this agreement. The faster the diffusion in the 1D model, the

less [Ca2+] depends on the location along the membrane. This is because the fast diffusion

serves to homogenize the spatial profile. In the case of the slower diffusion in the 1D model,

the [Ca2+] varied more significantly along the length of the membrane. Figure 4 shows the

differences in the spatial profiles between the two 1D simulations. These spatial profiles are

taken at times where there is a large amount of channel activity to show maximum variance

in each case. Notice that the model with the faster diffusion is more spatially homogeneous

than is the model with the slower diffusion.

In this study, even the fast 1D model with D = DER = 500µm2s−1, while more homoge-

neous than the slower diffusion 1D model, is still not completely homogeneous. Figure 12
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Figure 12: Spatial profile of the 1D model with D = DER = 500µm2s−1. This profile shows that even

with the faster diffusion, there is still substantial variance.
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shows that the variance in [Ca2+] along the membrane ranges from values as low as 0.4 µM

to values as high as 1.1 µM. The disagreement shown in Figure 10 is probably due to the lack

of complete homogeneity in the 1D model. We suspect, that if the diffusion coefficients were

increased still further the homogeneity would increase and there would be more agreement

between the 1D and 0D case. These results to support the claim that the two models would

agree in the case of near total homogeneity. For the first two seconds in the fast diffusion

1D model, the spatial profile nearly totally homogeneous (Figure 13). Figure 10 shows that

at time t = 2s the concentrations are nearly identical.

However, the restriction given by Equation 13 makes this a very computationally inten-

sive simulation. Increasing the diffusion coefficients by a factor of ten would proportionally
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Figure 13: Spatial profile for the 1D model with fast diffusion at time t = 2s. The homogeneity seen in

this figure suggests that the homogeneity of the model depends on the dominant state of the system.

In this case, most of the channel clusters are inactive.
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decrease the maximum time step by a factor of ten. The simulations with D = DER =

500µm2s−1 already take about 14 hours, so faster diffusion will result in simulations that

take several days. Even diffusion coefficients of D = DER = 5, 000µm2s−1 do not guarantee

sufficient homogeneity. It is very possible that in order to see complete agreement we would

have to run simulations that take about a week or so each.

There is a way to shorten the length of the simulations even with these extremely large

diffusion coefficients. The restriction given by Equation 13 is a result of using an explicit

method for calculating diffusion along the length of the membrane. By replacing this explicit

method with an implicit Crank-Nicholson-like method, we would remove this restriction on

∆t. Consequently we could take larger time steps allowing for faster simulations. Using this

approach, the diffusion coefficients could be increased until they are large enough to produce

nearly absolute homogeneity in the spatial profiles of the 1D model. This would be a natural

extension of this project.

There is abundant experimental evidence that the free Ca2+ diffusion coefficients in liv-

ing cells are in the rang 100-500µm2s−1. Because the high end of this physiological range

corresponds to the fast diffusion 1D calculations shown above (Figure 10), the limited con-

vergence observed between the 1D and 0D models suggests that not explicitly accounting for

spatial aspects of calcium signaling may be a significant limitation of the probability density

approach applied to models of IP3-dependent Ca2+ signaling.

Finally, it is interesting to note that a naive calculation of the diffusion rate that might
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be considered fast in this problem would be given by

D >
L2

T
(14)

where L is a characteristic spatial scale (e.g., the length of the cell or the length of on release

site) and T is a characteristic time scale (e.g., the period of an oscillation or one of the

rate constants in the IP3R model). Using the length of a small cell (10µm) and oscillation

period of T = 10 s, this gives D>10 µm2s−1. The simulations presented here are 500 µm in

length, a value realistic for a very large cell such as the Xenopus laevis oocyte. It would be

interesting to repeat these calculations on a shorter spatial domain to see if this minimizes

the observed differences between the 1D spatial model and the 0D reduction.
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