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Abstract

This paper presents a way to calculate the number of photo-pair-production displacements

from a crystal lattice. A means to estimate the displacements was attempted using a technique

by Jost, Luttinger, and Slotnick, however we show that this method is flawed. A second approach

using the similarity to the bremsstrahlung interaction is given. The cross-section in terms of

the momentum transfer, q, is then obtained by integrating that cross-section over the energies

and angles and multiplied by a delta function in q. Screening is also accounted for. The Fortran

program for this calculation is given.
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1 Introduction

Currently, NASA seeks a computer model that will approximate the damage space

radiation inflicts on electronic components of a spacecraft. Space radiation contains

many high energy neutrons, high energy atomic nuclei, electrons, positrons and pho-

tons. The flux of particles through the spacecraft’s systems may damage them. These

systems are usually made of semiconducting and insulating materials, such as Si and

SiO2. The molecular structure of these materials is, roughly, a lattice. The incident

particles displace the atoms from their regular positions in the lattice. These displaced

atoms can scatter and sometimes trap the electrons and holes which carry the current

in the devices. Here we only consider the damage produced by photo-pair-production.

Examining Fig. 1 reveals that the cross-section for this interaction may be large.We

expect the cross-section to be on the order of the Thompson cross-section or electronic

Compton cross-section: πr2
0 = πe2/mec

2, much larger than the corresponding nuclear

Compton cross-section: πZ2e2/MNucleusc
2.

Figure 1: Feynman diagram for pair production in the Coulomb field of an atom.

To produce a displacement the energy transferred, E = q2/2Matom, must exceed

a threshold energy which is on the order of 10eV [1]. To determine the number of

displacements from a given flux several quantities must be evaluated: the density of

the sample, the cross-section with respect to momentum transfer, and the number of
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displacements the initial displacement cause (primary-knock-ons). Previous work has

established a function for the primary-knock-ons. The rest of the required information

will be provided by NASA except for the calculation of the differential cross-section.

We will first present our implementation an elegant approach to obtaining this

differential cross-section by Jost, Luttinger, and Slotnick[2]. Then, we show that the

cross-section calculation method yields unphysical results and a new approach must

be found. Next we present a solution stemming from work by Bethe and Heitler [3]

that ultimately leads to a program to calculate dσ
dq

. Then we account for screening

by the electron cloud. In order to quickly calculate the cross-section we produced

a program which is given in its entirety. We also included plots of several different

parameters to graphically represent out results.

2 Total Number of Displacements

The following equation describes the total number of displacements a known flux of

photons will cause in a sample due to pair-production.

dN

dl
=
∑

i

∫ dσi

dq
(Eγ, q) · dq · fi(Epko) ·

dN

dA
(Zi) · Φ(Eγ). (1)

N represents the total number of displacements and l is the length of the sample.

The following components of Eq. 1 have already been determined. fi(Epko) is the

total number of displacements that the primary-knock-ons will produce. Φ(Eγ) is the

total flux incident on the sample. The only component of Eq. 1 left to be determined

is dσ/dq.

3 Recoil Momentum Distribution from Unitarity

Jost, Luttinger, and Slotnick calculated the momentum transfer to the recoil nucleus

in photo-pair-production covariantly by using the unitarity of the S matrix. They
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parameterized their equations in terms of Q = q/2m and α = k0/2m. Using these

parameters in their equation Jost arrived at [2]:

σ(k0) =
∫ α+

√
α2−1

α−
√

α2−1

P (Q)dq (2)

where,

P (Q, k0) =
Z2e6

32π3k2
0Q

3
[1 − F (Q2)]2I(Q, α) (3)

and,

I(Q, α) =
{

(1 − 2Q2)J1

}

+
{

(1 − 4Q2 − 8Qα +
4Q2 − 1

3αQ
) · Ln[y

1
2 + (y − 1)

1
2 ]

}

+

{

(3 +
2α

3Q
+

2Q2 − 1

3αQ
)(y(y − 1))

1
2

}

+

{

[−2(1 + Q2) +
2α2

3
(−4 +

1

Q2
)]

1

(1 + 1/Q2)
1
2

·

Ln[
(1 + 1/Q2)1/2 − (1 − 1/y)1/2

(1 + 1/Q2)1/2 + (1 − 1/y)1/2
]

}

. (4)

The braces, in Eq. 4, indicate portions of the equation that are graphed in Fig. 2.

J1 is defined in the following way,

J1 = −R
(

1

Zλ

)

−

(

R
λ

Z
+

π2

6
+

lnλ

2

)

+
(lnZ)2

2
− (lnZ(ln8Qα)) (5)

with,

R =
∫ t

0

ln(1 + x)

x
dx,

Z = [(y − 1)1/2 + y1/2]2,

λ = [Q + (Q2 + 1)1/2]2,

y = 2αQ − Q2.
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Figure 2: The line I(Q, α) is the plot of Equation 4, the other lines are components of the equation.

Figure 2 shows that the Jost, Luttinger, and Slotnick calculation for the cross-

section goes negative at high Q, which is unphysical. To make sure that the plot was

accurate the calculations were repeated. Again the result showed a negative cross-

section. It appears that Jost, Luttinger, and Slotnick have made an error in their

calculations and therefore the result cannot be relied upon.

4 The Bethe-Heitler Approach

4.1 Recoil Momentum Distributions by Change of Variable

In 1934 Bethe and Heitler [3], using perturbation theory, calculated cross-sections

for bremsstrahlung and the related pair-production as functions of electron energy

and various angles. In Heitler’s book a comparison between the results of these

calculations and experimental data [4].
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dσ = −
Z2

137

e4

2π

p+p−dE+

k3

sin θ+ sin θ−dθ+dθ−dφ+

q4
·

[
p2

+ sin2 θ+

(E+ − p+ cos θ+)2
(4E2

− − q2) ·

(4E2
− − q2) +

p2
− sin2 θ−

(E− − p− cos θ−)2
(4E2

+ − q2) +

2p+p− sin θ+ sin θ− cos φ+

(E− − p− cos θ−)(E+ − p+ cos θ+)
(4E+E− + q2 − 2k2) −

2k2 p2
+ sin2 θ+ + p2

− sin2 θ−
(E− − p− cos θ−)(E+ − p+ cos θ+)

]

, (6)

with the following parameters:

k0 = E+ + E−,

E+ = −E,

E− = E0,

p+ = p,

p− = p0,

q2 = (k − p+ − p−)2.

The angles Θ, Θ0, and φ describe the direction of the electron in the initial and

final state. Those angles are connected to the angles Θ+, Θ−, and φ+ as follows [4]:

Θ+ = π − Θ,

Θ− = Θ0,

φ+ = π + φ.

Figure 3. shows a plot of Eq. 6.

5



0 1 2 3 4 5
q(MeV/c)

0

10

20

30

dσ
/d

q(
Ar

b.
 U

ni
ts

)

k0=10.2 MeV

Figure 3: Plot of dσ/dE+ vs. E+.

Eq. 6 determines the cross-section in terms of the positron energy and various

angles. We can change from the variables E+, Θ+, Θ−, and φ+ to E+, Θ+, Θ−, and

q. Then solving for φ+ as a function of q and taking dφ+

dq
|E+,Θ+,Θ−

we arrive at Eq. 7.

dφ+ = −
qdq

p+p−sinθ+sinθ−sinφ+

. (7)

Replacing dφ+ in Eq. 6 with Eq. 7 we come to:

dσ = −
Z2

137

e4

2π

dE+

k3

dθ+dθ−qdq

q4 · sin φ+

·

[

p2
+ sin2 θ+

(E+ − p+ cos θ+)2
(4E2

− − q2) ·

(4E2
− − q2) +

p2
−sin2θ−

(E− − p− cos θ−)2
(4E2

+ − q2) +

2p+p− sin θ+ sin θ− cos φ+

(E− − p− cos θ−)(E+ − p+ cos θ+)
(4E+E− + q2 − 2k2) −

2k2 p2
+ sin2 θ+ + p2

− sin2 θ−
(E− − p− cos θ−)(E+ − p+ cos θ+)

]

. (8)

However this procedure leads to a new problem. There is now a sinφ+ in the denom-

inator of Eq. 8. Presumably since the dσ/dq is finite everywhere the numerator must

also go to zero for φ+ → 0. However it is not clear in what manner the numerator
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approaches 0. Once evaluated Eq. 8 yields a dσ/dq with unphysical fluctuations. If

one were to average the fluctuations the result appears reasonable but this approach

seems in elegant. This model provides a way to calculate cross-sections and momen-

tum transfers but is not ideal. From here we backtracked to find another method to

calculate the cross-section.

4.2 Using δ(q − q′)

Since our previous attempt was not ideal we revert back to Eq. 6. For ease we will

discuss Eq. 6 in the following terms:

σ =
∫

F (k0, E+, Θ+, Θ−, φ+)dE+dΘ+dΘ−dφ+. (9)

Our goal is to determine the cross-section as a function of momentum transfer. If

one places a delta function inside the integral of Eq. 9 the result will be a calculation

of dσ/dq. This equation then takes the form:

dσ

dq
=
∫

F (k0, E+, Θ+, Θ−, φ+) · δ(q − q′) · dE+dΘ+dΘ−dφ+, (10)

where

q′ =| ~k0 − ( ~p+ + ~p−) | . (11)

Our goal is to produce a computer program to calculate the cross-section quickly.

To achieve this we must use an approximation for the delta function in Eq. 10. A

natural choice to approximate a delta function is a Gaussian with a small width. In

the limit where the Gaussian has a small width the function will approximate a delta

function.

δ(q − q′) = (2π∆2)−1/2 lim
∆→0

e−
(q−q′)2

2∆2 . (12)
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Combining Eq. 10 and Eq. 12 we get:

dσ

dq
=

1
√

(2π∆2)

∫

e−
(q−q′)2

2∆2 F (k0, E+, Θ+, Θ−, φ+)dE+dΘ+dΘ−dφ+. (13)

5 Screening

Up until this point screening by the electron cloud has been ignored. Roy and Reed

examined whether the screening would affect the overall cross-section and momentum

transfer. They produced a pair of equations for the total cross-section using h̄ω as

the incoming photon energy [5].

σunscreened =
28

9
α(Zr0)

2

[

Ln(
2h̄ω

E0

) −
109

42
− f(Z)

]

. (14)

σscreened =
28

9
α(Zr0)

2

[

Ln(
183

Z
1
3

) −
1

42
− f(Z)

]

. (15)

In some cases Eq. 15 is significantly different that Eq. 14. Therefore screening

cannot be ignored. From Eq. 15 Roy and Reed formulate a way to calculate dσscreened

in terms of E+, the energy of the positron [6].

dσscreened =
4α(Zr0)

2dE+

(h̄ω)3
·
[(

E2
+ + E2

− +
2

3
E+E−

)

·

·
[

Ln
(

183

Z1/3

)

− f(Z)
]

+
1

9
E+E−

]

. (16)

Figure 4 shows the functional relationship between dσ and the electron energy.

This work led to further research by Motz, Olsen, and Koch in 1969. They developed

a function F (q) to adjust for screening of the nucleus [7].
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Figure 4: Plot of dσ/dE
−

from Equation 16.

F (q) =

[

1 +
(

111
q

m
Z1/3

)2
]−1

(17)

They incorporated the correction into the Heitler form by multiplying Eq. 13 by

[1 − F (q)]2. This correction forces σ → 0 as q → 0 [7]. This result is expected since

for q = 0 the charge is completely screened.

dσ

dq
=

[1 − F (q)]2

(2πσ2)1/2

∫

e−
(q−q′)2

2∆2 F (k0, E+, Θ+, Θ−, φ+)dE+dΘ+dΘ−dφ+. (18)

6 Fortran Program

Calculating this cross-section by hand would be rather tedious so we have written a

computer program in Fortran to carry out the computations. The program is divided

into five sections. The first section defines all of the parameters we use in the program.

At the end of this section the program also reads in the two necessary inputs, Z and

k0. The next section calculates the screening factor as given in Eq. 17. Following

this section the program calculates the un-normalized cross section using a function

9



called from later in the program and Eq. 12. The delta function has a width (2∆2)

written in the program as “2.*delsq”. The value of this width was chosen so that

Eq. 12 would be satisfied and so that the final output would not be series of spikes

but rather a smooth curve. The next section normalizes the result from the previous

section. The final section of the program is a function called “dsf”. This function

is Eq. 6. This part of the program calculates the function to be called earlier in the

program.

All that is needed to run the program is the desired energy photon and the Z of the

target. The computation is rather quick and takes about three seconds to calculate

dσ/dq. The program puts the data in an output file named “outhei”. The following

graphs are of Z = 14 and Z = 32 with values of k0 including 2, 4, 8, 12, and 20MeV .

Here is the program:

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c c

c Program to calculate the momentum transfer distribution produced by c

c pair production. Screening is included. wjk and P.Alonzi 3/28/05 c

c c

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

implicit none

real Z,r0,pref ! Z atomic number of target. r0 classical radius

real k0! incoming photon energy-momentum

real Ep,Em,pp,pm,q, dEp,dq! energies and momenta of pair, Ep step

c Units of E and p are MeV c=1

real tp,tm,tf ! thetas and phi

real dang! delta of angle

real m! mass of electron

real Emax ! maximum energy of electron
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real Qmin,Qmax! minimum and maximum momentum txf.

real Pi

integer iqmax,iq,idel,iqmx

parameter(iqmax=50)

real dse,dsq(0:iqmax) ! dsigma/dEp dsigma/dq

real dsf ! function called

integer i,n,ist,iend

external dsf

parameter(m=.511,Pi=3.14159265,r0=2.8e-13)

real delq,delsq

parameter (Qmax=5.,delq=.2,delsq=delq**2)

real sige,sigd ! total csections

real norm

real qc(0:iqmax),fqc,sf(0:iqmax)! Charge in ch., form factor,

c and screening factor

sige=0;sigd=0 ! initialized

Z=14 ! for Si default

print*,’Z=’,Z,’ =?’

read*,Z

dq=Qmax/iqmax

idel=2*delq/dq

c Calculation of the screening factor sf(iq)

do iq=0,iqmax

dsq(iq)=0.
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qc(iq)=iq*dq

fqc=1./(1+(111*(qc(iq)/m)*Z**(-.333))**2)

sf(iq)=(1.-fqc)**2

enddo

n=0

dang=Pi/40.

print*,’k0(MeV)=?’

read*,k0

c Calculate the Un-normalized differential cross-section with delta function.

Emax=k0-m; dEp=(Emax-m)/40.

print*,’Emax=’,Emax,’, Qmax=’,Qmax,’ dq=’,dq

open(10,file=’outhei’)

do Ep=m,Emax,dEp

Em=k0-Ep;pp=sqrt(Ep**2-m**2);

if(Em<m)then

print*,’aha Em=’,Em

Em=m

endif

pm=sqrt(Em**2-m**2)

do tp=dang,Pi-dang,dang

do tm=dang,Pi-dang,dang

do tf=dang/2.,Pi-dang/2.,dang

dse=dsf(k0,Ep,Em,pp,pm,tp,tm,tf,q)

sige=sige+dse

iqmx=q/dq
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if(iqmx<=idel)then

ist=0

else

ist=iqmx-idel

endif

if(iqmx+idel>=iqmax)then

iend=iqmax

else

iend=iqmx+idel

endif

do i=ist,iend

dsq(i)=dsq(i)+dse*exp(-(qc(i)-q)**2/(2.*delsq))

enddo

enddo

enddo

enddo

enddo

c Normalize the differential cross-section and output to "outhei".

do i=0,iqmax

sigd=sigd+dsq(i)

enddo

norm=sige/(sigd*dq)

pref=Z**2*r0**2*m**2/(137.*2*Pi)*dEp*dang**3*norm

sigd=0.

do i=0,iqmax
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dsq(i)=-dsq(i)*pref*sf(i)

sigd=sigd+dsq(i)

write(10,*)qc(i),dsq(i)

enddo

close(10)

print*, ’sige=’,-pref*sige,’ sigd=’,sigd

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c c

c Differential Cross-section from Heitler 3rd Ed. p 257 Eq. 6. c

c c

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

function dsf(k,Ep,Em,pp,pm,tp,tm,tf,q)

implicit none

real cstp,sntp,cstm,sntm,cstf

real dsf,k,Ep,Em,pp,pm,tp,tm,tf,q

real at,bt,ct,dt,et ! pieces of the formula

cstf=cos(tf);cstp=cos(tp);cstm=cos(tm)

sntp=sin(tp);sntm=sin(tm)

q=sqrt(k**2-2.*k*(pp*cstp+pm*cstm)+

$ pp*pp+pm*pm+2.*pp*pm*(cstp*cstm+

$ sntp*sntm*cstf))

at=pp*pm/k**3*sntp*sntm/q**4

bt=pp**2*sntp**2/(Ep-pp*cstp)**2*(4*Em**2-q**2)
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ct=pm**2*sntm**2/(Em-pm*cstm)**2*(4*Ep**2-q**2)

dt=2*pp*pm*sntp*sntm*cstf/

$ ((Em-pm*cstm)*(Ep-pp*cstp))

$ *(4.*Ep*Em+q**2-2*k**2)

et=-2*k**2*(pp**2*sntp**2+pm**2*sntm**2)/

$ ((Em-pm*cstm)*(Ep-pp*cstp)) !$

dsf=at*(bt+ct+dt+et)

return

end
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Figure 5: Differential cross-section as a function of momentum transfered to the nucleus for 2 MeV

photons incident on Si.
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Figure 6: Differential cross-section as a function of momentum transfered to the nucleus for 4 MeV

photons incident on Si.
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Figure 7: Differential cross-section as a function of momentum transfered to the nucleus for 8 MeV

photons incident on Si.
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Figure 8: Differential cross-section as a function of momentum transfered to the nucleus for 12 MeV

photons incident on Si.
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Figure 9: Differential cross-section as a function of momentum transfered to the nucleus for 20 MeV

photons incident on Si.
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Figure 10: Differential cross-section as a function of momentum transfered to the nucleus for 2 MeV

photons incident on Ge.
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Figure 11: Differential cross-section as a function of momentum transfered to the nucleus for 4 MeV

photons incident on Ge.
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Figure 12: Differential cross-section as a function of momentum transfered to the nucleus for 8 MeV

photons incident on Ge.
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Figure 13: Differential cross-section as a function of momentum transfered to the nucleus for 12

MeV photons incident on Ge.
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Figure 14: Differential cross-section as a function of momentum transfered to the nucleus for 20

MeV photons incident on Ge.

7 Conclusion

We began by determining an equation to calculate the number of photo-pair-production

displacements per length of a sample. All of the necessary components were known

except for dσ/dq. We proceeded to determine dσ/dq. The first method we tried using

Jost’s work produced unphysical results. Therefore we moved on to Heitler’s calcula-

tion of dσ. Using a delta function we manipulated his result to produce dσ/dq. We

then produced a program to quickly calculate this value. With a way to determine

the differential cross-section the total number of displacements can now be calculate.
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