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Abstract

In the study of globular clusters, the King distribution function has been the standard for
modeling the velocity dispersion, luminosity and surface density profiles. However, based on
star count analysis developed by Grillmair et al. [5], it is apparent that there exist stars outside
of the King tidal radius (while the model predicts that stars should no longer be bound to
the globular cluster). Moreover, the star counts depart from the King model even at radii
considerably less than the tidal radius. In this paper, we use the star count data developed
by Grillmair et al. [5] and fit them to a Michie model (an extension of the King model that
considers an extra parameter: the anisotropic radius of the cluster). Our results show that the
Michie distribution function is more accurate than the more popular King distribution function.
This result validates the belief that the velocity dispersions of stars in a globular cluster are
not isotropic at all radii. Furthermore, I will consider the possibility that the deviation in star
counts from the King model is attributed to the presence of dark matter. However, our results
imply that adding dark matter to a Michie model does not improve the fit, largely because
the model does not permit the dark matter to extend beyond the tidal radius. Due to this
limitation in the models, no statements about the amount of dark matter in a globular cluster
can be made.
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1 Introduction

In this thesis, we study the space and velocity distribution of stars in a globular clus-

ter. The goals are to determine, by fitting the observed distribution profiles, whether

anisotropy in the velocity distribution is necessary to describe the observations, and

to find limits on the amount of dark matter that may be concentrated within a glob-

ular cluster.

Two useful generic forms for the distribution functions were given by I.R. King [9]

and by R. Michie [10]. In order to understand the distribution functions developed by

King and Michie, it is essential to review the general dynamics of globular clusters.

In the Overview (section 1.1), I will give a brief explanation of how stars escape the

cluster, followed by some simple calculations of the characteristic size, mass, density,

and visible luminosity of a typical globular cluster (here the term typical is used

rather loosely since globular clusters tend to vary quite a bit.)

However, to find an effective model that fits the surface density data for globular

clusters proves to be a difficult task. Both the King and Michie models relate the

number distribution or mass distribution of stars at a given point to the potential

at that point. The potential, in turn, is given in terms of the density by Poisson’s

equation. Hence one knows neither the potential nor the stellar distribution until one

has solved Poisson’s equation self-consistently. The description of how this is done,

and results for selected globular cluster are in Section 3 of this paper.

Depending on the level of accuracy sought, one needs not only an accurate generic

model to describe the cluster, one must also consider and pick the right values for the

many parameters involved. Some of these parameters include the radius of anisotropy,

the tidal radius, and the dark to light matter ratio. Since the globular cluster sits in

the (non-uniform) gravitational field of its parent galaxy, there is a tidal radius, rt,

beyond which tidal forces from the galaxy will pull stars loose from the cluster. The

anisotropy radius will be defined later in this paper.
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Throughout this paper, I will use the modified star count profiles developed by Grill-

mair et al. [5]. The problem with raw star counts at r ≈ rt (tidal radius), is the

difficulty in differentiating between background and foreground stars from those that

belong to the globular cluster. In addition, the problem with raw star counts for

r � rt is that they do not account for crowding effects. However, Grillmair et al. [5]

has already compensated for these two complications in his adjusted star count data

for twelve globular clusters.

The data from Grillmair et al. [5] has led to the unmistakable observation that there

is a clear discrepancy between the star count profiles and the King models at radii

near rt. King models are the only models that Grillmair et al. considered. The fact

that there are stars outside of the tidal radius (tidal tails) is somewhat understandable

since it has already been shown that the removal of loosely-bound cluster stars by

tidal forces of the Galaxy is for some stars a slow process; clusters may be surrounded

by halos of unbound stars for many Galactic orbits [7].

However, an even more interesting observation made by Grillmair et al. [5] is that in

all 12 clusters observed, the star counts depart from the King models at radii con-

siderably less than rt. Moreover, there are more stars than anticipated in this outer

part of the cluster, which is still inside the tidal radius. Granted that some of these

extra stars may still be background stars, Grillmair also believes that the error may

lie in King values for the tidal radii. It is possible that rt is smaller than King’s rt (in

which case these stars that deviate from the King model inside the tidal radius, ap-

propriately nicknamed extra tidal stars, also become tidally removed.) Alternatively,

Grillmair suggests that the tidal radius may be much larger than King’s rt. This

hypothesis arises from the observation that the extra tidal stars are nicely fitted by

power laws. Thus, if one fits the extension and the main body of the surface density

profile of a globular cluster simultaneously, the King radius is much smaller than the

actual tidal radius [5].
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However, an appropriate alternative to the King model that Grillmair does not con-

sider is the Michie model. Since the Michie model has an extra parameter (radius of

anisotropy), it is more flexible to fit the observed data. A large portion of this paper

is dedicated to exploring the benefits of this model.

Another explanation for the presence of stars outside of the tidal radius is the exis-

tence of a dark matter halo surrounding the globular cluster that keeps these stars

bound to the cluster. Grillmair et al. does not consider this alternative, although

it is possible to develop a two-component surface density model that accounts for

the mass segregation. The last section of this paper is devoted to developing and

analysing such a two-component model. The last possibility to consider is that the

star count observations deviate from the King model due to a different law of gravity

dominating in globular clusters at distances r ≈ rt. The last possibility is interesting

to consider but is beyond the scope of this paper.

1.1 Overview

To understand how globular clusters behave, we first consider the most basic ap-

proach and determine how well it coincides with our observations. In this simplistic

simulation, the masses of all the stars are assumed to be identical and tidal forces

acting on the globular cluster have been neglected. The globular cluster is assumed to

be statistically steady, spherical, and self-gravitating. Moreover, the velocity distri-

bution of the stars is assumed to be isotropic (same velocity in all directions). Thus,

under these conditions we use the virial theorem to relate the total kinetic energy of a

globular cluster with N stars of mass m to the total gravitational potential energy [1]:

Nmv2

2
=

GN(N − 1)m2

4R
. (1)

Here R refers to the core radius and v is the root mean square velocity of stars.

Typically there are three radii when discussing globular clusters: the first is the core

radius rc (radius at which surface brightness diminishes to half the central value), the
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second is the half light radius rh (radius that contains half of the light of the cluster

or half of the visible mass of the cluster), and the third is the tidal radius rt beyond

which the external gravitational field of the galaxy dominates the dynamics [4].

To determine the escape velocity from Eq. (1), we compare the kinetic energy of the

mass that is trying to escape to the potential energy between that one star of mass

m and the rest of the globular cluster of mass M . From this simple calculation, it

can be shown that the escape velocity is twice vrms for the globular cluster. More-

over, the distribution of stellar velocities is entirely analogous to the thermodynamic

distribution of random velocities in a classical gas; most stars have this dispersive

speed vrms and the velocity dispersion itself can be fit to a Maxwell-Boltzmann dis-

tribution. Through collisions, there is a tail of stars that attain speeds greater than

vrms and escape the cluster. Once this occurs, we must compute the time it takes for

the entire cluster to readjust its vrms and repeat this process over again. The time

it takes a globular cluster to readjust its random velocity distribution is called the

relaxation time. Creating a reasonable model for the relaxation time of a globular

cluster involves analyzing how small deflections affect the typical random velocity

of stars. The relaxation time is agreed upon in most books to be governed by the

equation [1]:

trelax =
(

rc

vrms

)

N

12ln(N/2)
. (2)

I will often write rc

vrms
as the crossing time tcross. From this relaxation model, to find

the time that it takes for all the stars in the cluster to escape, we simply look at

the tail ends of this Maxwellian distribution. The fraction ξ of stars that will escape

in one relaxation time is just the fraction of stars that are in that tail end of the

distribution (those stars that have reached velocities that exceed twice the root mean

square velocity. I will call this fraction of stars PM(v)). Thus, ξ is given by [2]:

ξ =
∫ ∞

2vrms

PM(v)dv = 7.4 × 10−3. (3)
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Since we can divide out this fraction of stars after each relaxation time (because they

are no longer a part of the cluster), the evaporation time is given by,

tevap =
trelax

ξ
≈ 135trelax (4)

However, as Spitzer pointed out, detailed mechanics of the escape of stars from the

cluster depend on the ratio of relaxation time to the crossing time, and thus depend

on the number of stars in the globular cluster. Typically, for a globular cluster con-

taining 106 stars, the evaporation time is closer to tevap = 100trelax [2].

This basic model of the dynamics of globular clusters helps us evaluate more compli-

cated models involving tidal forces, anisotropic velocity dispersions, and the addition

of dark matter in the mass distribution function. In the following sections, using stan-

dard values for the mass, density, number of stars, and radius of a globular cluster,

I will show the results of several elementary calculations for the evaporation times,

minimum radii based on star counts, and acceleration of stars near the escape radius.

I will then consider more involved models such as the King and Michie distributions

of the number of stars per unit volume in coordinate space per unit volume in volume

space.

2 Elementary Calculations

Before proceeding with more complicated calculations, we need to develop an un-

derstanding for the basic properties of a globular cluster (assuming it abides by the

model in the overview.) Such properties are the number of stars, the average mass

of a star, the visible central density, total visible luminosity, vrms, and various radii.

Table 1 sums up these observables and deduced values (notice that there are some

discrepancies between different sources). From this data, the evaporation time of a

globular cluster is approximated by Eqs. (2) and (4) to be 80 billion years (much

greater than the projected age of the universe). An interesting calculation is to see
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Table 1: Values for a Typical Globular Cluster

# of stars [1] avg. mass of star [1] vis. central density [6] total vis. luminosity [6]

106 .5M� 8000M�/pc3 3 × 105L�

vrms [1], [6] rc [1], [4] rh [4] rt [4]

20km/s, 7km/s 8.3× 1016m, 4.63× 1016m 3.09× 1017m 1.5× 1018m

what the minimum radius of a globular cluster should be in order for it to still be

around today. In other words, set tevap to be the age of the universe (15 billion years)

and rearrange the equations to find the minimum radius of that cluster. For a glob-

ular cluster consisting of 106 stars, the minimum radius is 3.42 × 1016m, which is

smaller than the radius of any measured globular cluster that exists today.

As discussed in the introduction, globular cluster may also have a two-component

distribution function. In an attempt to calculate the amount of dark matter that

could be present, the question arises: why is it not possible to tag a star that lies just

outside of the escape radius of a globular cluster (presumably gone from the cluster

based on our model), figure out its velocity (using red shifts and blue shifts), measure

the velocity of the same star after one year, and see whether it is accelerating or

decelerating. If the star is accelerating, it is gone from the cluster like our model

predicted; however, if the star is decelerating, it is being pulled back by the cluster

because the cluster is more massive than just the visible matter. As it turns out, the

change in velocity of the star in one year, or even a few years is too small to determine

whether it is accelerating or decelerating. The change in velocity of a globular cluster

at the escape radius (or tidal radius) is 9.3 × 10−4m/s in one year.

Using this simple model, we have determined ballpark figures for minimum radii, es-

cape velocities and accelerations of stars in the globular clusters. Now we can look at

more realistic models that take into consideration the tidal forces and non-isotropic

velocity dispersions.
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3 King and Michie Models

3.1 King Model Density Profiles

A globular cluster experiences a tidal force due to the galactic center. Once a star

that is part of a globular cluster reaches a tidal radius, the external gravitational

field of the galaxy dominates its dynamics and it is no longer bound to the cluster.

Moreover, these values for the tidal radius have previously been worked out by King

and alterations have been suggested by Grillmair et al. [5].

A well known model that accounts for the existence of a tidal forces and predicts the

distribution of stars in a cluster to a reasonable degree of accuracy is the King model.

This model assumes that the velocity distribution is isotropic everywhere (same in

all directions). The King model for the phase space distribution of a stellar species

is the following:

f(r, v) =



















0, ε < 0

k
(

e2j2ε − 1
)

, ε > 0,

(5)

where ε = V (rt) − (V (r) + v2/2), and V (rt) is the gravitational potential at the

tidal radius. Here j is inversely proportional to the velocity dispersion. That is

to say, j = 1√
2σ

, where σ is some constant. The constant k is the normalization

factor and can, as an alternative, be replaced by the central density. Notice that this

distribution represents a Maxwellian. We set zero potential to be at the boundary

of the cluster defined by the tidal radius rt; in other words, V (rt) = 0. The escape

velocity at any point is given by ve
2 = −2V (r). Thus when the expression V (r)+v2/2

is positive, implying ε is negative and the star has escaped (or will escape) the cluster,

the distribution function disappears. However, when ε is positive, the velocities are

spherically distributed.
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As King had done earlier [8], we are interested in obtaining an expression for the

surface density of a globular cluster. This is defined as the number of stars per unit

volume in coordinate space per unit volume in volume space. By substituting in the

expression for ε, and multiplying by 1 (e−2j2V (r)e2j2V (r)), we can rewrite Eq. (5) as:

f(r, v) = ke−2j2V (r)(e−j2v2 − e2j2V (r)). (6)

To simplify further, we let W = −2j2V (r) and η = j2v2. The expression for the

density ρ can now be written as:

ρ =
∫ ve

0
f(v, r)4πv2dv = 2πkj−3eW

∫ W

0
(e−η − e−W )η

1

2 dη. (7)

Similarly ρ0, the central density, is defined as:

ρ0 = 2πkj−3eW0

∫ W0

0
(e−η − e−W )η

1

2 dη, (8)

where W0 = W (0). We can perform one integration by parts to simplify ρ and ρ0 to:

ρ =
4

3
πkj−3eW

∫ W

0
e−ηη

3

2 dη. (9)

ρ0 =
4

3
πkj−3eW0

∫ W0

0
e−ηη

3

2 dη. (10)

The last integrals were done with the help of Mathematica 5.0, to yield:

ρ/ρ0 = 0.2374eW (r)(
3

4

√
πErf[

√

W (r)] − 1

2
e−W (r)

√

W (r)(3 + 2W (r))). (11)

At this point, we have an expression for density in terms of W (r), but what we wish

to have is an expression ρ(r). This can be done by solving Poisson’s equation using

W in place of the potential V , and the dimensionless radius R = r/rc, where rc is a

scale factor still called the core radius. Poisson’s equation now reads:

d2W

dR2
+

2

R

dW

dR
= −8πGj2rc

2ρ. (12)

Based on King’s earlier works [9], the core radius is chosen so that the central value

of ∇2W is −9 (so as to be in agreement with an earlier different definition of the core
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Figure 1: ρ/ρ0 vs. R (Rt = 100)

radius cited in the Overview). We write 8πGj2rc
2ρ0 = 9, and now Eq. (12) reads [8]:

d2W

dR2
+

2

R

dW

dR
= −9

ρ

ρ0
. (13)

To solve this differential equation, we used the NDSolve tool in Mathematica 5.0,

which gave a result for W (R) in terms of an interpolating function. Substituting

this interpolating function for W (R), we now have a density function ρ/ρ0. However,

if we want to obtain density values for a specific tidal radius, we must know what

the corresponding W0 is. To find this W0 corresponding to a desired Rt, we input

an arbitrary W0 into Eqs. (10) and (13), and then calculated the resulting value

W (Rt) from Eq. (13). We narrowed in on our W0 with this guess and check method;

when our value for W (Rt) was close enough to zero (± .001), we had found our W0.

Figure 1 is a LogLogPlot created by Mathematica for Rt = 100 (W0 = 8.57) of ρ/ρ0

vs. R. Although we have constructed an appropriate function ρ/ρ0, to be able to

compare this model to our observations of globular clusters as seen from earth, we

need to project ρ/ρ0 onto the sky. Figure 2 is an illustration of how we would see the

cluster from earth; in other words, we have ρ(R), but what we want is ρ(r) (which we

later call σ(R) to avoid confusion with the non-projected density profile). The new

9



r

R
z

−R(t)

R(t)

eye

Figure 2: Projection of ρ onto the sky: the globular cluster and our sight line as seen from above.

projected density is now given by the equation:

σ(r) =
∫ Rt

−Rt

ρ(R)dz, (14)

where z =
√

R2 − r2 (see Figure 2). Also due to symmetry, the bounds of integration

can be simplified to z = 0 to z = Rt (or R = r to R = Rt) - we obviously now need

a factor of 2 in front of the integral. The projected density function can be rewritten

as follows:

σ(r) = 2
∫ Rt

r

R√
R2 − r2

ρ(R)dR, (15)

with

σ0 = 2
∫ Rt

0
ρ(R)dR. (16)

Figure 3 is the resulting LogLogPlot of σ/σ0 vs. R (where again, R is the dimension-

less variable r/rc). It agrees with similar plots done by King [9]. Now we have the

tools to compare observed data to our model. Grillmair et al. uses this King model

to compare the star count surface density to his observation of 12 globular clusters.

They show that the King distribution deviates from the observed data at R slightly

less than Rt [5]. A question to consider later in this paper is how would adjusting the

model to include dark matter improve or worsen the correlation between the model

and the observed data both at R < Rt and R > Rt.
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Figure 3: σ/σ0 vs. R (Rt = 100)

3.2 Michie Model Density Profiles

However, before adding dark matter to the King model, we must first consider the

Michie model. Although the King model is accurate to some degree, it is possible that

the velocity dispersion of stars in a globular cluster change from nearly isotropic at

the center to nearly radial (anisotropic) at the scaled radius Ra (radius of anisotropy)

[4]. The King model does not account for this anisotropy. The most acclaimed model

that takes this fact into consideration is the Michie distribution function. To make

the velocity dispersion anisotropic, the Michie distribution in phase space is simply

an angular-momentum exponential cut off applied to the King distribution. The

following is the Michie distribution function:

f(r, v) =



















0, ε < 0

ke−j2L2/r2
a

(

e2j2ε − 1
)

, ε > 0,

(17)

where L is the orbital momentum of the star and is given by L = rv sin(θ), and ε

as before. The constant ra is the radius of anisotropy. To find the surface density

distribution function ρ(R), we mirror the steps we took with the King model. After
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substituting in the expression for ε and defining W and η in the same manner, our

expression for ρ(W ) becomes a double integral:

ρ = 2πkj−3eW
∫ W

0
dη (e−η − e−W )η

1

2

∫ 2π

0
dθ

(

e
−ηR2

ra2 sin2

)

. (18)

Letting y = cos θ, our expressions for ρ and ρ0 simplify to:

ρ = 2πkj−3eW
∫ W

0
dη (e−η − e−W )η

1

2

∫ 1

0
dy

(

e
−ηR2

ra2
(1−y2)

)

, (19)

and (since L dissappears at r = 0)

ρ0 =
4π

3
kj−3eW0

∫ W0

0
e−ηη3/2dη. (20)

These integrals are again done by Mathematica 5.0. Since we already have a relation

between W and R (Eq. (13)), we can plot the unprojected ρ/ρ0 for any desired Ra.

To project the ρ/ρ0 onto the sky, we use exactly the same technique as with the

King model. Figures 4 and 5 show the projected density (σ/σ0) as a function of R

(for Rt = 100) with Ra = 100 and Ra = 1 respectively. Notice that at Ra = 100,

the velocity dispersion is almost entirely isotropic, hence the model mirrors the King

model. At Ra = 1, notice that the anisotropy makes σ/σ0 less flat.

Although Grillmair et al. [5] has already fitted a King model to his star count data

and shown that the observations depart from the model slightly before Rt, there was

no attempt to fit the data to a Michie model. In the next section, I will adjust the

parameters Ra and Rt in the Michie model in an attempt to better fit the Grillmair et

al. observed data. After having done this, one may consider fitting a two-component

model (one that contains dark matter) to the observed data. However, in the following

section I only focus on the following result: adjusting the radius of anisotropy and

the tidal radius, the Michie model is a better fit, in particular, to the observed data

for two globular clusters that could not be fit well with a King model.
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Figure 4: σ/σ0 vs. R (Rt = 100, Ra = 100)
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Figure 5: σ/σ0 vs. R (Rt = 100, Ra = 1)
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Figure 6: σ/σ0 vs. R (Rt = 9.28)

4 Michie Model Results

Grillmair et al. fit the King surface density function to twelve globular clusters [5].

As noted before, for the majority of the globular clusters, the King model is a good

fit in the body of the cluster. However, as r → rt, the star counts start to deviate

significantly from the model. In particular, for almost all of these globular clusters,

there are a noticeable number of stars that lie outside of the tidal radius, beyond

which, no stars should exist. However, pushing out the tidal radius of these globular

clusters to include the stars at r > rt destroys the fit in the body of the cluster. This

suggests that the King model is not entirely accurate. The results in this section

suggest that the Michie model is a better fit to the globular clusters than the King

model used by Grillmair et al..

Out of the twelve globular clusters observed by Grillmairet al., I chose to fit a Michie

model to the two that display the worst fit by the King model (NGC 288 and NGC

5824). Figures 6 and 7 show the King model fits to NGC 288 and NGC 5824 re-

spectively. Notice that for NGC 288, the King model fit becomes relatively poor at

R = r/rc = 7.04 while the NGC 5824 King model fit is poor throughout the cluster.
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Figure 7: σ/σ0 vs. R (Rt = 260)

In fitting a Michie model to NGC 288, we used the same central density, tidal radius,

and core radii as in the Grillmair et al. paper (σ0 = 1412.5 stars/(armin2), rc =

1.42 arcmin, rt = 12.9 arcmin) [5]. The data points are also taken from Grillmair’s

paper (both Grillmair’s own data and the data of others that he uses and sites). By

adjusting the two parameters in the Michie model (Ra and Rt), we found a better fit

to NGC 288 than Grillmair’s King model fit; our adjusted values are Rt = rt/rc = 17,

and Ra = ra/rc = 1. Notice that this Michie model, Figure 8, fits five more points

at the edge of the cluster while not disturbing the fit in the body of the cluster. The

low value of Ra implies that unlike the King model, the cluster is very anisotropic

(only approximately 1/17 of the cluster near the very center has an isotropic velocity

dispersion).

Unlike NGC 288, NGC 5824 does not resemble a King distribution at any radius

(see Figure 8). Therefore, the fact that our Michie model was able to give a much

nicer fit to this globular cluster is a strong result that supports the use of a Michie

model over a King model. Similar to how we produced the graphs for NGC 288, we

used parameters that reproduced the values that Grillmair et al. found for the central

density, the tidal radius, and the core radius (σ0 = 4217 stars/(armin2), rt = 15.6
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Figure 8: σ/σ0 vs. R (Rt = 17, Ra = 1)

arcmin, rc = 0.06 arcmin). We again varied the two parameters (Rt and Ra) until

we got a result we were satisfied with. Figure 9 is the resulting Michie model fitted

to NGC 5824 with Rt = 260, and Ra = 1 - still using the Grillmair et al. values

for the core radius. Notice that the shape of the Michie model resembles the shape

of the data, but the position of the curve is off. A probable explanation for this is

that the chosen core radius and the fitted central density for NGC 5824 are too low.

Readjusting these values (rc = 0.24 arcmin, and σ0 = 14125 stars/(armin2)), we get

a much more accurate fit (see Figure 10). It is important to remark that had we

changed the King model to these new values for Rc and σ0, it would still be a bad

fit because the shape of the King distribution would not change, it would simply be

shifted to the right and upward. Again, it is interesting to notice that the Michie

model that fits the data the best has a very anisotropic velocity dispersion.

Up to this point, Grillmair et al.’s explanation for the discrepancy between the star

counts and the King model has been that these tidal tails of stars are indeed no longer

tidally bound to the cluster and are escaping, but they are doing so at a very slow

rate. However, our Michie model fits suggest that perhaps these tidal stars are still

bound to the cluster and that the tidal radius is larger than first calculated. Also,
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Figure 9: σ/σ0 vs. R (Rt = 260, Ra = 1)
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Figure 10: σ/σ0 vs. R (Rt = 260, Ra = 1, rc = 0.24, σ0 = 14125)
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the fact that the Michie model fits the clusters better than a King model re-enforces

the belief that globular clusters have a very anisotropic velocity dispersion.

5 Two-component Model

An interesting study done by Roueff, Salati, and Taillet showed that if a certain

amount of (low mass) dark matter was introduced into the Michie model, the veloc-

ity dispersion and surface brightness profile paralleled that of the King model. In

other words, a two component anisotropic model (with properly chosen parameters)

can be made indistinguishable from a one component isotropic model [3].

This result was somewhat anticipated because it is known that dark matter flattens

the velocity dispersion, while in the presence of anisotropy the velocity dispersion

becomes less flat. The two effects cancel each other out and thus Michies model with

dark matter appears to be identical to a one component isotropic model. Moreover,

even though dark matter is present in the two component model, we cannot distin-

guish it from a one component model; thus, we cannot trace dark matter through

velocity dispersions or surface brightness profiles. In the following section, we attempt

that trace the presence of dark matter through surface density profiles.

5.1 Michie Model with Second Mass

To add dark matter to the Michie model, we must first re-examine Eq. (19). A more

convenient way to express this model is to define H(W, α) as follows:

H(W, α) = eW
∫ W

0
dη(e−η − e−W )η

1

2

∫ 1

0
dy e−α2η(1−y2), (21)

where α = r/ra. Thus, the one component model is simply H(W, α) up to a scaling

factor. Now we can introduce dark matter by defining the dimensionless mass M =

m2/m1, where m1 is the visible mass and m2 is the dark matter mass. Depending on

our choice of j, m1 is set to 1 in the one component Michie model. However, since the
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potential is the same for the dark matter component, we can write the distribution

function for the second component as:

f2(r, v) = k2e
−Mj2L2/r2

a2

(

e2Mj2ε − 1
)

θ(−2V (r) − v2), (22)

where ra2 allows for a different anisotropy radius than the visible ra. If we now define

η = Mj2v2, W = −2j2V (r), α2 = r/ra2, and y = cos θ,

f2(r, v) = k2e
−α2

2η(1−y2)
(

eMW−η − 1
)

θ(MW − η). (23)

Since ρ2(r) = m2

∫

d3v f2(r, v),

ρ2(r) = 2πm2k2M
−3/2j−3eMW

∫ MW

0
dη(e−η − e−MW )η

1

2

∫ 1

0
dy e−α2

2η(1−y2). (24)

Using our H(W, α) notation, Eq. (24) becomes:

ρ2(r) = 2πk2m2M
−3/2j−3H(MW, α2) (25)

To simplify things even further, we can replace k1 in ρ1 with its central density ρc1

and k2 in ρ2 with ρc2 (note that before we were calling the central density ρ0). Thus,

ρ1(r) = ρc1
H(W, α1)

H(W0, 0)
, (26)

and

ρ2(r) = ρc2
H(MW, α2)

H(MW0, 0)
(27)

Once again, we now have ρ1 and ρ2 in terms of W (or in our case in terms of H(W, α)),

but what we wish is to have ρ1 and ρ2 together in terms of R (where again R = r/rc).

Rewriting Poisson’s equation ∇r
2V (r) = 4πGρ(r) yields:

∇R
2W (R) = −8πj2rc

2(ρ1 + ρ2), (28)

where ρ(r) = ρ1 + ρ2 and 8πj2rc
2Gρc1 = 9 as before. Therefore, the complete differ-

ential equation becomes:

∇R
2W (R) = −9

ρ1 + ρ2

ρc1

= −9

(

H(W, α1)

H(W0, 0)
+

ρc2

ρc1

H(MW, α2)

H(MW0, 0)

)

. (29)
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Just as before, we use Mathematica to solve this differential equation, and project

our final ρ(R) onto the sky to get σ(R) by the technique developed earlier (see King

model).

5.2 Two-Component Model Results

As we had done earlier in this paper with the King and Michie model, we fit our

two-component model to the star count data of two globular clusters (NGC 288 and

NGC 5824). In this two-component model there are considerably more parameters

one can vary, namely: M , ra1, ra2, ρc2/ρc1, and rt. In our fits, we set M = .1, ra1 = ra2

= 1, rt to be the same as in the best Michie model result, and varied ρc2/ρc1. Our

rational for these choices was the following: since we are considering only low mass

dark matter objects in this paper, we set one dark matter object(like a planet) to be

1/10 of the mass of a visible matter object(star); hence, M = 0.1. From our results

with the Michie model, it is apparent that globular clusters have a very anisotropic

velocity dispersion, thus we set ra1=ra2 = 1. Next the parameter ρc2/ρc1 tells us the

numerical ratio of dark to light matter objects. Since M = .1, if ρc2/ρc1 = 1, we know

that the total dark to light matter ratio by total mass is 1/10, whereas if ρc2/ρc1 =

10, then there is a 1:1 dark to light matter ratio by total mass.

The first fit we made on NGC 288 (fig.(11)) was with ρc2/ρc1 = 1 and a readjusted

rc = 3.2 arcmin. This figure is a slightly better fit than the Michie model (fig.(4)),

but there is still relatively very little dark matter (1:10 dark to light matter ratio by

total mass). The next fit on NGC 288 (fig.(12)) was with ρc2/ρc1 = 10 (1:1 dark to

light matter ratio by total mass), and already, this fit is poor regardless of how you

readjust rc.

We next fit the two-component model to NGC 5824, see fig.(13). However, as seen

from this plot, even with ρc2/ρc1 = 1, the fit is poor, implying that for ρc2/ρc1 = 10,

the fit would be even worse. Adding more matter to the globular cluster is pulling
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Figure 11: σ/σ0 vs. R (Rt = 17, Ra1 = Ra2 = 1, M = .1, ρc2/ρc1 = 1, rc = 3.2)
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Figure 12: σ/σ0 vs. R (Rt = 17, Ra1 = Ra2 = 1, M = .1, ρc2/ρc1 = 10, rc = 3.2)
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Figure 13: σ/σ0 vs. R (Rt = 260, Ra1 = Ra2 = 1, M = .1, ρc2/ρc1 = 1, rc = 3.2)

everything closer together, making the fit fall off too fast to match our observed data.

In other words, in NGC 5824 our model implies that there is less than a 1:10 dark to

light matter ratio by total mass. The fits for NGC 288 and NGC 5824 implicate that

there are few, if any, dark matter objects in these globular clusters. However, there is

a serious limitation to consider in our two-component model. According to the model,

nothing can exist beyond rt, so there is no way of testing a case in which the dark

matter halo extends to infinity, or even beyond the visible matter. Although there

may be dark matter distributed throughout all of space, our model only allows the

radius of the dark matter halo to be less than or equal to rt. Therefore, we conclude

that looking at the surface density profile with the two-component Michie model will

give inconclusive results to the amount of dark matter in a globular cluster.

6 Conclusions and Future Research

In this thesis, we fit King and Michie surface density distribution functions to Grill-

mair et al.’s data to two globular clusters. A major result is that the fits considerably

improved when the radius of anisotropy in the Michie model is small. This implies
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that globular clusters have very anisotropic velocity dispersions; in different words,

stellar orbits in these globular clusters are quite eccentric. Despite the predisposition

by many authors to use the King model, the Michie model is more appropriate to fit

these stellar structures.

An area of future research is to continue working with this two-component model to

see how much dark matter can be put in without affecting the fit of the Michie model

(despite the limitation to the model discussed in the previous section). This type of

research would give a bound on the amount of dark matter that can exist in a glob-

ular cluster. Preliminary work reported here suggests that there is little, if any, dark

matter enbedded in the globular clusters we have examined. Yet another research

topic to pursue is to see how changing gravity affects the star count distribution, and

whether it will solve the discrepancies between the theoretical distribution model and

the observed star count data.
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