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Abstract

Current attempts at unification propose relaxing the requirement that the universe must have
an integer value of dimensions for a universe with fractional dimensions. Given a mathematical
model of the universe using fractional dimensions, certain issues that exist using a integer
dimensional model do not appear; however, the integer dimensional model has proven quite
successful in describing most of the phenomenon we see. In this paper, I review the various
mathematical constructs necessary to describe a fractional dimensional universe and use these
constructs to redefine necessary physical equations. Then I will study various solutions to these
equations as attempts to discover ways to verify and measure the fractionality of the universe.
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1 Introduction

The inconsistencies between General Relativity and Quantum Theory have left the
former with many unanswered questions, such as how does General Relativity relate
to vacuum energies and quantum mechanics[1]. The search for a consistent theory,
or quantum gravity, still remains and establishes doubt upon the validity of how we
view the universe as a whole. Among the various doubts include the choice of mathe-
matical coordinate systems|2] whereby currently we view space time as generally flat
on a microscopic level and curved relative to local masses on a macroscopic level. Al-
though valid on the macroscopic level, this system creates singularities within the field
equations on a microscopic level. The various attempts to solve this problem include

coordinate systems with fractal spaces which thereby eliminate these singularities [3].

2 Mathematics of a Multifractional Universe

To allow for multifractional time and space sets, one assigns to each time-space point
a dimensionality characteristic of an equation d;(r(¢),?) and d,(¢(r),r). By point, one
assumes an interval of space and time as it approaches singularity. By interval one as-
sumes a member of a multifractal set with global dimensions. These dimensions then
determine the Lagrangian energy densities for all physical fields within these points.
Thus to establish any physical equation of an interaction within the framework of a
multifractional time-space universe, one must take the original Lagrangian describing
the interaction and solve the generalized Fuler equations using a substitution for the
derivatives that includes the multifractional aspects. Fortunately, the substitution

for derivatives involves using the fractional Riemann-Liouville derivative definitions:
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Given these equations, a and b are stationary values on an infinite axis where a < b.
We make these derivatives suitable for fractional dimensions by allowing d(¢;) = d(1);
or rather, we allow the dimensionality between intervals to depend on the dimension
we are deriving f(t) on and allow d(t) to be continuous rather than discretely defined

for each point in time-space. The results are similar:

dy o d Yo / f(t/)
D-l—,tf(t) - (E) /a di F(n _ dt(t’))(t _ t/)dt(t’)—n-l—l (3)

. B A AN f(#')
DZf(t) = (=1) (E) /tdt (n — d(0)) (1 — £t (4)

Given that d; = di(r,t), the derivative becomes solely dependent on ¢. Note that

now n — 1, < n,n = {d;} + 1 where {d;} is the integer part of d; < 0, and n = 0
for d; < 0. Note also that it is possible to substitute d; with d,(r,t) when taking a
derivative over r thus allowing for fo_i,,f(r, t).

Given these equations, it is necessary to describe the fractal dimensions of time
(di(r(t),t)) with regards to the physical fields, (®;(r(¢),t),7 = 1,2,...) or to the La-
grangians L;. Thus the fractional Riemann-Lioville derivatives acting within the
generalized Fuler-Lagrange equations creates a system of differential equations with

multiple solutions for d;. Following the argument proposed by Kobeyev[3]:

di(r(t),t) =1+ 3 BiLi(@i(r(t),1)) (5)

where L; are densities of energy of physical fields and ;L; is a dimensional constant
with physical dimension [L;]™' whose value is not limited unless such limitations
are imposed on the corresponding Lagrangians[4]. Such solutions also allow for the
substitution of ordinary derivatives with fractional derivatives in most situations.
Situations in which a solution where derivative substitution is possible, it may be

necessary to include in the equations terms that approach zero as r — 0[6].



3 Modified Physical Equations

3.1 Newton’s Equations
Thus Newton’s equations modified are:
dt r, dt r, r
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As previously mentioned, the inclusion of b, is necessary for the Euler-Lagrange

equations to have a solution and b;l is on the order of the size of the universe.

3.2 Maxwell’s Equations

Thus Maxwell’s equations modified are:
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where d; is equal to d, for j = 1,2,3 and d; for j = 0. The mass of the photon

was included to allow for a solution of the Fuler-Lagrange equations.

3.3 Schrodinger’s Equation
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3.4 Dirac Equation

Thus Dirac’s equation modified is:
[z%(D —teAi(x)) —m]¥(x) =0 (10)

where v; are the ordinary Dirac matrices.



4 Approximation Methods

Given d, where n is an integer, one can substitute for d, = 1 + ¢(r(¢),t) for a = r, 1.

Within this case, the fractional derivatives can be approximated to be:

DI F(r(1).1) = 2 F(r(0). 1))+ e(r(1), ) (r(1). 1) (1)

Thus for Newton’s equations, one can solve for small approximations by first defin-
ing d; to be:

di =1+ ﬁgq)g + ﬁgq)m (12)

where @, is the gravitational potential caused by mass M with regards to the center

of mass m and ®,, is the gravitational potential caused by mass m. By allowing

fo_i,, ~ 7/ and by ignoring the terms arising from b,, the equation of motion becomes:
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We now allow 3, to equal ¢~ for potentials and allow the body with mass m to move
in the gravitation field of mass M on the distance r where rq is the gravitational
radius of the body with mass M (r >> ry M >> m). These assumptions allow us

to view these masses as points and therefore:
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where a is a factor associated with the mass distribution, near unity for spheres. Given
the solution for the first equation of motion, the second equation can be calculated

to be:
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This equation is different from the classical limit of the equations of general relativity
by the existence of the additional terms in the square brackets which is combined

with the approximate form of the first Newton’s equation

[t~ 26 )]F

for r < ry where rg = c% Together these equations allow for an additional correc-
tion of —0.00358a onto the prediction of general relativity for the effect of Mercury
perihelium rotation. Currently, the best measurement for the precession is 43”7 per

century. General relativity predicts around
[42.98” 4 1.2897(J4 /107 5)]percentury (18)

where Jyq is the solar quadropole moment[5]. The best measurements of the solar
quadropole moment are (2.5 +0.2)X107%, combined with the previous correction, the

results are consistent with experimental data.

5 Conclusions

It has been shown that at least one phenomenon inconsistent with current theory
is, in fact, consistent given a fractional universe; however, further tests must be
done in order to verify that a fractional universe truly exists. As measurements
become more accurate, their divergence from theoretical predicted values will become
more apparent and therefore open up many more opportunities for the verification
of fractional dimensions; however, given that all the benefits of the theory arise no
matter how small the divergence from integer value becomes, the theory of fractional
dimensions could possibly catch on by acting as a mathematical limit necessary for

unified theory.
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