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Abstract

The high Tc, Type II superconductor YBCO is studied in an external magnetic field oriented
parallel, perpendicular, and at a 45◦ angle to the c axis of the unit cell crystal over a range of
temperatures. Variations in temperature change the penetration depth of the superconductor.
This in turn alters the magnetic field distribution internal to the sample. Muon Spin Rotation
(µSR) is capable of determining the probability distribution of these fields and thus may be used
to investigate the internal fields. µSR measurements which were carried out at the TRIUMF
µSR Facility are analyzed. Four separate fitting functions were used: a gaussian function, to
provide a general overview; a London Theory isotropic function for b‖c; an anisotropic fitting
function more appropriate to high fields; and an anisotropic function that is more appropriate
for the low fields used. A comparison is made between these fits. An agreement between the
behavior of the penetration depths for the parallel and perpendicular cases is observed which
points to the possibility of “Flux Line Pairs.”
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1 Introduction

1.1 Motivation

The scientific community has harnessed the power of superconducting materials ever

since their discovery at the turn of the century. Allowing for more efficient circuitry

and advanced electronics, these materials revolutionized electronic technology. How-

ever, the limitations on their superconductivity led physicists to seek alternatives.

The discovery of high Tc superconductors was a huge breakthrough in the field of su-

perconductivity. These materials are superconductive at much higher temperatures

when compared to previously observed superconductors. This allows for easier ex-

perimentation and exploitation of their properties. However, scientists have yet to

unravel all of the mysteries behind them. One aspect of these superconductors that

could shed new light on their qualities is the structure of their internal magnetic

fields. Direct mearsurements on the structure of these fields is possible with muon

spin rotation, but current data on the topic is limited. Further knowledge of their

behaviors would be greatly beneficial to the understanding of these materials and

could promote even further use and benefit.

1.2 Overview

It is thought that the supercurrents that generate the internal magnetic fields are pri-

marily restricted to the molecular planes perpendicular to the c axis in the unit cell

crystal. Figure 1 shows the unti cell crystal for the superconductor Y Ba2Cu3O7−δ,

abbreviated YBCO. For the past several years the TRIUMF µSR Facility has gathered

data on the subject using the method of muon penetration and decay and the sub-

sequent scattering of positrons in a sample of the superconducting material YBCO.

The analysis of the data collected from their experiments with µSR scattering in

anisotropic superconductors has led to the discovery of some of the more interesting
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Figure 1: The unit cell crystal for the superconductor YBCO. The CuO2 planes between the Barium

and Yttrium atoms are the location of the supercurrents. The c axis runs perpendicular to these

planes. The Cu −O −Cu chains that comprise the axes of these planes represent the a and b axes

of the material.

behaviors of the high Tc superconductor YBCO.

Using the phenomenological London Assumption of topological current theory, the

asymmetric plots of the positron detector pairs (up/down and left/right) are mapped

using an analytical program of Dr. Kossler’s own design. Certain situations involving

the applied magnetic field’s orientation reveal the most information about the mate-

rial. These situations include influencing the internal fields with: a small magnetic

field parallel to the c axis of the material, a small magnetic field perpendicular to the

c axis, and a small magnetic field at a 45◦ angle to the c axis. However, for this paper

the last scenario is not included in the comparison because of a lack of variety to the

data and need for a better means of fitting. It will be discussed but not in as great

of detail as the other two. The experimental setup, the physical data accumulated

from the YBCO sample, the fitting program, and the analytical method are covered
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Figure 2: A general representation of a Type I superconductor with relative critical field Hc and

critical temperature Tc.

in more detail in sections 3 and 4.

2 Superconductivity

2.1 Type I and Type II Superconductors

Superconductors are composed of two types of materials. The first type, termed Type

I, are limited to two physical states. The first state is a superconductive state in which

all magnetic fields present in the material are expelled to the surface creating a perfect

diamagnet. Under certain conditions with respect to temperature and the magnitude

of magnetic fields, such as reaching a critical temperature Tc or a critical field Hc,

the material enters a second state in which the material loses its superconductivity

completely. Figure 2 shows the relationship between Temperature and Magnetic field

for a Type I superconductor.

Type II superconductors are able to be in one of three different states. The first
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Figure 3: A general represenation of a Type II superconductor with relative critical fields Hc1 and

Hc2 and critical temperature Tc.

state for a Type II material is exactly the same as the first state for a Type I material

but generally ends at a lower Hc than most Type I materials. After the first critical

field Hc1 is reached the material enters into its second state. In this state some of

the magnetic field is allowed to penetrate into the material and influence the internal

magnetic structure causing parts of it to become antiferromagnetic. This state ends

at a second critical field Hc2 and leads into the third state which is the same as the

second state for Type I superconductors. Figure 3 shows the general relationship

between temperature and magentic field for a Type II superconductor.

2.2 The Superconductor YBCO

The Type II superconducting material YBCO is one of the most studied high Tc

materials currently known. Having a critical temperature of 92 K before entering a

non-superconductive state, about an order of magnitude higher than most Type I

Superconductors, makes experimentation much easier to accomplish than most other
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Type II materials. The unit cell crystal lattice is shown in Figure 1. In the unit cell

crystal, the Cu − O − Cu chains that line the b axis of the cell correspond to the

B direction in the material and the CuO2 planes that lie between the two Barium

and one Yttrium atoms are thought to be the source of the superconductivity of the

material. The superconducting currents tend to favor flowing in a direction parallel

to these planes and have a much harder time flowing in directions perpendicular to

them due to the much larger effective charge carrier mass required in this orientation.

The charge carrier masses within the planes parallel to the a and b axes are both

represented by the single mass M1 because of the lack of anisotropy between these

two directions. The charge carrier mass perpendicular to the planes corresponds to

the c axis and is represented by the mass M3. The anisotropy parameter Γ for YBCO

is found by calculating the ratio between masses m3 and m1

Γ =
m3

m1

(1)

where m3 = M3

Mav
, m1 = M1

Mav
, and Mav = (M2

1M3)
1

3 . For simplicity’s sake the

anisotropy factor for YBCO has been calculated to be 25. This factor is useful when

the anisotropic fitting function is used. This fitting function is discussed in further

detail in section 3.

3 Experimental Setup and Analysis

3.1 The OMNI Setup

A typical setup for a µSR experiment area with anisotropic superconductors is shown

in Figure 4 below.

As the muons travel individually down the beam line to the target area they pass

through the muon signal screen which prevents all other beam contents from entering

the sample. They then proceed to the target sample and, if succesful, enter it. Upon
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Figure 4: A typical setup for a µSR experiment. S represents the target sample; M is the muon

signal screen; V is the veto filter; L, B, R, and F are the left, back, right, and front detectors; and

µ is the muon beam line.

entering the sample the muons then precess in the internal magnetic fields and begins

to lose energy by ionizing atoms and scattering electrons. When the muon reaches a

critical energy of 15 eV it undergoes the decay reaction

µ+ → e+ + νe + νµ (2)

where νe is the neutrino associated with electrons and νµ is the anti-neutrino

associated with the muon. The resulting positrons exit the decay in the same direction

as the muon’s spin at the time of decay and are recorded by several detectors placed

around the sample. From the data recorded by the detectors assymetry plots are made

that reveal the influence of the internal magnetic fields on the muon’s orientation at

the time of decay.
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Figure 5: The OMNI apparatus at TRIUMF

3.2 Analysis of the Data

To handle the arduous task of analyzing the data recorded by the detector pairs Dr.

Kossler designed a Fortran program that utilizes several different fitting functions

ranging from simple Gaussians to complex anisotropic equations stemming from the

London Approximation. Some of the functions used are useful only for certain scenar-

ios such as the London Theory isotropic fitting function which is used only when the

external magnetic field is parallel to the c axis of the material. To begin, the internal

magnetic field components of the Flux Line Lattice unit cell, abbreviated FLL, are

written in real space as [1]:

bx − λ2(mzz 5
2

xy bx −mxz
δ2bz
δy2

) = 0 (3)

by − λ2(mzz 5
2

xy by −mxz
δ2bz
δzδy

) = 0 (4)

bz − λ2(m1

δ2bz
δx2

+mxx
δ2bz
δy2

−mxz 5
2

xy bx) = Φ0

∑
ν

δ(r − rν) (5)
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where 52
xy = δ2

δx2 + δ2

δy2 is the two dimensional Laplacian in the xy plane, r is a vector

in the FLL, and rν are the vectors of the vortices.

Assuming that the vortices in the material are well spaced and do not overlap

these equations can then be put through a Fourier transform and summed in Fourier

space. The Fourier relationship for this procedure is

b(r) =
∑
G

b(G)eiG·r (6)

b(G) =
B

Φ0

∫
b(r)e−iG·rdr (7)

where G are the reciprocal lattice vectors and B is the magnitude of the average field

over the real space FLL unit cell. The integral is taken over the unit cell in real space.

Inserting b(r) into the component equations gives the field components in terms

of the reciprocal lattice vectors

bx(G) = Bλ2mxzG
2

y/d (8)

by(G) = −Bλ2mxzGxGy/d (9)

bz(G) = B(1 + λ2mzzG
2)/d (10)

with the denominator d equal to:

d = (1 + λ2m1G
2

x + λ2mxxG
2

y)(1 + λ2mzzG
2) − λ4m2

xzG
2G2

y (11)

Transforming these equations back into real space gives the real space magnetic

field components of a general point in the FLL. Summing these points in the FLL

gives a general structure to the fields in the unit cell. Summing the unit cells then

gives a general structure of the fields in the sample. For this summation a subroutine

in the fitting program named hsumag37 is used.
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subroutine hsumag37(B,b1,b2,dx,dy, xlab,xi,hsum,

$ INDEX,theta,Gamma,psi)

implicit none

integer IG,INDEX

real pi,phi0,Gamma,theta

parameter (pi=3.141592654,phi0=2.07e3,IG=50)

real B,xlab,xi,hsum(1:3,0:INDEX,0:INDEX)

real gx(-IG:IG,-IG:IG),gy(-IG:IG,-IG:IG)

real hg(1:3,-IG:IG,-IG:IG)

real m1,m3,mxx,myy,mxz,mzz,psi

integer i,j,k,l,m

real b1,b2,dx,dy,xls,gs,d,rx,ry,xl

xl=xlab*Gamma**(1./6.);xls=xl*xl

call setstuff37(B,b1,b2,gx,gy,m1,m3,mxx,myy,mxz,mzz,theta,

$Gamma,psi)

c Fields in Rec. Lattice

do i=-IG,IG

do j=-IG,IG

gs=gx(i,j)**2+gy(i,j)**2

d=(1+xls**m1*gx(i,j)**2+xls*mxx*gy(i,j)**2)*(1+xls*mzz*gs)-

$ xls*mxz*gs*gy(i,j)**2

hg(1,i,j)=B*xls*mxz*gy(i,j)**2/d

hg(2,i,j)=-B*xls*mxz*gx(i,j)*gy(i,j)/d

hg(3,i,j)=B*(1+xls*mzz*gs)/d

enddo

enddo

c Fields in Dir. Lattice
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do i=0,INDEX

do j=0,INDEX

hsum(3,i,j)=B;hsum(1,i,j)=0.;hsum(2,i,j)=0.

rx=dx*i

ry=dy*j

do k=1,3

do l=1,IG

hsum(k,i,j)=hsum(k,i,j)+2.*hg(k,l,0)*cos(rx*gx(l,0)+ry*gy(l,0))+

$ 2.*hg(k,0,l)*cos(rx*gx(0,l)+ry*gy(0,l))

do m=1,IG

hsum(k,i,j)=hsum(k,i,j)+2.*hg(k,l,m)*cos(rx*gx(l,m)+ry*gy(l,m))+

$ 2.*hg(k,l,-m)*cos(rx*gx(l,-m)+ry*gy(l,-m))

enddo

enddo

enddo

enddo

enddo

return

end

4 Experimentation with the Superconductor YBCO

4.1 Background

Initial work on the structure of the current vortices handled the sceanrio of “Pancake”

vortices, individual vortices stacked one on top of the other like a stack of pancakes.

[2] This method served as a foundation for further work with current vortices in su-

perconductors but this does not apply to the Type II superconductor this experiment
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works with. For YBCO, three regimes of flux density are identified. These regimes

are defined by the magnitude of the applied external field relative the to critical field

values of the sample. The first regime encompasses all values of B near Hc1 when the

vortices are spaced well apart. The second regime encompasses moderate values of

B between Hc1 and Hc2 when the spacing between the vortices decreases. The third

regime encompasses values of B near Hc2 when the vortices are overlapping. For

this experiment the value of B lies within the second regime. To get a better under-

standing of the field structure around these vortices the local flux density in a plane

perpendicular to the field is put through a Fourier series. Michael Tinkham presents

in his book IntroductiontoSuperconductivity that the series for this procedure is [3]

hz(r) =
∑
Q

hQe
iQ·r (12)

where Q represents the reciprocal lattice vectors and HQ the reciprocal field. You

may notice a distinct similarity between this Fourier series and the Fourier series

discussed in the previous section. Assuming that the translation coordinates for a

triangular array of vortices are not orthogonal the relationship between hQ and the

reciprocal lattice vectors becomes

∑
Q

(hQ + λ2Q2hQ)eiQ·r = B
∑
Q

eiQ·r (13)

Solving for hQ and plugging that back into the Fourier series gives the general field

distribution

hz(r) = B
∑
Q

eiQ·r

1 + λ2Q2
(14)

for the longitudenal component plane perpendicular to the field B and the vortex

axes.
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Further investigation performed by S. Thiemann, Z. Radovic, and V. Kogan shows

that this is the case for the longitudinal components of the field for large fields.

However, the transverse field components do not lie within a plane perpendicular to

the vortex axes.[4] Rather, they lie within a plane skewed by a rotation α about the

y axis in the xy plane.

For low field values a different approach was taken by L. Daemen, L. Campbell,

and V. Kogan. This approach uses the London Approximation to determine the

geometry of the FLL for low fields and theorizes that the lattice parameters a and

b, equivalent to b1 and b2 in other sources, depend greatly on the orientation of the

external field relative to the c axis of the sample. Daemen, Campbell, and Kogan

show that the lattice parameters and the angle between them, ψ, have the following

relationships with the ratio of the flux lattice parameter ρ [5]:

a = (
Φ0

B

ρ

[1 − (ρ/2)2]
1

2

)
1

2 , (15)

b = (
Φ0

B

1

ρ[1 − (ρ/2)2]
1

2

)
1

2 , (16)

cosψ =
ρ

2
. (17)

From these relationships, they further theorize that when the angle between the

field and the c axis, θ, approaches π/2 that ψ also approaches π/2 and the lattice

paramter a becomes much smaller than b creating what has been termed “Flux Line

Pairs” or rows of vortices parallel to one another.

4.2 Low External Field Parallel to the c Axis

For the first set of data, a small external magnetic field of 0.5 G was introduced

to the superconductor. This magnetic field was oriented parallel to the polarization

axis of the superconducting layers and the temperature was varied from 10K to 91K.

However, due to anti-ferromagnetic interference around 85K, further analysis past this
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temperature was rendered extremely difficult. The positron detector pair left/right

was used for the construction of the asymmetry plots. A simple four parameter

Guassian function, e
−σ

2
t
2

2 , was used to get a feel for some starting values to the

amplitude and frequency. Then an isotropic fitting function such as:

a[fsas(t) + (1 − fs)e
−σ2t2/2] + adce

−t/tdc (18)

where as(t) =
∫
cos(ωt+ φ)dω was used to map the changes to certain parameters in

better detail.

0 20 40 60 80 100
T (K)

100

100.5

101

101.5

102

B
 (

G
)

Figure 6: Internal Field, B, as a function of Temperature, T.

In Figure 6 we see the behavior of the magnetic field inside the conductor versus the

temperature, T. As the temperature steadily increases the field decreases dramatically

as more and more of the current vortices in the layers of the superconductor decouple

and the material turns antiferromagnetic. Also, around the temperature of 17K there

is a marked jump in magnitude of the internal field. After this point the field begins

to decline as stated earlier. This marks the threshhold of superconductivity for the

material at low temperatures.

In Figure 7 we see how the background field drops off as the material becomes

increasingly antiferromagnetic around the temperatures of 15K and 86K. Also worth
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Figure 7: Background field, Bb, as a function of T.

noting is how the field remains relatively constant while in this range of temperatures.

This is due to the admittance of the external field into the material and the subsequent

creation of the current vortices in the superconducting layers..
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Figure 8: Penetration depth as a function of Temperature.

For the penetration depth of the sample we see almost an exponential increase

with higher temperatures. Starting at 15K we have a depth of 1.3-1.4 nanometers.

As the temperature increases past the superconducting threshhold, the penetration

depth increases above 2 nm and even up to 3 nm. As the temperature increases, so

does the penetration depth of the material until it goes to, theoretically, infinity at
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the non-superconducting threshold of the material. The increase in penetration depth

spurs the spacing between the vortices to shrink to the point where the vortex cores

overlap and they decouple. In Figure 8 the penetration depth versus the temperature

is shown.

The isotropic fitting function gave us a starting point when interpretting the be-

haviors of the parameters of the material, but to finish the job a more complex

anisotropic fitting function that incorporated the angle geomtery of the scenraio, the

anisotropy parameter, and the factor ψ based off of Daemen, Campbell, and Kogan’s

work was implemented. After all, YBCO is an anisotropic Type II superconductor

and such a function would generate, in theory, better results. The variable ψ is cal-

culated by finding the value for the parameter ρ which is discussed in their work. For

this specific scenario, ρ is 1. Using this as well as θ, the angle between the external

field and the c axis, and α, the angle between the polarization of the vortices and

the y axis, along with Γ the set of data was mapped again and plots of the same

parameters generated.
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Figure 9: Internal Field as a function of Temperature after having used the anisoptropic fitting

functon.

For the internal field we see a relatively constant value across the range of tem-

peratures which varies from the plot generated by the isotropic function. This is due
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Figure 10: The penetration depth λ as a function of T after having used the anisotropic fitting

function

to the field being considered entirely longitudinal relative to the c axis.

For the penetration depth we see a bahavior similar to the one mapped by the

isotropic function. As the temperature steadily rises, the penetration depth also rises

and eventually increases to infinity when the material becomes non-superconducting.

4.3 Low External Field Perpendicular to the c Axis

The next set of data covers the scenario of an external field perpendicular to the c

axis of the crystal. For this set, the isotropic fitting function used in the previous

section is not appropriate due to its lack of angle dependency and inability to fit for

the transverse components of the field relative to the c axis. Simply put, the function

always considers θ to be zero. The second fitting function, the anisotropic function

with angle dependency, is still useable and provides interesting results. The variable

ρ in this case is considered to be .23. The external field is still .5 G and the sample

is put through the same range of temperatures used in the previous case.

The behavior of B in this scenario mimics that of B in the previous case and reflects

that now the entire field is transverse to the c axis. The function adjusts for this fact.

For the penetration depth one would expect to see an agreement between this case and
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Figure 11: The internal field as a function of T for the case of B⊥c.
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Figure 12: The penetration depth as a function of T for the same case.

the longitudinal case. From the plot of the penetration depth we see that this is the

case. This agreement between the two scenarios points to the possible formation of

“Flux Line Pairs” as theorized by Daemen, Campbell, and Kogan. As the transverse

components of the field increase relative to the c axis, the two FLL parameters a and

b become exceedingly anisotropic relative to one another. The parameter b becomes

much larger than a and the triangular lattice pattern takes on the appearence of two

parallel lines of vortices.
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4.4 Low External Field at a 45◦ angle to the c Axis

For the final set of data, the sample is kept at a constant 110 K but minor variations

to the orientation in the magnetic field are implemented. Starting from a 45◦ angle

to the c axis, the external field’s y component is increased in small increments. The

external field’s overall magnitude is 100 G, relatively large compared to the other

two sets. For YBCO this temperature reaches far into the non-superconducting state

and the external magnetic field is able to penetrate through the sample giving a

great degree of feedom in manipulating the field structure internal to the material.

However, due to time constraints this set is not fully analyzed and requires further

investigation.

5 Conclusions

While the initial investigation using the London Theory isotropic fitting function

revealed disparities between the cases of a field parallel to the c axis and a field

perpendicular to the c axis, the subsequent use of the angle-dependent anisotropic

fitting function showed a great deal of agreement between their penetrations depths.

The implementation of the variable ρ that Daemen, Campbell, and Kogan used to

explain the interdependence of the FLL componenets a and b and the angle θ fixed

any irregularities in the mapping of the two cases. This could indeed be the first

physical evidence of the formation of “Flux Line Pairs” in the B⊥c scenario. Further

experimentation and analysis of these cases as well as the the case of B at a 45◦ angle

to the c axis is needed to strengthen this claim.
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