
Positron Lifetime Apparatus and Measurements in
Materials

N. J. Elberfeld

May 1, 2006

Abstract

The theory of positron lifetime spectroscopy is presented. An apparatus is devel-
oped to take measurements of positron lifetimes in a variety of materials. Computer
programs in Fortran and C are written and edited for analysis of the data. Qualitative
observations are made as to the relative purity of materials and the size of the defects
within. The system is prepared to take data so that quantitative information can be
extracted from the materials. A previously unstudied phenomenon is investigated.

1 Introduction

The positron is the anti-particle of the electron, meaning the particles have the same mass
and equal but opposite charges. P. A. M. Dirac first postulated the existence of such a
particle and C. D. Anderson first observed it in a Wilson cloud-chamber while studying
cosmic rays. In theory, a positron could live a very long time in vacuum (average lifetime
1021 years), but in material the positron can only live so long as it does not find an electron.
One good source, Na22, emits a positron and then a 1.27 MeV γ-ray 3 picoseconds later.
This γ-ray is detectable by scintillators and, because it comes so closely after the positron,
is considered to be its “birth” signal [5].

Upon contact with the electron, the pair may bind into a hydrogen-like neutral atom
called positronium. One state of positronium is the 1S state where S=1. This is denoted as
ortho-positronium (o-Ps). When S=0, the state is called para-positronium (p-Ps). The two
states have approximately the same energy with the latter having slightly less. In vacuum,
p-Ps and o-Ps have lifetimes of 125 ps and 142 ns respectively. It is usually the case, however,
that because of the low binding energy of the positron, it cannot pick up an extra electron to
become positronium. Instead, the positron navigates its way through the material, unable
to steal an electron from a “happy” atom. The positron also feels a repulsive force from
the positively charged nuclei surrounding it. Thus the positron finds its way to a vacancy
where its wave function then overlaps with surrounding electrons’ wave functions and causes
it to annihilate. When the positron annihilates, 2 back-to-back 0.511 MeV γ-rays signal the
“death” of the positron.
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Therefore, the lifetimes of positrons are related to the electron density of the material. By
measuring the lifetimes of positrons, information about the electronic structure of a material
may be gained: the more electrons, the faster the death of the positron. A lack of electrons
(longer lifetimes of positrons) indicates defects such as voids, cracks, holes, or even single
atomic vacancies in the substance. The positron lifetime, τ , is shown below as a function of
the overlap integral of the positron density and the electron density:

1

τ
= πr2

0c
∫
| Ψ+(r) |2 n−(r)γdr (1)

where Ψ+(r) is the positron wavefunction at r, n−(r is the electron density at r before
correction for the positronic presence, r0 is the classical radius of the electron, and γ is a
correlation correction to take into account the presence of the positron [2].

γ = γ[n−(r)] = 1 +
∆n−
n−

(2)

2 Experiment

2.1 Apparatus

The overall schematics are given in Figure 1. Positrons from the Na22 source stop in the
sample, where the γ-rays then go to the detectors by way of the scintillators. Because the
results depend heavily on timing information, plastic scintillators are used to yield the fastest
rise time of 0.7 ns. Plastic also has no high Z material, meaning that the γ-rays are most
likely to scatter off of an electron in a process known as the Compton effect. The energies
of the scattered photon as determined relativistically are given by the equation:

Eγ =
1

1−cos(θ)
mc2

+ 1
E0

(3)

where E0 is the incident γ-ray energy and θ is the scattering angle. The Compton effect is
diagrammed in Figure 2.
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Figure 1: Block Diagram of Experimental Setup.
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Figure 2: Compton Scattering
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Figure 3 shows the energy differential cross sections for 1.27 MeV γ-ray Compton en-
ergies convolved with a Gaussian integral to account for statistics. This was determined
theoretically by the program “diffxs.f” written in Fortran and attached at the end of the
paper.

Figure 3: Electron energy distribution for 1.27 MeV photons both with and without convo-
lution with a smearing function.
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It is clear from Figure 4 that it is much more efficient to detect the lower, 0.511 MeV
γ-rays than the higher 1.27 MeV ones. The relative intensities (roughly 2:1) reflect the fact
that there are twice as many 0.511 MeV γ-rays as 1.27 MeV γ-rays. The shape is better
fit for the 1.27 MeV γ-ray, indicating perhaps that the smearing is too strong for the 0.511
MeV γ-ray.

Figure 4: Compton Scattering
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The photomultiplier tubes detect these Compton energies and are also very fast. In
fact, our Hamamatsu H2431-50 are among the fastest PMTs in the world with rise times
of 0.25 ns. These signals are amplified and sent to a constant fraction discriminator which
suppresses noise and generates timing pulses. The time to amplitude converter then takes
the time difference in pulses (START and STOP) from both sides of the source and converts
them into an amplitude which are then stacked into bins in the multichannel analyzer which
a computer may use to further analyze.

2.2 Computer Analysis

The Spectrum Techniques multi channel analyzer has associated PC software which is used
to interface with the hardware apparatus and stores the raw data so that it may be used in
fitting programs. The main program to interface with the fitter functions is “fittre.f” (The
“English” spelling is used to differentiate it from an older program with a similar name).
This latest version incorporates a function that allows parameter data to be written to a
file so that it may be recalled by another function. This has greatly improved the gathering
and storing of parameter data for a fitted function. The program to take the data and fit it
is called “fitf” and has been written in both Fortran and C. The next program of interest
is “display.f” also in both languages. This program uses “plplot”to display the data and
fitted function. From the Numerical Recipes series, “boiler.f” contains the necessary fitting
subroutines. The programs are attached at the end of the paper. The function fits on nine
parameters and the fitting parameters are given in channel numbers. By adding an 8 ns
delay to the apparatus and observing a 230 channel shift in peak, each channel is observed
to be about 35 ps wide.

The function that matches the parameters to the data may be expressed as the following
convoluted integral:

f(t) =
3∑

i=1

∫ ∞

−∞
aie

−(t−t′)2
2σ2 e

−t′
τi dt′ + background (4)

The parameters that are fit to this function are σ, the smearing factor, ai, the amplitudes
of the various convoluted exponentials, τ , the lifetimes of the various convoluted exponen-
tials, t0, the “zero time” which indicates the channel number corresponding to zero time
between the 1.27 MeV γ-ray and the annihilation 0.511 MeV γ-ray, and the background
noise (abbreviated “bgnd” in the data tables). The latest version of the fitting program has
been adjusted to remove a coupling effect that was taking place between the amplitudes and
their respective lifetimes; that is, the amplitude components are now directly related to the
number of counts in those bins and thus yield the correct quantitative comparisons needed
to analyze the materials effectively.

A typical fitting routine might go as follows:
1) Take data into the MCA from the setup diagrammed above.
2) Read raw data out into a tab separated variable format (.tsv)
3) Remove data heading and list of 0’s read into the low channels
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4) Run program “twotothree.f” to take the two columns (channel number, counts) to add a
third column of statistical errors (square roots).
5) Run “fittre.f”

The following two letter commands indicate how the fittre program works:
6) rd: read in the data file with 3 columns
7) ra: set range of data
8) ip: input parameter guesses
9) fu: calculate the convolved integral with parameter guesses
10) dl: display log plots of data and fit curve
11) Look at display and re-guess new parameters
12) When the parameter guesses are getting close to the fit, start fitting on a few parameters
13) ft: Fit on specific parameters. Be careful so as not to crash the program with overloading
calculations.
14) Once a suitable fit has been obtained (reasonable parameters and lowest χ2), then save
the parameters.
15) wp: write parameters and errors to a file. If the file rd (read in) was called copper.dat,
the parameter file will be called parcopper.dat.
16) If old parameters need to be recalled or could be used to help start a new fit, call the
old parameters from the parameter file.
17) rp: read the parameters in from, for example, parcopper.dat.

To interpret the results, it is presumed that the longer lifetime components correspond
to regions with fewer electrons such as vacancies and voids. Thus a larger amplitude for a
longer lifetime component indicates the presence of more defects of that type. In general,
the longer the lifetime, the bigger the void type defect.
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3 Results
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Figure 5: Positron annihilation time spectrum

Table 1: Fitting Data (errors below)
bgnd σ a1 τ1 a2 τ2 t0

74.0587 4.69386 234492 8.71543 2566.22 59.6186 246.6
0.3871 5.39E-03 318.11 1.26E-02 26.47 0.3302 7.87E-03

A typical plot of the lifetimes may be seen in Figure 5. The results as determined by the
fitting functions attached at the end of the paper are given in Table 6.
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This was fit using an earlier program that did not display the third components. A typical
fit, the steep right side of the peak represents the shorter τ1 component in the absence of
defects. This exponential is convolved with the second component which is noticeably longer
and corresponds to a longer lifetime while the positron randomly walks in the presence
of defects. Where the fit function misses the data to the bottom left of the peak is a
curious anomaly. To relate the smearing parameter, σ, to the experimental resolution of the
photomultiplier tubes, we use the full width half max (FWHM) equation

FWHM = 2σ
√

ln(2) (5)

which yields a value of 274 ps, which is comparable to the best in the literature. When the
resolution is very high (meaning the time is very low), then more data can be extracted from
under the curve. The lifetimes are easier to see when a large peak is not overlapping with
the data. τ1 is 270 ps and corresponds to the lifetime of the positron in the electronically
stronger material. The τ2 value is 2 ns and represents the lifetime in a void. Comparison to
other materials brings more insight to these results as it is extremely difficult to calculate
what exact sizes and amounts of voids are present given one set of data; that is, the results
are meant to be compared to other sets. For example, the ratio of amplitudes does not mean
that the sample is 99% pure and 1% defective.
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3.2 Copper Sample

Figure 6: Positron Lifetimes in Copper Sample

Table 2: Copper Fitting Data (errors below)
σ a1 τ1 a2 τ2 a3 τ3 bgnd t0

6.732 1785963.12 4.286 77031.118 14.530 0. 0. 16.3402081 313.925568
0.008 4031.65161 0.030 3824.6792 0.2828 0. 0. 0.15147057 0.02112719

No third component is present in this fit. The shorter lifetime dominates by about a
factor of 20. At only .5 ns, the longer lifetime indicates that the rare vacancies are very
small.
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3.3 Iron Sample

Figure 7: Positron Lifetimes in Iron Sample

Table 3: Iron Fitting Data (errors below)

σ a1 τ1 a2 τ2 a3 τ3 bgnd t0
6.696 4138901.5 4.760 292092.5 41.204792 50631.375 112.805107 40.3479919 429.046051
0.005 2701.6889 0.014 7504.890 0.6107759 8561.9824 5.67820549 0.41499960 0.01178006

As compared to the copper sample, the iron sample has a higher amplitude of the longer
second component lifetime which indicates greater amounts of defects. Additionally, the 140
ns lifetime indicates larger defects. At this point, we are unsure as to the physical meaning
of the third component amplitude and lifetime.
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3.4 Magnetic Material Sample

A relatively weak kitchen magnet was used to explore the possibility of an effect on positron
lifetimes by the presence of a magnetic field.

Figure 8: Positron Lifetimes in Magnetic South

Table 4: Magnetic Material South Fitting Data (errors below)

σ a1 τ1 a2 τ2 a3 τ3 bgnd t0
7.355 524103.562 4.102 43186.14 12.066 2366.954 110.668 3.836 205.677
0.019 5555.690 0.097 4540.915 0.5975 1417.522 10.433 0.109 0.05793
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Figure 9: Positron Lifetimes in Magnetic North

Table 5: Magnetic Material North Fitting Data (errors below)
σ a1 τ1 a2 τ2 a3 τ3 bgnd t0

7.006 169894.29 0.972 58693.48 7.513 507.593 88.907 1.349 207.340
0.089 5646.6870 0.937 9799.427 0.174 4405.75 17.921 0.059 0.86578

The discrepancies between data from the north and south orientation of the same magnets
is potentially very interesting. Notice that the lifetimes in the north set are significantly
shorter than in the south set. This phenomenon will be explained in greater detail in the
next section.
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4 Developing Studies and Conclusions

4.1 Quantitative Analysis

So far, we have successfully implemented fitting functions to interpret data from several
runs. We hope to run far more experiments and do comparative analysis on radiation
damaged samples (probably from the beam dump at JLAB). Ideally, the setup can become
a commissioning study so that one could do work for NASA. While some analysis has yielded
interesting qualitative insight, many more systematic comparisons must be made to extract
meaningful quantitative information from the system. With so much work this year going
into tweaking the apparatus and writing and editing the various computer programs that
must accompany the hardware, the setup is nearly ready for such rigorous studies.

4.2 Positron Lifetime in a Strong Magnet

As described in the introduction, positrons may form positronium when their wave functions
overlap with that of the electrons. Depending on the orientation of the spins, this will either
be ortho- or para-positronium (o-Ps, p-Ps respectively). In a permanent magnet, most of the
strength in its magnetic field is due to unmatched (un-canceled) spins of electrons. One such
magnet, neodymium iron boron, or NdFeB has a partially occupied f electron shell and as
such may have up to 14 aligned spins. If larger than a penny, some of these magnets can
lift over 10 kilograms. The spins from the aligned electrons in this shell would then interact
with the conduction electrons in a quantum-mechanical phenomenon known as “exchange
coupling.” This would allow the conduction electrons that the positron sees to become
polarized and thus effect the lifetime results. We have not been able to find any previous
positron lifetime studies on the dependence on magnetization direction with respect to the
positronic polarization and thus further pursuit of this topic may be worthy of publishing.
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