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Abstract

One of the newest topics in theoretical particle physics is the idea of using compact extra

dimensions to solve the hierarchy problem. It is proposed that by using compact submillimeter

dimensions that only gravitons can ’sense’, the functional form of the gravitational force will

change in a way that will give it comparable strength at high interaction energies to the other

three fundamental forces. While the functional dependence of gravity has already been calcu-

lated for distances much greater than and much less than the size of the extra dimensions, the

aim of my thesis will be to find the functional dependence at distances approximately equal

to the size of the dimensions, and from there to investigate other possible configurations, e.g.

allowing the dimensions to be different lengths or meet at non-orthogonal angles. Future work

will depend on the results of the first two parts.
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1 Introduction

1.1 The Hierarchy Problem

Theories involving extra dimensions began in the 1920’s, with the work of Theodor

Kaluza and Oskar Klein. Together they found that a unified theory of gravity and

electromagnetism was possible only under the condition that a fifth compact (or

“curled up”) dimension exists. From there, other motivations, including a quanti-

zation of gravitational interactions, led to increasingly more theories involving extra

dimensions. String Theory, a candidate theory for quantum gravity, requires that

we live in a world of ten space-time dimensions, six of which are curled up into a

small compact space [2]. However, the size of these extra dimensions is extremely

small. Quantum gravitational effects become evident at the energy scale at which the

Compton wavelength of a particle becomes smaller than the particle’s Schwarzchild

radius. This energy scale, which is known as the Planck scale, is approximately 1019

GeV, corresponding to a length of 10−33 cm. This is a significantly higher energy than

any range of particle accelerators, making experimental detection of extra dimensions

quite improbable, if not impossible.

The reason that the Planck scale is so high relates to the fact that gravity is so much

weaker than the other three fundamental forces at macroscopic scales. For example,

two electrons would have to be 1022 times more massive for the gravitational force

between them to match the Coulomb force between them [7]. Gravity’s comparable

weakness means that huge energies must be reached before the strength of gravity

even approaches the strength of the strong, weak and electromagnetic forces. This

disparity between the Planck scale and the weak scale (the scale of the masses of

the other force carriers, ∼ 103 GeV) is what is known as the hierarchy problem.

The present version of the Standard Model is incapable of explaining the hierarchy
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problem, but physicists have come up with several solutions, one of which involves

the use of large compact dimensions.

1.2 Brane Worlds

According to string theory, the world as we know it is merely a 3-dimensional brane

(short for membrane) in a higher dimensional reality, the way that a plane is a 2-

dimensional membrane in a 3-dimensional universe [2]. One way to visualize this

idea is to think of a cylinder. With one extra spatial dimension, our 3-dimensional

world is one line on that cylinder, while the extra compact dimension is the circle

that connects that line back to itself (Figure 1).

z-brane

y = 1 compact extra
dimension only gravity
can propagate in

Figure 1: With one compact extra dimension, our three dimensional world acts like one line on a

4-dimensional cylinder

String theory contains dynamical objects that extend into p dimensions, but Dirich-

let boundary conditions require that the ends of open strings that represent these

objects must be located somewhere [2]. The 3-brane that we live on is therefore home

to the ends of open strings that represent the force particles of the strong, weak, and

electromagnetic forces. Gravity, however, which is represented by a closed loop, lies

in the bulk (i.e. it is not stuck to the brane), and so gravity extends in all dimensions.
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Models in which gravity is not constrained to three dimensions have the capability

of decreasing the Planck scale because the force of gravity becomes stronger as the

number of dimensions increases [1]. Using Gauss’ Law, we can easily find that with

one extra compact dimension, the gravitational force changes from 1
r2 form to 1

r3 form.

Therefore, at small distances, the strength of gravity increases more quickly, making

it comparably strong to the other forces at an energy closer to that of the weak scale.

The fact that they are compact means that at macroscopic distances we can no longer

see the extra dimensions and gravity takes its familiar form.

Though we know that string theory requires six extra spatial dimensions, we still

don’t know how many of them will be large. If the Planck scale were to be reduced to

1 TeV, it has been found that the size of the extra dimensions would be R ∼ 1032/n−17

cm, where n is the number of additional dimensions. For n = 1, this places the radius

of the extra dimension at 1015 cm, which clearly is not the case in real life. For n = 2,

the radii of the extra dimensions are in the range of hundreds of microns, and for

n = 3, the radii would be in the nanometer range. Three large extra dimensions would

also provide a nice symmetry, with three macroscopic, three intermediate, and three

small dimensions. For more than three extra dimensions, we return to the problem

that the dimensions are too small to experimentally detect.

The gravitational potential in n dimensions has been calculated for distances small

enough to be sufficiently encased in the extra dimensions, and gravity at macroscopic

distances has been known for hundreds of years. What has not been calculated is

the potential at distances of the same order of magnitude as the extra dimensions,

precisely what experimenters would see first if these dimensions exist. My thesis

explores gravity at these distances, and explores what might happen to the potential

for different configurations for the extra dimensions. For example, with two extra

dimensions, the radii do not have to be the same, nor do they have to meet at a
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90o angle. The don’t they even have to exist on a flat space; they could just as

conceivably exist on the surface of a sphere. I first will go through calculations of

simpler topologies using Gauss’ Law, and then will move on to the calculation of the

potential on spherical extra dimensions.

2 Calculation Methods using Gauss’ Law

To calculate the functional form of gravity in extra dimesnions, we can use the n-

dimensional form of Gauss’ Law. For example, for n = 3, the gravitational form of

Gauss’ Law is:

∫

F · da = 4πG
(3)
N Menc, (1)

where G
(3)
N is the 3-dimensional Newton’s constant and Menc is the total mass enclosed

in the Gaussian surface. We find that the LHS is 4πr2, and the RHS equals a constant

times G times the mass enclosed. The constant of 4π on the RHS is the surface

area of a 3-dimensional unit sphere, which cancels the 4π on the other side. In

extra dimensions, Gauss’ law remains basically the same, except with n-dimensional

spherical surfaces instead of 3-dimensional surfaces. It has been calculated [4] that

the surface area of an n-dimensional unit sphere is:

Sn =
2π

n
2

Γ(n
2
)
, (2)

and so Gauss law becomes:

∫

F · da = SnG
(n)
N Menc. (3)

For example, in four dimensions, the surface area of a sphere (
∫

da on the LHS) is
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2π2r3, and so gravity has a 1
r3 dependence. For five and six dimensions, the forces

are proportional to 1
r4 and 1

r5 , respectively.

The above equations only work when R << L, that is, when the distance we are

working with is sufficiently encased in the compact dimensions. To return to our

standard 1
r2 law, we zoom out so that R >> L. Note that the nature of the compact

dimensions is that once you traverse the length L, you wind up back in the same place

you started (Figure 2).

Figure 2: Due to compactification, a single object in one extra dimension will instead look like an

infinite line of objects.

Thus, from a distance, one would see an infinite line of points with one compact

dimension, a plane of points in two compact dimensions, and so on. So with one

extra dimension, when R >> L we can assume that we are far enough away that the

single mass looks like a continuous n-dimensional “line” of uniform mass density, and

we can use a cylindrical Gaussian surface to solve for the force. Let an n-dimensional

cylinder of side length l enclose a line of mass M( ln

Ln ) [1]. The endcaps of our cylinder

are 3-dimensional spheres with radius r, and we use the n-dimensional Gauss’ law,

where the area enclosed is ln(4πr2). Under these conditions, Gauss’ law becomes:

F (4πr2ln) = SnG
(n)
N M

(

ln

Ln

)

. (4)

Lumping constants on both sides together into G
(3)
N , we can solve this equation for F :
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F =
G

(3)
N M

r2
, (5)

and so we get our original 1
r2 law back, with the 3-dimensional Newton’s constant in

terms of the higher-dimensional G
(n)
N and Sn:

G
(3)
N =

S3+n

4π

G
(3+n)
N

V n
, (6)

where now n is the number of extra dimensions, and Vn = Ln is the volume of the

dimensions. As an example, take the five dimensional case. The surface area of a

unit 5-dimensional sphere is 2π5/2

Γ(5/2)
= 8π2

3
, and so Eq. (6) can be solved for G

(5)
N :

G
(5)
N =

4πV2G
(3)
N

S5

=
3GL2

2π
. (7)

By the same process, we find that

G
(4)
N =

2G
(3)
N L

π
, G

(6)
N =

4G
(3)
N L3

π2
. (8)

The cases where R >> L and R << L have been fully analyzed, but little attention

has been paid to the case where R ≈ L. This is the subject of my project. When

R ≈ L, we can’t assume that we are far enough away that the line of points looks

like a line of continuous charge density. Instead the potentials of each mirror image

must be summed.

3 One Extra Dimension

To do the calculation associated with these infinite sums, I employed Mathematica,

but I first calculated on paper what the sum for the gravitational potential in extra

compact dimension should be. Using the 4-dimensional Gauss’ Law, I first calculated
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the gravitational potential from the force, so that vector components wouldn’t be an

issue:

V (r) = −
∫

G
(4)
N Mm

r3
dr =

G
(4)
N Mm

2r3
=
G

(3)
N LMm

πr2
(9)

From there I calculated what the potential would be for an infinite sum of masses (as

opposed to the solid line of mass when R >> L). In this case, the distance from the

test mass to each mirror image in the extra dimension is R =
√

((nL)2 + r2), where

r is the three dimensional distance, so the potential comes out to be:

V =
G

(3)
N LMm

π

∞
∑

n=−∞

1

((nL)2 + r2)
(10)

=
G

(3)
N Mm

πL

∞
∑

n=−∞

1

(n2 + ( r
L
)2)

. (11)

Mathematica computed this infinite sum analytically, and for large enough r
L

(i.e.

where r >> L), the sum is:

∞
∑

n=−∞

1
(

n2 + ( r
L
)2

) =
πL

r
, (12)

and so

V =
G

(3)
N Mm

πL

πL

r
=
G

(3)
N Mm

r
, (13)

the regular 1
r

potential.

For all other r, I was able to graph the natural log of rV (r) versus the natural

log of r
L
. In graphing my results for these calculations, I allowed all constants in the

equation (G, M , and L) to equal 1 for simplicity’s sake. Figure 3 is the graph of the

natural log of the gravitational potential versus the natural log of the ratio of the

distance to the size of the dimension for 1 extra dimension.
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Figure 3: The gravitational potential times r is plotted as a function of r for one extra compact

dimension. The blue line represents the potential already calculated for r << L, the red line is the

1/r potential for r >> L, and the green line is the calculation using the infinite sum.

The x-axis is the natural log of the distance, while the y-axis is the natural log of

r ∗V (r). You can see that for small and large values of r, the graph quickly converges

to the respective potentials of 1
r2 for small r and 1

r
for large r.

4 Two Extra Dimensions

For two extra dimensions, the shape of the dimensions also contributes to the poten-

tial. Instead of having a cylinder, we now have a two-torus, with different circumfer-

ences and different shape angles possible (Figure 4).

First, I calculated the potential for extra dimensions with the same length, then
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Figure 4: In two extra dimensions, the potential can be a function of both size and shape angle.

The stars represent images of a point mass in a space with two compact dimensions- each distance

L travelled in the direction of the extra dimension leads you back to the place you started, so that

one object appears as an infinite plane of objects.

moved on to different radii and from there to different shape angles. The potential

equation for R1 = R2 can be calculated from the 5-dimensional Gauss’ law:

V =
G

(3)
N L2Mm

2π

∞
∑

n=−∞

∞
∑

m=−∞

1

(L2(n2 +m2) + r2)3/2
(14)

=
G

(3)
N Mm

2πL

∞
∑

n=−∞

∞
∑

m=−∞

1

(n2 +m2 + ( r
L
)2)3/2

. (15)

Though this sum certainly converges, Mathematica could not analytically calculate

it, so I instead created a do loop to ‘manually’ calculate the sum. The do loop was

implemented with the following Mathematica command:

s = 0;Do[s = s+ 1./(x2 + y2 + i2)(3/2), x, 1, 1000, y, 1, 1000]; s

In doing this I was able to calculate the sum out to m,n = 1, 000. Beyond m,n =
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1000, it was possible to use an integral to approximate the sum out to a further limit.

The integral approximation is as follows to calculate the error between m,n = 1000

and m,n = 10000:

error =

∫ 10,000

x=1

∫ 10,000

y=1

1

(x2 + y2 + ( r
L
)2)3/2

dxdy−
∫ 1,000

x=1

∫ 1,000

y=1

1

(x2 + y2 + ( r
L
)2)3/2

dxdy

(16)

Also, since I only made the do loop go from m,n = 1, . . . 1000, for the complete

potential I had to use the following equation:

G5Mm

2πL

[

4

10000
∑

n=1

10000
∑

m=1

1

(n2 +m2 + ( r
L
)2)3/2

+ 2

∞
∑

−∞

1

(n2 + r2)3/2
−

(

L

r

)3
]

, (17)

where I multiplied the double sum by 4 to account for 4 quadrants, added the infinite

lines where m or n = 0, and then subtracted the point where m and n both equal 0

to keep from double counting (see figure 5).

I then exported all of my data to kaleidagraph, where I created a natural log

plot of the potentials I had found. The calculations for the 5-dimensional case were

quite similar to that of the 4-dimensional case, and again, I allowed all constants to

equal one. The graph of the natural log of the potential versus the natural log of the

distance is shown in Figure 6.

Once again, you can see that the sum quickly approaches the 5-dimensional law at

small distances, and approaches the standard 1
r2 law at large distances. If one were

to compare Figure 6 to Figure 3 for one extra dimension, one would see that the

potential indeed increases more rapidly as r decreases.
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Figure 5: The sum from m, n = 1, . . . 1000 must be multiplied by four for each quadrant, with the

lines where m = 0 and n = 0 added in, and then the origin subtracted to keep from double counting.

4.1 Change in Length

There is no particular reason why the radii of two extra dimensions should be equal, so

my next task was to calculate the potential for extra dimensions with different radii.

For comparison with dimensions of equal size, I chose to calculate the potentials for

R2 = 3R1 = 3L and R2 = 10R1 = 10L. For simplicity, I will only go through

the calculations for the case where R2 = 10R1, and only provide the results of my

calculations for R2 = 3R1.

The first thing to note when changing the proportions of these dimensions is that

this changes the volume Vn of the extra dimensions, and hence the five-dimensional

Newton’s constant changes as well. For R2 = 10R1, G
(5)
N becomes:

G
(5)
N =

3G
(3)
N V

2π
=

3G
(3)
N (10L2)

2π
=

15G
(3)
N L2

π
. (18)
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Figure 6: The gravitational potential times r plotted as a function of distance for two extra dimen-

sions. The blue line is the calculated potential for distances sufficiently smaller than the size of the

extra dimensions, and the y = 0 line is the potential for large distances.

Now that we have the new 5-dimensional constant, the process is quite similar to the

calculations with R1 = R2. The force with the new constant is F =
G

(5)
N M

r4 =
15G

(3)
N L2M

πr4 ,

and by integrating, we find that the five-dimensional potential is V = 5GL2M
r3 , where

now the distance to each individual image is R =
√

r2 + (nL)2 + 100 (mL)2, where

m,n ∈ Z. So the full potential, summing over mirror images, is

V =
5GM

πL

+∞
∑

n=−∞

+∞
∑

m=−∞

1

(n2 + 100m2 + ( r
L
)2)3/2

. (19)

To calculate the potential using Mathematica, a similar process to the R1 = R2 case

was necessary. I calculated the sums each from 1 to 1, 000, multiplied that sum by 4

to represent the four quadrants, and added in the zero lines. The only real difference
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was that this time the m = 0 and n = 0 lines required different sums. The final

calculation of the potential was:

V =
5GM

πL

[

4

1,000
∑

1

1,000
∑

1

1

(n2 + 100m2 + ( r
L
)2)3/2

+

∞
∑

−∞

1

(n2 + ( r
L
)2)3/2

+

∞
∑

−∞

1

(100n2 + ( r
L
)2)3/2

−
(

L

r

)3]

. (20)

By the same calculation, the final potential for R2 = 3R1 = 3L was:

V =
3GM

2πL

[

4

1,000
∑

1

1,000
∑

1

1

(n2 + 9m2 + ( r
L
)2)3/2

+

∞
∑

−∞

1

(n2 + ( r
L
)2)3/2

+

∞
∑

−∞

1

(9n2 + ( r
L
)2)3/2

−
(

L

r

)3]

. (21)

The results of these calculations are plotted on the graph in Figure 7, along with the

potential for R1 = R2 for comparison.

Since the volumes of the extra dimensions change for each set of radii, the cor-

responding potential at high energies changes by a constant factor, so that instead

of converging to the same line, each set of conditions approach a different line, all

parallel to each other.

An important thing to note is that even though a change in shape of the dimensions

led to a change in the potential at high energy, there is no way to tell simply from the

volume of the dimensions what the shape is. R1 = R2 =
√

10L would have the same

potential asR2 = 10R1 = L. Figure 8 is the result of rescaling the volumes of the extra

dimensions with differing radii, i.e. letting R2 = 10R1 = L√
10

and R2 = 3R1 = L√
3
, so

that the volume stays the same for each set of conditions. In this graph, one can see

that the value of the potential between R2 = R1 and R2 = 10R1 varies by at most

around a factor of two.
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Figure 7: The gravitational potential times r plotted as function of distance for two extra dimensions

with varying length ratios. Plotted are the cases where R2 = R1, R2 = 10R1, and R2 = 3R1.

4.2 Change in Shape Angle

Another possibility in the case of two extra dimenions is a change in shape angle.

Depending on how big the angle θ between the radii is, the potential at intermediate

distances changes. In this case, I computed the potentials for shape angles of 5◦ and

30◦. Again, I will only go through the calculations for one case (30◦), and simply

provide the results of the calculations for the other (5◦).

The first step in calculating the potential for different shape angles, as it was for

different radii, is to calculate the volume Vn of the extra dimensions and use that to

calculate G
(5)
N , the force, and the potential. The volume of the extra dimensions in
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Figure 8: The graph of the 5-dimensional potential times r, as a function of distance for differing

radii of two extra dimensions. In this case, all volumes were held constant so that a comparison

between R2 = 10R1, R2 = 3R1, and R2 = R1 could be seen more clearly.

this case is the volume of a parallelogram with equal sides,

Vn = L(L sin(30)) =
L2

2
=⇒ G

(5)
N =

3GVn

2π
=

3G
(3)
N L2

4π
. (22)

The distance from the origin to each point in the extra dimensions can be seen by

referring to Figure 9. One can see that for any given m and n, the distance to that

point will be
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R =
√

(mL + nL cos θ)2 + (nL cos θ)2 + r2 (23)

=
√

L2(m2 + 2mn cos θ + n2 cos2 θ + n2 sin2 θ) + r2 (24)

=
√

L2(m2 + n2 + 2mn cos θ) + r2, (25)

where r is the 3-dimensional distance.

mL nLcosθ

nLsinθ

m,n image
n

m

θ

Figure 9: The trigonometry of two extra dimensions with a shape angle θ. In the x-direction, an

individual mass excitation will be located mL + nL cos θ from the origin, and in the y-direction the

image will be nL sin θ from the origin.

Thus for the case where the shape angle is 30◦, cos θ =
√

3/2, the distance is

R =
√

L2(m2 + n2 +
√

3mn) + r2, and so the potential is:

V =
G

(3)
N ML2

4π

+∞
∑

n=−∞

+∞
∑

m=−∞

1

(L2(n2 +m2) +
√

3mn + r2)3/2
(26)

=
G

(3)
N M

4πL

+∞
∑

n=−∞

+∞
∑

m=−∞

1

(n2 +m2 +
√

3mn+ ( r
L
)2)3/2

. (27)

For the case where θ = 5◦, by the equation for R, the distance between the origin
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and each point in the extra dimensions is R =
√

L2(m2 + n2 + 2mn cos π
36

) + r2, and

the potential is

V =
G

(3)
N M sin πL

36

2π

+∞
∑

n=−∞

+∞
∑

m=−∞

1

(n2 +m2 + 2mn cos π
36

+ ( r
L
)2)3/2

. (28)

Unfortunately, since the dimensions are not orthogonal to each other, I cannot simply

calculate the sums for n = 1, . . . 1000 and multiply. Instead, I just had to calculate

the sums for m,n = −1000, . . . , 1000 and calculate any error using the integral ap-

proximation. Figure 10 shows the potentials for θ = π/2, π/6 and π/36, where the

volumes change in according to the shape angle. Figure 11 shows the potentials

where, similar to the case with different radii, the volume is held fixed. One can see

that the difference between θ = π/6 and θ = π/2 is nearly indistinguishable, while

there is approximately a factor of two between θ = π/36 and θ = π/2.

5 Three Extra Dimensions

Now we move on to the possibility where there are three large extra dimensions. The

mathematical method to calculate potentials using three extra dimensions follows the

same outline as calculations for two extra dimensions: find the volume of the dimen-

sions, calculate G
(6)
N , calculate the force, and finally integrate to find the potential.

The difference comes in the time it takes for a computer to do such calculations, and

the amount of geometry used to compensate for not summing over negative values.

Recall from the section on Gauss’ Law that

G
(3+n)
N =

4πVnG
(3)
N

2π(3+n)/2/Γ(n/2)
, (29)

which for three extra dimensions is
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Figure 10: The graph of gravitational potential, times r, as a function of distance is plotted for two

extra dimensions that are not orthogonal to each other. The shape angles shown are π/36, π/6, and

π/2.

G
(6)
N =

4πL3G
(3)
N

2π3/2!
=

4L3G
(3)
N

π2
. (30)

Using this value for G
(6)
N , we find that the force at small distances is F =

4G
(3)
N ML3

π2r5 ,

and by integrating the force, that the potential is

V =
G

(3)
N ML3

π2r4
. (31)

For intermediate distances, the potential is found by summing over all of the mass

images in the extra dimensions, which this time are distributed over a volume rather

than a plane or a line. Hence the potential becomes:
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Figure 11: The graph of gravitational potential times r, plotted as a function of distance for two

extra dimensions with shape angles of π/36, π/6, and π/2. This time the volumes of for each case

were held the same, allowing the radius of each set of extra dimensions to vary instead.

V =
G

(3)
N M

π2L

∞
∑

n=−∞

∞
∑

m=−∞

∞
∑

k=−∞

1

(n2 +m2 + k2 + ( r
L
)2)2

. (32)

In the process of computing the sum using Mathematica, I took m,n, and k each

from 1 to 100, because the time taken to compute the triple sum out to points any

further took too much time to be reasonable. An integral approximation similar to

that in the 5-dimensional case was used, though for the purposes of graphing the data

100 was a large enough value for each iterator. Because I only computed the results

for one octant of the total space, I had to multiply each result by 8 since the potential

for each octant is identical, then add in the m = 0,n = 0 and k = 0 planes, subtract
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the m,n = 0, n, k = 0 and m, k = 0 lines to prevent double counting, and finally add

back in the origin (Figure 12).

z-braney -=

Figure 12: To find the potential in three extra dimensions, the triple sum is multiplied by 8, the

zero-planes are added in, the zero-lines subtracted, and finally the origin added back in.

Thus the equation for the potential is as follows:

V =
G

(3)
N M

π2L

[

(8

100
∑

m=1

100
∑

n=1

100
∑

k=1

1

(n2 +m2 + k2 + ( r
L
)2)2

+ 3
∞

∑

n=−∞

∞
∑

m=−∞

1

(n2 +m2 + ( r
L
)2)2

− 3
∞

∑

n=−∞

1

(n2 + ( r
L
)2)2

+

(

L

r

)4]

(33)

Now, as Figure 10 also shows, each zero-plane infinite sum must also be calculated

from m,n = 1 . . . 1000, each plane sum must be configured to compensate for only

calculating one quadrant, so that the potential becomes:
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V =
G

(3)
N M

π2L

[

8
100
∑

m=1

100
∑

n=1

100
∑

k=1

1

(n2 +m2 + k2 + ( r
L
)2)2

+ 3

(

4
1000
∑

n=1

1000
∑

m=1

1

(n2 +m2 + ( r
L
)2)2

+ 2
∞

∑

n=−∞

1

(n2 + ( r
L
)2)2

−
(

L

r

)4)

− 3

∞
∑

n=−∞

1

(n2 + ( r
L
)2)2

+

(

L

r

)4]

(34)

=
GM

π2L

[

8
100
∑

m=1

100
∑

n=1

100
∑

k=1

1

(n2 +m2 + k2 + ( r
L
)2)2

+ 12
1000
∑

n=1

1000
∑

m=1

1

(n2 +m2 + ( r
L
)2)2

+ 3
∞

∑

n=−∞

1

(n2 + ( r
L
)2)2

− 2

(

L

r

)4]

(35)

The graph of the natural log of the potential in 6 dimensions is shown in Figure

13:

6 Compactification on a Sphere

To look at topologies that are no longer flat, such as a sphere, it is no longer possible to

use the method of images that I have used previously. For example, on a sphere, one

can return to one’s starting point going in any direction. To calculate the potential

on a sphere of two extra dimensions, we have to use the Yukawa potential rather than

Gauss’ Law.

With 2 extra spherical dimensions, the distance from one point to another will

be the distance in 4-dimensional flat space plus the distance in spherical coordinates

traversed on the surface of a sphere of radius R. Thus the metric, or the square of a

differential path length, is:

ds2 = dx2
3 +R2(dθ2 + sin θ2dφ2). (36)
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Figure 13: Natural log of the gravitational potential, times r, is plotted as a function of distance

for three extra dimensions. The blue line is the 1/r4 potential expected for distances sufficiently

smaller than the radii of the dimensions, and the red line is the standard 1/r potential for no extra

dimensions.

Note that θ and φ are coordinates that extend outside the brane in 5 dimensions; for

convenience we will set the 3-brane (the one we live on) at θ, φ = 0. We will use this

metric to solve Poisson’s equation for the Newtonian potential, keeping in mind that

the Laplacian is the sum of the 3-dimensional Laplacian in cartesian coordinates plus

the Laplacian in spherical coordinates for the two extra dimensions:

∇2
5V = 4πGNρ =⇒ ∇2

3V + ∇2
SV = 4πGNρ, (37)

where ∇2
S can be found using the metric:
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∇2V =
1√
g
∂µ
√
g∂µV =

1√
g
∂µ
√
ggµν∂νV (38)

=
1

R2 sin θ

∂

∂θ
(
R2 sin θ

R2

∂V

∂θ
) +

1

R2 sin θ

∂

∂φ
(
R2 sin θ

R2 sin θ2

∂V

∂φ
) (39)

=
1

R2

∂

∂θ
(sin θ

∂V

∂θ
) +

1

R2 sin θ2

∂2V

∂φ2
, (40)

where
√
g is the square root of the determinant of the metric. To find our potential,

we look for the Green’s function, the solution to Poisson’s equation with a delta

function source:

∇2
3G+ ∇2

SG = δ(x − x′)δ(cos θ − cos θ′)δ(φ− φ′). (41)

Akin to quantum mechanics, we want to find eigenvalue solutions to this equation:

(∇2
3 + ∇2

S)ψk

lm = Ek

lmψ
k

lm (42)

Like the eigenfunctions found in quantum mechanics, these ψlm follow the complete-

ness relation:

∑

l,m

ψlm(x, θ, φ)ψ∗
lm(x′, θ′, φ′) = δ(x− x′)δ(θ − θ′)δ(φ− φ′), (43)

so that

(∇2
3+∇2

S)

∑

l,m ψlmψ
∗
lm

Elm
=
Elm

∑

l,m ψlm(x, θ, φ)ψ∗
lm(x, θ, φ)

Elm
= δ(x−x′)δ(θ−θ′)δ(φ−φ′).

(44)

Thus, the Green’s function G is the sum over all possible states of ψlm, which includes

an integration:
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G(x, θ, φ;x′, θ′, φ′) =

∫

d3k

(2π)3

∑

l,m

ψk

lm(θ, φ,x)ψk∗
lm(θ′, φ′,x′)

Ek

lm

, (45)

where θ and φ are the variables of the 2 extra dimensions. Plugging this back into

Eq. (41), in other words, multiplying the above equation by Ek

lm, we get that

(∇2
3 + ∇2

S)G =

∫

d3k

(2π)3

∑

l,m

ψk

lm(θ, φ,x)ψk∗
lm(θ′, φ′,x′). (46)

Now, using separation of variables, we can assume a solution ψk

lm that consists of a

function dependent only on x and a function that depends only on θ and φ:

ψk

lm(x, θ, φ) = ψk(x)Ylm(θ, φ). (47)

If we take Eq. (42) and divide both sides by ψk

lm, keeping in mind that ψk is dependent

on the three normal dimensions, and Ylm is dependent on the two spherical extra

dimensions, we get the following equation:

∇2
3ψk(x)

ψk(x)
+

∇2
SYlm(θ, φ)

Ylm(θ, φ)
= Ek

lm. (48)

Because ψk(x) and Ylm(θ, φ) are by the nature of their dependent variables indepen-

dent of each other, the above equation shows that each of the functions must equal a

constant (if the sum of the two equals a constant and they are independent functions,

they must both equal a constant). So now the process is to solve for each of the

separated solutions:

∇2ψk = −k2ψk =⇒ ψk = Neik·x (49)

∇2
SYlm(θ, φ) = NlmYlm(θ, φ). (50)
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Equation (49) is just a standard 1st order differential equation with the known sine

and cosine solution; the second will also turn out to be a familiar form. To find Ylm,

we start by expanding out the Laplacian for spherical coordinates:

1

R2 sin θ

∂

∂θ

∂Ylm

∂θ
+

1

R2 sin 2θ

∂2Ylm

∂φ2
= NlmYlm. (51)

Using separation of variables again, we separate Ylm into a function dependent only

on θ and a function dependent only on φ:

Ylm = Θ(θ)Φ(φ). (52)

Now, if we multiply Eq. (51) by sin2(θ) and divide the equation by Θ(θ)Φ(φ), we get

sin θ
R2

∂
∂θ

sin θ ∂Θ
∂θ

Θ
+

1
R2

∂2Φ
∂φ2

Φ
= Nlm sin 2θ. (53)

Again, because the functions of Θ and Φ are independent of each other, the portions

of Eq. (53) dependent on θ must equal a constant and the portion dependent on φ

must also be a constant. Thus we get that

sin θ

R2

∂

∂θ

∂Θ

∂θ
−Nlm sin 2θΘ = m2Θ (54)

1

R2

∂2Φ

∂φ2
= −m2Φ. (55)

Like the solution ψ(x), the solution for Φ is a combination of sines and cosines:

Φ = am cos (mRφ) + bm sin (mRφ), (56)

and because we are on a sphere, and hence Φ(0) = Φ(2π), we get that m = n
R
, where

n ∈ Z. As for Θ(θ), when Nlm = l(l+1)
k2 , the solutions turn out to be associated

Legendre polynomials:
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Θlm = Pm
l (cos θ), (57)

where l = 0, . . . ,∞ and m = −l, . . . , l. Thus the full solution for Ylm is

Ylm(θ, φ) = eimφPm
l (cos θ) (58)

So, plugging our solutions for Ylm(θ, φ) and ψk(x) into the Green’s function, we get

the solution

G(x, θ, φ;x′, θ′, φ′) =

∫

d3k

(2π)3

∑

l,m

eik·(x−x′)Ylm(θ, φ)Y ∗
lm(θ′, φ′)

k2 + l(l+1)
R2

, (59)

and by doing a complex contour integral over k, we get the final potential:

V = 4πG
(3)
N

∑

l,m

e−
q

l(l+1)

R2 |x−x
′|

4π|x − x′| Ylm(θ, φ)Y ∗
lm(θ′, φ′). (60)

The constant term in the exponent,
√

l(l + 1)/R2, are what are known as Kaluza

Klein masses; they are essentially excitations of the mass of a particle. Note that if

|x − x′| >> R, only the l = 0 term contributes to the potential. This means that

m = 0, and hence Ylm simply becomes a constant, and we get our 1
r

potential back.

Since we are doing calculations on the brane, we can set θ and φ both equal to 0,

so that

Ylm(θ, φ) = eimφPm
l (cos θ) = e0Pm

l (1) = 1. (61)

Because Ylm is constant for all l and m, and the rest of the potential is independent

of m, instead of doing a double sum over both l and m, we can just recognize that for

each l, the sum over m will simply add a constant factor of (l+ 1) to the sum over l.

So the potential is now:
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V = 4πG
(3)
N

∞
∑

l=0

(l + 1)e−
q

(l+1)

R2 |x−x′|

4π|x − x′| . (62)

When I calculated this potential, it correctly converged to the 1/r potential at large

distances, but for small distances, it converged to a 1/r3 potential with an unexplained

factor of two. Further research into spherical calculations will have to be done to

discover the origin of this factor of two. Figure 14 depicts my findings for the spherical

calculation.
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Figure 14: The gravitational potential, times r, plotted as a function of distance for two spherical

extra dimensions. The blue line represents the 1/r3 potential at small distances, multiplied by an

unexplained factor of two. Minus this factor of two, the potential correctly converges to predicted

values at distances much greater than and much less than the size of the extra dimensions.
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7 Conclusion

It is possible that in the next few years, both at the Large Hadron Collider and through

other experiments, extra dimensions will be detected [3]. The functional form gravity

would take is known at distances significantly smaller than the size of the dimensions,

but my thesis is the first to explore the potential at distances at approximately the

same size as the dimensions, as well as to show that constraints on the shape and

volume of the extra dimensions can change the potential. One can see from my results

that with two extra dimensions, it would be possible to detect a difference between a

shape angle of 90 degrees and that of 5 degrees, and between the case where R1 = R2

and the case where the two radii are not the same. Though I touched on the idea of

having extra dimensions that are not flat, by looking at spherical geometry, there is

certainly the open possiblity of exploring other topologies.
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