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Abstract 
 

We are working to enhance the resolution of laser desorption and ionization time of flight 
(LDI-TOF) techniques for disease biomarker recognition.  In order to take useful data 
from the LDI-TOF system, we will need a device capable of taking digital inputs and 
effectively counting the number of inputs that are “on” once every two to four 
nanoseconds.  For this we have investigated the use of metal-oxide-silicon integrated 
circuits (MOS ICs) for use in a microcircuit capable of accomplishing our goals.  The 
purpose of this paper is to give an overview of the problems that need to be addressed 
when building such a summation circuit, how we have addressed those issues, and to give 
suggestions for how one might accomplish this task. 
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Introduction 
 

A team of physicists here at The College of William and Mary, in cooperation 

with the informatics company INCOGEN, as well as the math and biology departments at 

the college, are developing a new imaging detector aimed at enhancing laser desorption 

and ionization time of flight (LDI-TOF) techniques for disease biomarker recognition.  

Simplified, LDI-TOF devices work in the following manner: a substance in question is 

attached to a specially prepared surface and placed in the LDI-TOF device.  Lasers are 

then used to blast the surface, hopefully releasing particles of the test substance from the 

surface and ionizing them.  These ions are allowed to travel a distance through a charged 

field and eventually hit a detector.  The time that an ion takes to travel the distance to the 

detector indicates its charge-to-mass ratio, a value that can help researchers determine the 

makeup of the substance in question. 

The goal of our project is to significantly increase the resolution of the LDI-TOF 

technique.  LDI-TOF devices produce large numbers of ions, and often times the 

detectors in these devices simply produce an analog signal where larger signals correlate 

to greater numbers of ions striking the detector at once.  These detectors are quite 

susceptible to noise, which make high-resolution data difficult to analyze.  To avoid this 

difficulty, our detector will be segmented to count multiple shots, which must then be 

summed quickly by our device (in a matter of two to four nanoseconds).  My contribution 

to the project has been the investigation of the electronics systems that will eventually be 

capable of receiving signals from the LDI-TOF detector, summing the number of 

segments that are “on,” and sending the results to a computer for analysis and storage.  It 

is the purpose of this paper to discuss what has been learned about the execution of such 
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a task, how to optimize the summing device for speed, and how this information may be 

used to fabricate such a device. 

Background 
 

In order to build a small, fast electronics device it is natural that we turn to the 

transistor-based integrated circuitry (IC), the technology used to create electronics chips 

like the CPUs found in computers.  More specifically, we have chosen to investigate the 

use of the industry standard Metal-Oxide-Silicon Field Effect Transistors (MOSFET, or 

sometimes simply MOS transistors).  Thanks to a service provided by a group called 

MOSIS (http://www.mosis.org/), universities can have IC prototypes fabricated at 

effectively no cost, making MOS ICs not only the cutting edge for speed, but incredibly 

affordable. 

The basic component of a MOSFET chip is the transistor itself, a voltage 

controlled device that will pass a current between two gates depending on what voltage is 

applied to its control gate.  There are two basic types of MOS transistors, the n-channel 

enhanced MOS transistor which will pass a current when a positive voltage is applied and 

the p-channel enhanced MOS transistor which will pass current when negative voltage is 

applied.  As well, some transistors are built with a bias so that they will pass current as 

the applied voltage goes to zero.  Whether pMOS or nMOS, all MOSFETs are “unipolar” 

devices, meaning only one charge carrier dominates the current [1].  In the case of 

nMOS, electrons are the charge carriers, while pMOS transistors use “holes” (or atoms 

that are missing an electron) as charge carriers [2].  These “holes” are slower moving 

than the electrons due to their larger mass-to-charge ratios, and because pMOS must 

build an inversion layer out of holes, they are slower to transition than nMOS transistors. 
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As shown in Fig. 1 the typical MOSFET has three gates: drain, source, and 

control.  In the case of the nMOS transistor, when positive voltage is applied to the 

control gate, electrons in the doped region between the source and drain are attracted to 

towards the control gate, while positive ions are repelled.  This creates an inversion layer 

between the source and drain, which allows a current to flow [1].  The MOSFET is 

symmetrical, meaning the drain and source can be interchanged with no change in 

function, yet the drain is conventionally the gate where output current is read. 

 
Figure 1. The typical nMOS transistor with exaggerated conduction band between source (S) and drain 
(D), as positive voltage is applied to control gate (C).  The control gate is separated from the body of the 
transistor by a non-conducting oxide layer, so that no current flows from the control gate to the body.  The 
source and drain gates are made of doped n-type material, while both gates are imbedded in a larger p-type 
well where the conduction and inversion layers form [3]. 
 
 One creates logic circuits by connecting transistors together so that they either 

pass or do not pass a current, depending on inputs.  For example, say one connects a 

pMOS to a power supply and an nMOS to ground then gives each transistor the same 

input.  In one case the input will allow the pMOS to pass a current while turning off the 

nMOS, pulling the output high.  And in the other case the nMOS passes a current, the 

pMOS turns off, and the output is pulled low by the ground.  This type of configuration is 

how one would build an inverter and will be seen many times through this paper.  The 

use of nMOS and pMOS transistors in the same circuit is known as complementary 

MOS, or CMOS, technology. 
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 Because there are a number of different configurations that could be employed to 

achieve the same logical effect it is the task of a circuit designer to optimize their circuit 

for the intended use.  We wish to optimize the response time and the repetition rate of our 

circuit and do not care as much for issues like power-drain or overall size. 

Data and Analysis 
 
 In order to simulate our circuit and transistor designs we used the freeware 

program “Electric 6.08,” which can be downloaded at http://www.staticfreesoft.com/.  

While the program lacks the ability to simulate the current and voltage effects of the 

transistors, it is sufficient for simulating time-delays, which is our primary concern. 

 Our simulations have addressed a few basic issues.  First, how circuitry responds 

to changes in the overall fabrication size (a set value for the entire fabrication process); 

second, how transistors react to individual changes in scale, i.e. width and length of a 

given transistor; third, how to optimize the speed of an entire network of transistors; 

fourth, how to use basic adders to sum an arbitrary number of bits; and finally, the 

difficulties of using three-input adders as the basis for a summation circuit and how such 

problems may be solved. 

A. Overall Fabrication Size 

 When submitting an IC design to be fabricated, a designer must specify a 

fabrication process that will determine the scale for all components on the chip.  For 

example, the fabrication processes available through MOSIS at the moment have scales 

ranging from 0.13µm to 1.5µm.  To test the effects of choosing one process over another 

we turned to Electric 6.08. However, we were limited by the program, because it would 

only simulate fabrication values of 0.3µm and 1.0µm.  Fig.2 gives examples of how the 

time-delays of an inverter change when the fabrication process is altered.  Importantly, 
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each line has a different slope, meaning that time delays do not simply scale when 

altering your fabrication size; thus you must simulate your circuit at the appropriate 

fabrication size for correct delay information. 
 

 

Figure 2. The set of points on the left represent time delays from a 0.3µm process.  These points are 
connected to points displaying delay times for the equivalent circuit in a 1.0µm process on the right.  The 
darker pair represent circuits with transistor lengths and widths of 12, while the lighter pair represent 
transistor lengths and widths of 2.  In both cases, smaller fabrication values mean faster responses, though 
the slopes of each of the lines are different.  When finalizing a circuit design for fabrication it should be 
important to simulate that design with the appropriate fabrication scale. 
 

 As in Fig.2, smaller fabrication values mean speed increases.  As well, small 

fabrication values make for smaller overall chip sizes.  We wanted to know, however, if 

we would duplicate the 1.0µm process time delays by scaling the length and width of 

transistors fabricated with a 0.3µm process to the size they would be in a 1.0µm process.  

We simulated an inverter again and found time delays, as seen in Table 1.  
 

 
Table 1. Of note: the transistor size is relative to the fabrication process.  If the only thing that fabrication 
size changed was the size of the transistor length and width, then the 0.3µm fabrication scaled to 3.33 
should have returned the same rise and fall times as the 1.0µm, because the transistors would be the same 
size physically.  However, we don’t see similar time-delays until we scale the 0.3µm transistors up to four 
or five times in scale. 

 Fabrication (µm) Transistor Size Scale Rise Time (15ps) Fall Time (15ps) 
1.0 12W;2L 1 3.94 8.50 
0.3  24;4 2 1.31 3.80 
0.3 40;7 3.33 2.63 7.26 
0.3 48;8 4 3.27 8.50 
0.3 60;10 5 3.88 11.1 
0.3 55;8 Mixed 3.50 8.50 
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If fabrication scale simply affected the size of the transistors, the times from the 

first and third row of Table 1 should be equal, because they would be identical circuits.  

However, in order to see delay times close to those found in the 1.0µm process we need 

to enlarge the 0.3µm process transistors by about four or five times, rather than the 3.33 

that would mean equivalently sized transistors.  These numbers seem to indicate that 

there is more to fabrication size than simply the size of the transistors.  Perhaps this is due 

to the wiring tracks and other connection features on the chips, which will also be 

smaller.  Therefore we should design our circuits using relative units, and then choose the 

appropriate fabrication size to yield a balance between speed and the cost of producing a 

chip at high resolutions outside of MOSIS. 

B. Individual Transistors 
 
 After choosing the fabrication size for a circuit, the characteristics of a given 

transistor that the designer will usually alter are the length and width of the transistor.  

The length of the transistor is the physical length of the channel between the drain and the 

source, while the width is the broadness of that channel.  To test the effects of altering 

either size characteristic of the transistors we created the simplest logic circuit, an 

inverter (using one pMOS and one nMOS).  We then simulated the time it took for the 

circuit to respond to the input switching from 1 to 0, and repeated the simulation using a 

number of different size values for both of the transistors.  As Fig.3 shows, an expanding 

transistor width will decrease the transistor’s delay time as the width gives the transistor 

more charge carriers with which to form a current, however the benefits of enlarging the 

width of the transistor trail off after a certain point.  For speed purposes, the width of a 

transistor should be at least the size of its length. 
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Figure 3.  Effects of altering transistor width on inverter response to a falling input.  As width of the 
transistor increases, the response time of the circuit quickly falls and tapers to a near constant. 
 
Fig.4 demonstrates the effects of altering the transistor length.  The points on the graph 

are strongly linear and suggest that the smaller the transistor length can be the better.  

This makes physical sense, because the length of the transistor is the distance that the 

charge carriers must travel.  As well, the saturation of the speed due to altering the 

transistor width makes sense, because the carriers still feel effects of the transistor length 

and must still travel the distance of the channel. 

 
Figure 4. Effects of altering transistor length on inverter response time to falling input.  As length goes up, 
so does response time; the effect over the values we tested is linear. 
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Fig.3 and Fig.4 indicate that we can expect to see the fastest circuit responses by using 

transistors with large widths and small lengths.  However, since the time saved by 

increasing transistor width diminishes at higher values, we should choose width values 

that are fast “enough,” simply because larger transistors mean larger chip sizes and 

greater power consumption. 

C. Logic Gates 
 
i. Pseudo-nMOS Technique 
 
 As was mentioned in the background section of this paper, pMOS transistors use 

different charge carriers than nMOS transistors, ones that happen to travel significantly 

slower than the electrons used in the nMOS transistors.  This, in part, lends to the fact 

that pMOS transistors are significantly slower than their nMOS counterparts.  In fact, 

because pMOS transistors are enough slower than the nMOS transistors at building up a 

conduction band, circuit speeds can be greatly increased by decreasing the number of 

pMOS transistors in the circuit.  One method for decreasing delays due to pMOS speed, 

called pseudo-nMOS, involves tying the pMOS to ground so that it is always in the “on” 

mode, essentially making it a resistor, and creating a stronger “pull down” network of 

nMOS transistors that can selectively pull the output low.  This way all dynamic inputs to 

the pMOS are cut off, so that the transistor does not need to make any transitions; and 

because the pMOS can only supply so much current, the circuit is still able to selectively 

pull its output to ground using only nMOS for logic.  We simulated this technique using 

an AND2 circuit and found that the pseudo-nMOS technique shaved off a good portion of 

the time delay.  Really, the only difference between the two circuits (shown in Fig.5) is 

that the pseudo-nMOS version has one significant pMOS transistor tied to ground.  Yet, 
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Fig.6 graphs the delay times for each of the circuits and we see that the pseudo-nMOS 

circuit is 140 picoseconds faster regardless of transistor width.  Therefore we should 

attempt to use the pseudo-nMOS technique whenever applicable. 

 
Figure 5. On the left is the standard CMOS 2-input AND circuit, while the right has one pMOS tied to 
ground, in order to use the “pseudo-nMOS” technique.  In both figures pMOS transistors are represented by 
the red figures with circles, while the nMOS transistors lock circles.  The blue lines represent wiring, “y” is 
the output, and “a” and “b” are both inputs. 
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Figure 6. While the pseudo-nMOS technique decreases the time delay significantly, it only seems to save 
the circuit a set amount of time (in this case about 140 picoseconds), rather than a percentage of the total. 
 
ii. Dynamic CMOS Technique 

 The pseudo-nMOS technique is helpful for decreasing a fixed amount of timing 

delay, yet it is not as effective as we would like.  However, there is another method, 

called dynamic CMOS, which removes all but one pMOS transistor in a circuit that is 

then clocked.  While the clock is low the nMOS network is cut off from the ground and 

the pMOS transistor pulls the output high.  Then, when the clock goes high, the pMOS 
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turns off and we build a network of nMOS logic to selectively pull the signal low on 

evaluation.  We see much faster response times with this method, with the introduction of 

a clock as a penalty.  When applying this technique to the Full Adder (a circuit that adds 

three inputs together for a 2-bit digital output, see Fig.7) we see a 36% decrease in time 

delays over the pseudo-nMOS version of the circuit (160ps versus 250ps, when simulated 

at 0.3µm; max clock cycles were 200ps and 500ps, respectively), though the dynamic 

CMOS circuit does also utilize the pseudo-nMOS technique for its inverters. 

 
Figure 7. Above are two different circuits that essentially do the same thing.  Both take inputs A, B, and C, 
and add them together in binary to outputs Sum and Carry.  The top circuit, however, introduces a clock 
and uses dynamic CMOS logic to achieve its goal, while the circuit on the bottom uses standard CMOS 
techniques, with pseudo-nMOS inverters.  Simulated delays for the two circuits were 160 picoseconds and 
250 picoseconds, respectively.  However, while the bottom logic operates a full cycle in roughly twice its 
rise time give above, the dynamic CMOS adder can operate a full cycle in roughly 200 picoseconds. 
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So, not only is it advisable to use pseudo-nMOS techniques wherever possible, it is also 

very worthwhile to attempt to build our circuitry out of mostly nMOS transistors and to 

introduce a clock in the style of dynamic CMOS. 

iii. AND vs. OR 

 When designing circuits using dynamic CMOS logic the nMOS pull-down 

network is simply a series of ANDs and ORs connected together.  nMOS networks in 

series function as AND operators, while nMOS networks in parallel function as OR 

operators.  Since desired logic may be accomplished using different combinations of 

AND, OR, and NOT operators, it is important to know the time delays involved in using 

an AND operation in place of an OR (choosing transistors in series over parallel).  To test 

this we built a simple dynamic CMOS configuration (Fig.8) and simulated time delays 

for increasing numbers of nMOS transistors in series and then in parallel.   

 

 
 
 

Figure 8. The basic dynamic CMOS configurations used to test the time delays due to nMOS transistors in 
series (left) and parallel (right). 
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Figure 9. Transistors in parallel increase total delay time linearly and gradually as the number of transistors 
increases.  However, the total delay time due to transistors in series is quadratic as transistors are added. 
 
 Fig.9 shows the effects of using transistors in parallel, as opposed to transistors in 

series.  While parallel transistors add delay time slowly, transistors in series fit a strongly 

quadratic curve.  The series transistors start taking so long, because transistors will 

conduct current in either direction and before the low signal can propagate up from 

ground the high signal from the pMOS is still trying to pull each of the transistors high.  

Right as the clock turns on the ground begins pulling transistors low, and the high signal 

continues to pull transistors high.  The two signals will likely meet somewhere in the 

middle of the nMOS network and the ground must begin pulling those transistors low that 

were already high, doing effectively twice the work on them, as it has to pull them from 

high to neutral and then to low.  From this we learn that in order to optimize our logic 

speed we should refrain from using many-input AND operations and rely more heavily 

on OR operators, transistors in parallel.   
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D. How to add Inputs using Full Adders 
 
 As shown in Fig.7 we already have the design for a circuit that can add three 

inputs together for a digital output of two bits.  However, it certainly won’t be the case 

that our LDI-TOF device will only need three inputs added together, so we need to 

develop a way to add together an arbitrary number of bits using similar techniques.  It has 

been customary in circuit design to simply cascade the desired number of three-input 

adders like the ones in Fig.7 in order to add two binary numbers together.  However, our 

process is slightly more complex in that we are not given binary numbers, but a large 

number of binary bits that we need to convert to binary numbers.  In this way an input of 

10110 would need to be converted to an output of 00011 (binary 3) since there are three 

1s in the input (likewise, 11111 would become 00101, or binary 5).  As we will show, it 

is possible to accomplish this conversion task with the use of three-input adders, but their 

use comes with a number of other considerations. 

 In order to convert a number of inputs into a digital output using three-input 

adders there is only one basic concept that needs to be understood.  It is simply that the 

bits that the adder receives may represent values other than one.  A normal adder 

receiving inputs and then outputs bits representing a two and a one (10 and 01, 

respectively).  However, if we added bits representing twos together, like the red adder in 

Fig.10, the first bit would represent a two and the second bit would represent a four.  

Fig.10 shows the first step towards adding nine inputs together.  In order to come to a 

final digital output we simply add outputs together further, as illustrated in Fig.11 using 

63 inputs, until we are at a point where the bits can be taken together to represent a binary 

number or two binary numbers that may be added together in a conventional fashion.  
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Fig.11 demonstrates that this process is applicable to much larger numbers, and in fact 

the full adders can reduce the sixty-three inputs down to ten outputs in only six cycles. 

 

Figure 10. In this figure each circle represents a three-input adder.  The nine inputs at the top are added 
together to give six outputs in the middle, which are then added together once more to give four outputs. 
While the outputs of the blue adder are equivalent to those of the first set of adders, the red adder is adding 
together twos, and so its possible output values are 0, 2, 4, or 2 and 4 equal 6. 
 

 
 
Figure 11. Steps are left out in the picture above, favoring small detail to the full scheme.  Again, each 
circle represents a three-input adder.  By taking the outputs of each row of adders and using them as inputs 
for the next, the input information may be reduced down to a manageable few bits, which may then be 
added together with a series of three-input adders in the same fashion as one would when adding two 
binary numbers.  This process is actually less complex than it may seem, the two lines in the center of the 
figure represent the skipping of only two rows of full adders.  The information is quickly narrowed down to 
two sets of 16, 8, 4, 2, and 1, which can then be added together using the cascaded full adders. 
 
 The next thing we wish to address is simply this: why three inputs per adder?  

Why not two, or seven, or any other number for that matter?  We are using the three-

input adder as the basic component of our summation circuit for a few reasons.  First, the 
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two input adder, or half-adder, gives its output in two bits as well; the output can be 00, 

01, or 10.  The fact that it takes two inputs and gives two outputs means that there is very 

little reduction of information going on and so a great many more steps are required to 

come to a reasonable output than would be required with the three-input adder, which 

takes three inputs and reduces that information down to two bits.  The fact that the three-

input adder, or full adder, uses the full range of possible outputs (00, 01, 10, and 11) 

makes adding the output of many adders together a much simpler process and requires 

fewer steps, because it does not require the many “or” operators that become necessary 

when adding outputs from the half adders.  Fig.12 demonstrates this using a small 

number of bits. 

 
Figure 12.  Above are two schemes for adding inputs together using 3-input adders (left) and 2-input 
adders (right).  In each the output of the first set of adders is fed into the second set of adders, with each 
circle representing an adder circuit; the second row would run after receiving input from the first.  The first 
outputs representing 2s are added together again in the red adders that output bits representing 2 or 4 (so, in 
the example of the 3-input adder, the red adder can output, 0, 2, 4, or 2 and 4 = 6). 
 

In Fig.12 the output from the full adders clearly adds to the number of original 

inputs, nine, while the half adders do little to simplify information and would need a 

further three steps to come to a digital output.  The bits from the full adders only need 

two further operations performed on them at this point.  Though this particular addition 

of eight bits using half adders can be solved rather quickly with a pair of “or” circuits 

towards the end of the adding process, when much larger numbers of bits are involved the 
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amount and placement of these “or” circuits becomes quite a hassle.  Because the “or” 

circuit can operate so much faster than the adders, when you use them in a circuit you 

must either have a different clock signal to address them, or you are wasting a good deal 

of time with them waiting an entire clock cycle tailored to the speed of the adder.  Two 

input adders can be used effectively to build a summation circuit, however we have 

chosen the full adder for its ease of use and a simpler clock signal. 

 So if the key usefulness of the full adder is that it can use all of the possible 

outputs and that it reduces its information from three bits to two, why not look at the next 

number that works similarly: seven?  A seven input adder would reduce information from 

seven inputs down to three, and would also utilize every three bit combination in its 

possible output (000, 001, 010, 011, 100, 101, 110, and 111).  To test this possibility we 

made a seven input adder based on the same dynamic CMOS technique as the full adder.  

We tested its fastest bit, the third output, against the speed of the slowest of the full 

adder’s outputs.  The figures in Fig.13 show the output response to summing inputs for a 

cycle, and then waiting an appropriate amount of time (left) before triggering the clock 

once more, compared to a shorter amount of time (right).  The black areas represent 

undefined output values.  If the speed of the seven input adder was comparable to the 

speed of the full adder (that is, if the seven input adder could function at a speed roughly 

7/3rds the speed of the full adder) we might consider building summation circuits off of 

adders with other numbers than three.  However, as can be seen in the figure, the seven 

input adder only functions equivalently well in the time that it takes to get a rising output.  

The seven input adder takes miserably long to return to a state where new input can be 
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taken once more, making it nearly useless when compared to the 200 picoseconds needed 

to run a full cycle with the full adder. 

  
 
Figure 13. Above are two graphs of simulated inputs (output on top) to the seven input adder.  On the right 
a proper amount of time is given to the circuit after inputs have gone low before triggering the clock high 
again; but on the right is what happens when inputs and the clock are triggered too soon.  While only one 
input is sent high after the first reading, it is enough to send the output into an undefined state, rendering 
the circuit useless until it is reset again and given a full 250+ picoseconds time with no inputs. 
 
 It is our opinion, then, that the three-input adder is by far the best choice as a 

basic component of our summation circuit.  However, the three-input adder does come 

with its own issues that we wish to address now.   

E. Difficulties with Full Adders 

Problematically, the full adder requires constant inputs while operating, and it is a 

clocked circuit, which means we are potentially missing information while we are 

operating the circuit.  As well, the clock timing is very important to the reliability of the 

circuit and we have identified a problem that can arise if the pMOS pull up transistors are 

not adequately strong. 

i. pMOS Width Requirement 

  In terms of the full adder itself, we noticed a problem that could arise when two 

inputs were triggered with the clock simultaneously.  If the pMOS acting as the pull-up 

network for the sum bit was not wide enough, the output at the sum bit would become 
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undefined on clock triggering and would not return to normal until the clock had gone 

low once more.  Fig.14 gives an example of this output; the black region being the error. 

 
 
Figure 14. As we see above, without the adjustments proposed below the full adder can be fail to give 
proper output when inputs 2 and 3 go high (B and C in some figures). 
 

Fig.15 illustrates our solution to this minor problem.  So long as the circled pMOS 

transistor has a length of at least 34, in this particular arrangement, the circuit runs 

smoothly.  When designing the full adder it is important to test the entire range of input 

possibilities and to ensure that this pMOS, in particular, is large enough that the error in 

Fig.14 does not occur. 

 
 
Figure 15. The adjustment is actually quite simple: you must make sure that the pMOS pulling the Sum 
network high is large enough that the pull-down network of nMOS transistors does not throw the output 
into an undefined state.  In this case, so long as the pMOS is larger than 35 units wide, as opposed to the 16 
of nearly all other transistors in the circuit. 
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ii. Down Time 

 Since our circuit is controlled by a clock it is natural that there should be times 

while the circuit is processing information that it may lose track of the input.  To remedy 

this problem, we have developed a circuit that can account for any input information that 

might be missed by the full adder while it is processing.  The circuit is a slightly modified 

latch and acts as an integrating device.  That is, if the input remains low, the output of the 

circuit remains low as well; yet if the input goes high for even a moment (at least 10 to 20 

picoseconds) then the output of the circuit will stay high until we send a short pulse 

signal to the “reset” input, which could act like a clock signal with a very short “on” time 

and would be synchronous with the clock.  This integration circuit allows us to use a 

clock to run the full adder, while at the same time continuing to take input information 

and can be seen in Fig.16.  Since we expect to see inputs remaining high for as long as 

two or three nanoseconds, the small amount of time needed to reset the integrating device 

(less than 0.1 nanoseconds) is essentially negligible in terms of data loss. 

Under normal conditions, with both reset and input low, the circuit will keep the 

wiring between the top transistor and the far right transistor high.  When an input is 

received it allows the transistor on the far right to pass the high signal to the output.  The 

output will remain high until the current is dissipated by another circuit, or the reset is 

pulsed.  When the reset is pulsed it ignores the input momentarily and forces the output to 

return low, so that it can begin waiting for a high input once more.  Beyond our original 

design we replaced nearly all pMOS transistors with nMOS transistors, simply inverting 

the input to the nMOS transistor so that they worked logically like pMOS, only faster. 
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Figure 16.  This is a circuit which can retain the input history long enough that our summation circuit can; 
if we scale the width of each of the pMOS transistors in the circuit to 20.  The circuit is capable of reacting 
to inputs as quickly as 20 picoseconds after the reset has been pulsed, so that all but 20 picoseconds of the 
input history can be accounted for. 
 
 
iii. Dynamic Input 

 While the integration circuit acts to “remember” the input history, effectively 

recording when inputs have gone high, it also has an output that can switch from low to 

high randomly.  As mentioned above, the full adder requires constant inputs while its 

clock is high or problems can occur, as illustrated in Fig.17.  The figure shows only two 

inputs having been high and yet both the sum and carry outputs have gone high as well, 

indicating that three inputs have been received.  If inputs change while the clock is high, 

the circuit output can be unreliable and so the circuit requires something between the 

integrator and the full adder to hold the adder input constant while the clock is high. 
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Figure 17. Because the full adder is based on the dynamic CMOS design, the circuit selectively pulls the 
output high (low, before inversion), but is incapable of allowing the output to return to its previous low 
state until the clock has gone low once more as well.  The effect of this is illustrated above; if inputs are not 
constant while the circuit is operating it is easy to “trick” the circuit into giving the wrong sum.  In this 
case, only two inputs have gone high, yet because one changed both the sum and the carry bits have been 
activated, giving the impression that actually three inputs had been received. 
 
 To address this issue, we simply insert a latch between our integration circuit and 

the full adder.  The latch is different than the integrator, a modified latch, because it will 

freeze its output to a single value when the clock has gone high.  When the adder has its 

clock low, we allow the latch to continually take input, but right before the full adder 

begins its processing, we trigger the latch and force the latch output to remain constant 

until the adder has finished its process.  Because of this, integrator remains free to 

continue taking input information, without worry of interrupting the adder.  

 There are different ways that we can construct the latch, and two such examples 

are given in the Fig.18.  While the latch based on two simple inverters is slightly faster 

than the second design (50 picoseconds rise time compared to 70 picoseconds), the 

problem with it is that it quickly dissipates the integration circuit’s output to zero, 

rendering it useless.  So, while the second design is slightly slower to respond, we are 

using it in our circuit because it does not interfere with the integration circuit’s function. 
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Figure 18. On the left is a very simple latch based on two inverters, however it is not functional alongside 
the integration circuit and so the latch on the right was chosen instead.  The design on the right is slightly 
slower, yet will not interfere with the function of the other circuits. 
 

The entire buffered full adder would look like Fig.19; each of the sub-circuit 

sections has been highlighted and labeled, in order to show the functional sections of the 

circuit.  Then Fig.20 gives an example of the buffered full adder operation (the clock has 

been inverted between the latch and the full adder to delay its arrival by a short amount of 

time).  After starting with all inputs low and pulsing the reset (far left wire) we simulate 

two inputs being detected, waiting and triggering the clock to demonstrate its ability to 

effectively “remember” the input history until the clock is triggered.  The simulation then 

turns the adder off, pulses the reset line once more, then receives a third input and 

correctly sends only the Sum output high, demonstrating its ability to reset operation and 

correctly begin counting anew.  It should also be noted that the integrator circuitry is only 

necessary for the full adders taking their information directly from an outside source; for 

the adders receiving input from other adders in the circuit the latches are sufficient for 

proper operation. 
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Figure 19.  Here we see the full adder properly buffered and ready to take inputs.  In the full-scale circuitry 
this buffering would only be necessary for the very first adders to receive inputs, after that it is sufficient to 
have the full adder with latches; the integrator can be dropped. 
 

 
 

Figure 20. This figure gives an example of the buffered full adder operation (with inverted clock).  After 
pulsing the reset to initialize the circuit, A and B are pulsed, then the clock is flipped to demonstrate its 
ability to effectively “remember” the input history until the clock is triggered.  As the clock goes high once 
more, the reset line is pulsed once more, readying the circuit to begin counting anew.  Finally the circuit 
receives a third input from C and correctly sends only Sum high when the clock goes low again. Of note: 
though the output seems to follow the clocks rising edge, it is actually just delayed from the falling edge. 
 
While Fig.20 shows the ability of the circuit to function properly, it does not address the 

overall speed of the circuit.  It shows two complete cycles taking place in under 1.5ns, 
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which is very promising, yet does not imply how the circuit will slow when connected to 

a vast number of further networks, as will be necessary to finally reach an output. 

iv. Clock Timing 
 
 As mentioned earlier, the full adder requires proper clock timing in terms of how 

long the clock must be on and how long it must be off before going high once more.  

Fig.21 shows two examples of the problems that can occur if clock timing is not set up 

properly.  The left plot demonstrates what can happen if the clock is not left on long 

enough; the sum does not have time to rise and never registers.  The right plot 

demonstrates what can happen if the clock pulses come too closely to each other; in this 

case, the sum was not given enough time over the entire cycle and ended up going into an 

undefined state until the next cycle. 

                           
Figure 21.  In the left example the clock is not on sufficiently long for the Sum (slower than the carry) to 
register anything, even though all three inputs are high and sum should have gone high as well.  The right 
example shows the clock with an overall cycle that is too short, which puts the Sum into an undefined state. 
 
 In order to avoid such errors, the fastest our unloaded full adder can be run is with 

a cycle of 200 picoseconds (170ps high, and 30ps low), as is demonstrated in Fig.22.  

These numbers will change significantly when the full adder is placed in the context of 

the entire summation circuit, but these figures give a reference point from which to 

proceed when investigating the overall circuit. 
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Figure 22. This is the fastest clock cycle that the full adder can handle and still produce reliable results.  Of 
note, it is important that all of the inputs rise and fall with the clock, or timing will need to be altered. 
 
Because the effects of loading this circuit with the vast number of networks needed to get 

to an output (as indicated in Fig.11) could not be estimated, in order to get an absolute 

best operating speed for this circuit the entire summation device must be simulated.  This 

would be a great place for another to pick up this research. 

Conclusions 
 

In order to aid in the enhancement of LDI-TOF techniques this project has aimed 

to test the ability of CMOS technology to provide us with a nanosecond-scale digital 

summing device.  Our results are promising and lay the groundwork needed to finally 

tackle the layout and fabrication of this device.  We have learned that we want large 

transistor widths, short transistor lengths, a small-scale fabrication process, and we have 

learned a number of useful techniques for optimizing transistor networks, such as 

dynamic CMOS and pseudo-nMOS.  We have learned that the best basic component for 

our summation circuit is the three-input adder, when compared to two and seven input 

competitors.  As well, we now know that the greatest limitation on the circuit’s speed is 
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not how quickly the entire circuit can operate, but simply the repetition rate of the first set 

of full adders, since the circuit may operate like a shift-register, passing data to the next 

set of adders with each cycle and operating on new data directly after.  We have designed 

all parts needed to fabricate a summation circuit and have tested the speed limitations, as 

well as operational issues, of those components.  We have shown that an unloaded full 

adder can operate a full cycle in 200 picoseconds, and that a fully buffered full adder can 

run two full cycles in under 1.5 nanoseconds. 

 We were limited in a few ways, however, and so further investigation into our 

matter is strongly warranted.  We have a number of suggestions to make to who ever 

follows up on this research.  To begin, our simulation software was unable to give us 

more information about the circuit’s operation than delay-times.  As well, the software’s 

methods available to us for simulated input control were mediocre at best.  High and low 

vectors applied to an input could not be removed save for an entire sweep of input data, 

making precise simulations a tedious game of trial and error.  On top of this, the software 

only has two available fabrication options for simulation, so we are unable to simulate 

circuits with fabrication sizes any lower than 0.3 microns, which would be extremely 

beneficial.  In light of these limitations we suggest trying to find better simulation 

software before proceeding further.  We would want the ability to simulate smaller scale 

fabrication sizes, ideally 0.13 or 0.18 microns, and the option to simulate the current-

voltage relationships to better characterize a final circuit design. 

 With that in mind, the path from where we are to fabrication is not a particularly 

long one.  With new software in hand one needs only to take our buffered full adder 

design and to build a system off of them similar to the diagram in Fig.11.  One would 
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then simulate this full circuit at higher resolution processes and determine the best 

configuration of networks to reduce the repetition time for the buffered full-adder.  Then 

one would convert the above schematic designs to actual layout masks with wiring and 

transistor parameters according to MOSIS design rules, determine the exact clock timing 

based on the more accurate simulations resulting from these layouts and finally submit 

the design to MOSIS for fabrication.  On the assumption that the principles discovered in 

this paper are applicable at lower fabrication sizes we are only a few microns away from 

having our summing circuit fully functional. 
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