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Abstract 
 

This thesis analyzes neutrinos emitted by radioactive particles, mainly K
40

19 , in the earth’s 

core. For the detector, we use data from the Borexino detector (which is currently being 

built), a detector for low-energy neutrinos. We calculated the number of neutrinos that 

could be detected (after taking into account the various possible concentrations of 

potassium in the core) and compared that number to the detector’s background 

impurities. Then we analyzed the case of neutrino flavor oscillations and calculated their 

transition probabilities. Finally, we discussed how the detection of these neutrinos could 

offer us more insight into the currently very limited knowledge of the earth’s core. 
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1) Introduction 

 The discovery of the neutrino dates back to 1930, when physicists discovered a 

problem in nuclear beta decay (i.e. the process where a radioactive nucleus is transformed 

into a slightly lighter nucleus with the emission of an electron, or “beta ray”). Since this 

is a two-body process, by the law of the conservation of energy, the outgoing energies 

(that of the lighter nucleus and the electron) should be fixed; but experiments proved that 

the emitted electrons possessed a continuous spectrum of energies. Wolfgang Pauli 

proposed in 1931 that a neutral particle was emitted along with the electron, and this 

particle is what carries the “missing energy”. A few years later Fermi presented a theory 

of beta decay which incorporates Pauli’s particle, which he called the neutrino [1].  

 Neutrinos are electrically neutral, spin ½ particles which interact very weakly 

with matter through the weak nuclear and gravitational forces. There are three flavors of 

neutrino corresponding to three massive leptons, i.e. the electron neutrino, the tau 

neutrino and the muon neutrino.  

 It was previously thought that neutrinos are massless, but the Solar Neutrino 

problem (SNP) indicated that this assumption is false. The problem was first identified in 

1968 when Davis, Harmer and Hoffman published results of their first solar neutrino 

detection experiment [2]. The detector was a 100,000 gallon tank of detergent buried a 

mile deep in South Dakota. Electron neutrinos from the sun interact with Chlorine atoms 

in the tank, producing radioactive argon and electrons. When they counted the electrons, 

they calculated the solar neutrino flux to be 1/3 of what theorists predicted it should be. 

Subsequent experiments also produce results showing that the flux is much less than 

theoretical predictions.  
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 This problem finally revealed the fact that the neutrino mass eigenstates are not 

identical to the flavor states, and that they are not all degenerate (i.e. neutrinos are not 

massless), thus allowing for flavor oscillations. In the case of SNP, some of the electron 

neutrinos coming from the sun become muon neutrinos; and since they were undetectable 

in the above-mentioned experiments, the observable signal decreased. Current detectors 

are far more advanced and many can detect different flavors of neutrinos. In this project 

we are using data from the Borexino detector
1
, a real-time detector that can detect low-

energy electron neutrinos. It is currently under construction and is built primarily to (but 

its function is not limited to) detect solar neutrinos from the 
7
Be reaction chain. In this 

research we will use it to detect neutrinos produced by 40

19 K , the primary radioactive 

material in the earth’s core.  

 In the course of this paper, we will first look at the concept of neutrino flavor 

oscillations, both in vacuum and in matter of constant and variable densities. Then we 

shall get into the actual research: first, c the existence and abundance of 40

19 K  in the core 

producing the electron neutrinos, the rate and energies of the reactions, and the 

probability of their detection by Borexino (whose properties, e.g. radiopurity, sensitivity, 

etc. shall also be discussed). We shall first consider the case where there is no oscillation 

and analyze possible background problems, and then go on to the case of neutrino 

oscillations and calculate the number of muon neutrinos we can expect to be detected, 

then discuss the results. 

 

 
                                                 
1
 Data for the properties of Borexino (currently being built) in this paper are mainly found from the web 

sites of various research projects who are doing experiments with the detector.  
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2) Theory of neutrino oscillations 

2.1) Vacuum oscillations 

 Here we shall discuss how neutrinos oscillate in vacuum; a somewhat similar 

discussion can also be found in Bernstein and Parke [3].  

Consider a two-neutrino system. A neutrino wavefunction ν
�

 in the mass basis can be 

written as:  

 ν
�

(t)= ν 1 (t) |ν 1 > + ν 2 (t) |ν 2>          {1} 

where 1 and 2 are the mass eigenstates labels, with 1 signifying the state which is mostly 

electron, and 2 for the state which is mostly muon. Since neutrinos move at a speed close 

to c, we can use the Dirac equation (the relativistic form of the Schrodinger equation); in 

the mass basis, with c= ℏ =1, this reduces to: 

 

2 2

11 1

2 2
2 2

2

0 (0)

(0)0

K m
i

t K m

ν ν

ν ν

 +   ∂  =   
 ∂    + 

                           {2}  

 

where K is the momentum of the neutrino state.  

To simplify our calculation, we can expand the diagonal elements in {2} in Taylor series:  

              {3} 

 

plus higher order terms, which may be discarded in our ultrarelativistic case. If we define 

an (intrinsically positive) quantity 2

0m∆ = 2 2

2 1m m− , we can re-express {3} as: 

 2 2

iK m+ = 
2 2

1 2

4

m m
K

K

 +
+ ± 

 

2

0

4

m

K

∆
  {4} 

2
2 2 ...

2

i
i

m
K m K

K
+ = + +
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taking the plus sign for the 1 state and the minus sign for the 2 state. Since the bracketed 

term in {4} appears in both terms in the Hamiltonian, we can discard it, since the overall 

phase of a wavefunction doesn’t matter. Then we get: 

 
1

2

i
t

ν

ν

 ∂
 

∂  
=

2

0

4

m

K

∆ 1 0

0 1

− 
 
 

1

2

(0)

(0)

ν

ν

 
 
 

           {5} 

which can easily be solved for the neutrino wavefunction, i.e. 

 ν
�

(t)=

2

0

2

0

0
4

0
4

m
Exp i t

K

m
Exp i t

K

  ∆
  

  
  ∆ −  

  

 
1

2

(0)

(0)

ν

ν

 
 
 

          {6} 

Flavor oscillations are caused by the differences between the flavor and mass bases, 

which are related by a rotation matrix: 

 
( )
( )

0 0

0 0

cos( ) sin( )

sin( ) cos( )

e

µ

ν τ θ θ

ν τ θ θ

  − 
=    
  

 
1

2

( )

( )

ν τ

ν τ

 
 
 

         {7} 

where 0θ  is the vacuum mixing angle, which is taken to be less than 
2

π
. Note that the 

mixing angle θ  obtained when a rotation matrix like {7} acts on a matrix of the form 

A C

C B

 
 
 

 is given by the relation (2 )
2

A B
C Tan θ

−
= .  

When we apply the rotation {7} to {6}, we get an expression for the neutrino in the 

flavor basis, i.e. 

( )
( )

( )

( )

( )
( )

2 2
2 2 0 0

0 0

2 2
2 20 0

0 0

1 sin 2 sin (1.27 ) sin(2 )sin(1.27 )
0

( ) {8}
0

sin(2 )sin(1.27 ) 1 sin 2 sin (1.27 )

e e

m m
L L

t K K
t

t m m
L L

K K

µ µ

θ θ
ν ν

ν
ν ν

θ θ

 ∆ ∆
− 

    = =       
∆ ∆    − 

 

�
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where L (the distance traveled by the neutrino) is defined as L=ct. Here 2

0m∆  is 

expressed in units of eV 2 , L in kilometers, and energy in MeV. Thus here we can know 

the probability of neutrino oscillation between flavors: For example, the probability that 

an electron neutrino will oscillate into a muon neutrino at a later time t is 

2

( ) (0)
e e

P tµ µν ν→ = , and similarly, the probability of a muon turning into an electron 

neutrino is 
2

( ) (0)
e e

P tµ µν ν→ = . Both of these probabilities can be easily obtained from 

{8}; i.e. they refer to the square of the off-diagonal elements of the Hamiltonian. Hence 

the probability of transition between flavors for neutrinos oscillating in vacuum is: 

2
2 2 0

0sin (2 )sin (1.27 )
trans

m
P L

K
θ

∆
=                                             {9} 

Note that the second 2sin  term in {9} is a function of the distance traveled by the 

neutrino; the resonance length 
res

L  is the distance that maximizes this term, and 

hence
trans

P : 

 
res

L = 1.24 

1
2

0m

K

−
 ∆
 
 

                      {10} 

In the case where many neutrinos are generated at different places spanning a distance 

much longer than
res

L , however, this term averages to ½. 

2.2) Matter oscillations 

 Neutrinos oscillate somewhat differently in matter. Flavor oscillations are 

somewhat enhanced—an effect called the MSW (Mikheyev, Smirnov, Wolfenstein) 

effect. To analyze this, let us first obtain the Dirac equation for the flavor basis by 

applying the rotation {7} to {6}: 



 10 

 
2

0 00

0 0

cos(2 ) sin(2 )

sin(2 ) cos(2 )2

e m
i

t Kµ

ν θ θ

ν θ θ

−   ∆∂
=   

∂   

(0)

(0)

e

µ

ν

ν

 
 
 

      {11} 

In matter, it is necessary to add a term proportional to the electron density of the medium 

to the top diagonal element of the Hamiltonian in {8} (i.e. the flavor basis):  

 + 2 F eG N                                           {12} 

where FG  is the Fermi coupling constant, and eN  is the number density of electrons in 

the medium. In the case of a medium of constant density, eN  is constant. Then equation 

{8} becomes: 

 

2 2

0 0
0 0

2 2

0 0
0 0

cos(2 ) 2 2 sin(2 )
1

2
sin(2 ) cos(2 )

F e

m m
G N

K K
i

t m m

K K

θ θ
ν

θ θ

 ∆ ∆
− + ∂
 =

∂  ∆ ∆
 
 

(0)

(0)

e

µ

ν

ν

 
 
 

 {13} 

This equation can be simplified if we change the overall phase of the wavefunction by 

subtracting one half of the added term from the diagonals, yielding: 

 

2 2

0 0
0 0

2 2

0 0
0 0

cos(2 ) 2 sin(2 )
1

2
sin(2 ) cos(2 ) 2

F e

F e

m m
G N

K K
i

t m m
G N

K K

θ θ
ν

θ θ

 ∆ ∆
− + ∂
 =

∂  ∆ ∆
− 

 

(0)

(0)

e

µ

ν

ν

 
 
 

 {14} 

So we see that here we get an equation very similar to {11}, namely with diagonal terms 

which are equal in magnitude but opposite in sign, and with identical off-diagonal terms. 

Hence we know that this matrix is also diagonalizable; specifically, we can define a 

matter mixing angle
N

θ and a matter squared-mass difference 2

N
m∆  by 

2

cos(2 )N
N

m

K
θ

Λ
=

2

0
0cos(2 ) 2

F e

m
G N

K
θ

∆
−  

                          {15} 
2

sin(2 )N
N

m

K
θ

Λ
=

2

0
0sin(2 )

m

K
θ

∆
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Solving for
N

θ  and 2

N
m∆ , we get: 

 

N
θ =

( )
( )0 2

0 0

1 1
arctan

2 2
cot 2

sin 2
F e

KG N

m
θ

θ

 
 
 
 

−  ∆ 

 

       {16} 

2

N
m∆ = 2 0

0

sin(2 )

sin(2 )
N

m
θ

θ
∆  

Maximal mixing, or resonance, happens when the off-diagonal terms in {14} is 

minimum, i.e. when 
N

θ =
4

π
; or, plugging this value for 

N
θ  in {16}: 

 _e resonance
N =

( )2

0 0cos 2

2 F

m

KG

θ∆
      {17} 

The solution for the Dirac equation {14} is given by {8}, and the transition probability is 

also identical to {9}, except that 2

0m∆ , 0θ  is replaced by their matter analogs 2

N
m∆ ,

N
θ .  

 In a medium of non-constant density, the electron density will be some function 

of time, i.e. ( )
e

N t . Hence now the mixing angle and squared-mass difference will also 

depend on time; so we have to obtain the time-dependent wavefunction ν
�

solely in the 

flavor basis, since the rotation matrix relating the flavor and mass bases is now some 

unknown function of time. The Dirac equation {14} thus becomes: 

 

2 2

0 0
0 0

2 2

0 0
0 0

cos(2 ) 2 ( ) sin(2 )
1

2
sin(2 ) cos(2 ) 2 ( )

F e

F e

m m
G N t

K K
i

t m m
G N t

K K

θ θ
ν

θ θ

 ∆ ∆
− + ∂
 =

∂  ∆ ∆
− 

 

(0)

(0)

e

µ

ν

ν

 
 
 

 {18} 

Assuming that the mixing angle changes adiabatically, we get 

 ( )( ) ( ) (0)t Exp i H t dtν ν= − ∫           {19} 
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where H(t) is the Hamiltonian in {18}. If the electron density can be expressed as an 

analytic function of time, H(t) can be integrated term by term: 

 

2 2

0 0
0 0

2 2

0 0
0 0

( )
cos(2 ) 2 sin(2 )

( ) ( )
2 ( )

sin(2 ) cos(2 ) 2

e

F

e

F

N t dtm m
G

t K t K
J t H t dt

N t dtm m
G

K K t

θ θ

θ θ

 ∆ ∆
 − +
 = =  

∆ ∆ − 
 

∫

∫
∫

{20} 

This matrix is diagonalizable; in fact, we can define 2 ( ), ( )
N N

m t tθ∆  very similar to {16}:  

N
θ (t)=

( )
( )0 2

0 0

1 1
arctan

2 2 ( )
cot 2

sin 2

F e
KG N t dt

m t
θ

θ

 
 
 
 
 − ∆ 

∫
 

                  {21} 

2

N
m∆ (t)= 2 0

0

sin(2 )

sin(2 ( ))
N

m
t

θ

θ
∆                                                    

 A problem arises when we try to solve for ν
�

(t), since the term in the exponential 

in {19} contains off-diagonal elements. We can solve this problem by knowing that for a 

matrix A similar to a diagonal matrix D, A=SD
1

S
− , where S is the rotation matrix. By 

approximating functions of matrices by their Taylor expansions, we get: 

 1A D
e Se S

−=            {22} 

Applying {22} to {19} gives us the solution: 

ν
�

(t)=
( ) ( )
( ) ( )

2

2

( )
0

4cos ( ) sin ( )
(0)

sin ( ) cos ( ) ( )
0

4

N

N N

N N N

m t
Exp i t

Kt t C S

t t S Cm t
Exp i t

K

θ θ
ν

θ θ

  ∆
  

 −    
     − ∆    −  

  

�
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 =

( )

( )

2 2
2 2

2 2
2 2

( ) ( )
1 sin 2 ( ) sin (1.27 ) sin(2 ( ))sin(1.27 )

(0)
( ) ( )

sin(2 ( ))sin(1.27 ) 1 sin 2 ( ) sin (1.27 )

N N
N N

N N
N N

m t m t
t L t L

K K

m t m t
t L t L

K K

θ θ

ν

θ θ

 ∆ ∆
− 

 
 

∆ ∆ − 
 

�
{23} 

which is very similar to {8}; in fact, there are two ways to obtain ν
�

(t): By solving in the 

mass basis first, as Bernstein and Parke did in {8}, or by the method just discussed. 

Generally we can always solve for ν
�

(t), except in resonance cases, where adiabaticity 

fails.  

3) Analysis of neutrinos 

3.1) The core and its radioactive elements 

 We are now ready to analyze the behavior and detection of neutrinos generated in 

the earth’s core.  The earth’s mass is 5.97 x 2410  kg, with the core consisting primarily of 

iron and some nickel [4] and having a mass 32% of the earth’s [5], i.e. about 1.91x 2410  

kg.  

 It was traditionally thought that the core is composed primarily of iron with small 

amounts of nickel and other elements [5, 6]. Over 30 years ago it was theoretically 

suggested that a significant amount of radioactive potassium is also present, acting as a 

substantial heat source. Very recently this idea has resurfaced as various experimental 

evidence backs up the theoretical possibility [7, 8, 9, 10]. Lee and Jeanloz, for example, 

proves by high-resolution x-ray diffraction that potassium (K) alloys with iron (Fe) when 

they’re heated together at high pressure[9]. The estimated abundance of K in the core 

widely varies, from 60-330 ppm [10], 240 ppm [11], 1200 ppm [8], to 7000 ppm [9], 

which all sources generally agree to be the maximum possible amount. In this project we 

shall first assume the maximum limit of 7000 ppm, and see whether the neutrinos 



 14 

generated will be significant enough for detection and data analysis. We shall also 

assume that K is the sole radioactive element in the core, since that seems to be the only 

possible case right now, although some do not close the possibility of future evidence 

suggesting that radioactive U and Th are also present in the core [9].  

3.2) The detector and its properties 

 The Borexino detector is an unsegmented liquid detector for low energy (below 1 

MeV) neutrinos, featuring 300 tonnes of well-shielded ultrapure scintillator and 2200 

photomultipliers [12], see Fig. 1. The inner scintillator, where the neutrinos interact (i.e. 

scatter from electrons) and are detected, has a radius of about 1.7 m, or a volume of 20.58 

m 3 . The scintillator mixture is made of pseudocum (PC) and 1.5 g/l of PPO, whose 

average density is roughly equal to water (n= 3x 10 30  electrons/m 3 ), which is what we’ll 

use in this project.  

 

Figure 1.  The Borexino detector. Specifically designed for low energy neutrinos, it 

features 300 tonnes of ultrapure scintillator made of pseudocum and PPO, where the 

neutrinos interact. 
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 To calculate the detector’s efficiency, we compare the number of solar neutrinos 

(coming from the monoenergetic 0.86 MeV 7
Be  chain) that should be detected by 

Borexino (considering its size, density, electron’s cross section, etc.) if its efficiency were 

100% to the number that it expects to detect, which is 43.3/day using the Standard Solar 

Model [13]. From the solar neutrino spectrum (see Fig. 2), the flux for these neutrinos is 

N=5x 1310 /m 2 /s. The neutrino cross section for the scattering 
e e

e eν ν− −+ − > +  is 

2
499.5 10

m
x E

MeV
ν νσ −  

=  
 

 [3], where Eν  is the neutrino’s energy (0.86 MeV in this case).  

 

Figure 2. The solar neutrino spectrum. Although Borexino is a multipurpose low-energy 

neutrino detector, it is originally designed to detect neutrinos coming from the 

monoenergetic 0.86 MeV 
7
Be  chain coming from the sun. We use the available data for 

neutrino detection from this chain to calculate the detector’s efficiency. 

 

So the average distance traveled by the neutrino is given by 

 
1

( )( )n ν

λ
σ

=   {24} 
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which, in this case, is λ =4x1017  m. If the detector has 100% efficiency, then the number 

of neutrinos detected per second would be related by: 

 
( )( )N Vol

λ
Σ =        {25} 

where Vol is the scintillator’s volume in m 3 . In our case, that means that we would get 

0.00257 neutrinos/s, or 222 neutrinos/ day. Using the standard solar model (SSM), 

however, Borexino is expected to detect 43.31 events/day [15]; so roughly, the detector’s 

efficiency is around 19%.  

 We must also remember that besides detecting neutrinos coming from the core, 

Borexino will also detect neutrinos generated in its own scintillator by radioactive 

elements (this is background).  Scientists at Gran Sasso Laboratory establish that this 

radioactive impurity is at most 10 9− Bq/kg scintillator due to the decay products of U and 

Th. The 300-tonne scintillator will thus have a 0.0003 Bq impurity; i.e. the background 

will produce around 26 electrons/ day. Borexino’s main laboratory at Gran Sasso 

estimated the energy of the background particles to be between 0.25-0.8 MeV, which is 

similar to the range of the energy of the neutrinos from the core (see discussion below). 

We shall see whether the background is too high by comparing it with the number of 

neutrinos generated in the core detected by Borexino. 

3.3) Neutrino detection, assuming zero oscillation 

 For this first case we shall disregard any possible flavor oscillations. A 

concentration of 7000 ppm means that there’s about 13.4x10 24  g of K, or about 2x10 47  K 

atoms in the core. With a half life of 1.25 billion years, that would give us 2.54x10 30  

decays/s. There are two modes of decay for potassium [4], the first one being 40

19 K -> 
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40

20 e
Ca e ν−+ +  (89.28% occurrence likelihood and reaction energy of 1.311 MeV) and the 

second one being 40 40

19 18 e
K e Ar ν−+ − > +  (10.72% likelihood, reaction energy of 2.01 

MeV). The latter case would be interesting, since the neutrino is monoenergetic, but 

unfortunately the energy is too high for Borexino to detect. So we will analyze the first 

case, which is a Beta decay, where the (anti)neutrino has a maximum energy of 0.8 MeV. 

This means that there will be 2.27x10 30 detectable decays/s. With the earth’s mean radius 

being 6.37x10 6  m, we shall get about 4.45x1015 decays/s/m 2 . The cross section for the 

antineutrinos generated in this decay (which are detected through electron scattering) is 

2
494 10

m
x E

MeV
ν νσ −  

=  
 

 [3], so by {24} we shall get ( )Eνλ = 
178.3 10x m

E MeVν

 
 
 

, where 

Eν  is the energy of the antineutrino, ranging from 0 to 0.8 MeV. DeBenedetti [16] gives 

us the relation for the momentum distribution of the electron in beta decay: 

 
2

2 2

06 3

16
( )e e e e eN dp p E E dp

h c

π 
= − 
 

            {26} 

where 
e

N  is the number of electrons with momentum 
e

p  and energy
e

E , and 0E  is the 

total energy (electron plus antineutrino). The bracketed term in {26} is a constant, it can 

be easily scaled to unity. With the knowledge that 0E =
e

E + Eν =1.311 MeV, with 

e
E = 2 2

e ep m+  (where 
e

m =0.511 MeV/c) and that Eν pν≈  (due to the slight mass of 

neutrinos), we can easily obtain the energy distribution for the antineutrinos, i.e. 

 ( )2 2 2( ) (1.311 ) 0.511N E E E dEν ν ν ν ν= − −         {27} 

The probability that an antineutrino will be detected by Borexino every second, taking all 

these things into account, would then be: 
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0.8

0.0

( )( )( )
( )

MeV
N

P Vol Dec Eff dE
E

ν
ν

νλ
= ∫       {28} 

Where Vol= volume of detector’s scintillator=20.58 m 3 , Dec=number of decays/s/m 2 = 

4.45x1015 , and Eff=efficiency of detector=19%. The integral is very simple to calculate, 

since 1/ ( )Eνλ  is just a linear function of the energy. Calculating {28} gives us 

P=4.42x10 4−  antineutrinos/s; i.e. we should be able to detect about 38.2 

antineutrinos/day.  

 These neutrinos, however, will all come at different angles, and we wish to make 

the plot of the number of neutrinos versus the cosine of the angleα  they come at (see 

Fig. 3 below).  

 

R_e=radius of the earth 

R_c=radius of the core 

Figure 3. Schematic diagram of the earth’s core and angle of incident neutrinos 

The volume of the shell between α  and α +dα  can be calculated using the relationships: 

2 2 2

1 1( )
E c

x R y R− + =   

 2 2 2

2 2( )
E c

x R y R− + =         {29} 

1 2

1 2

tan
y y

x x
α= =      

 

where 
E

R is the earth’s radius, and 
C

R is the core’s radius. 
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The number of neutrinos detected at angleα is proportional to this volume: 

 { }2 2 2 2

2 1 1( ) ( ) csc sin (2 ) 2 (cos(2 ) 1) csc
E E

V y y R R xα π α π α α α= − = + − , {30} 

where 

 

2 2 2 2

1 2

sec tan

sec

E C E
R R R

x
α α

α

− −
=              {31} 

with the constraint that α < arc sin ( ) 0.5762C

E

R

R
≈ radians. 

Or, in terms of cos α :  

 { }2 2 2 2(cos ) 4 cos (1 cos ) (1 cos )
E C E

V R R Rα π α α α= − − −   {32} 

This equation is plotted in Fig. 4.  The use of Simpson’s rule in calculating the integral of 

V(cosα ) gives us 9.8 x 1310 . Since there are 13,943 neutrinos detected/year, multiplying 

{32} by 
13

13943

9.8 10x
gives us the normalized graph, i.e. the plot of the number of neutrinos 

detected/year as a function of cosα  (see Fig. 5). 

V(cos α ) 

 
cos α  

 
Figure 4.  Plot of V(cos α ), which is proportional to the numbers of neutrino detected by 

Borexino. 
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Number detected/year 

 
cos α  

 

Figure 5. Number of neutrinos detected/year (from the core) as a function of cosα  

 

This plot is based, of course, on the assumption that the concentration of K in the 

core is 7000 ppm (the maximum postulated amount). We wish to see how N(cosα ) 

varies at concentrations of 7000, 4000, 2000, 1000, 500 and 100 ppm and see at which 

point the neutrinos coming from the core becomes indistinguishable from the 

background, see Fig. 6. In this figure we can see that the difference between background 

and core-produced neutrinos begin to blur at around 500 ppm. This means that speculated 

potassium concentrations of 60-330 ppm [10] or 240 ppm [11] will not be significant 

enough to produce well-detected neutrinos using Borexino. 
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Number detected/year 

 
cos α  

 

________ 7000 ppm 

________ 4000 ppm 

________ 2000 ppm 

________ 1000 ppm 

________ 500 ppm 

________ 100 ppm 

      ________ background 

 

 

Figure 6. Number of neutrinos detected/year as a function of cosα at various concentrations 

of radioactive K in the core.  

 

3.4)  Neutrino detection with flavor oscillations 

 When we take flavor oscillations into account, we need to know the density of the 

earth through which the neutrino travels; since the probability of flavor transitions depend 

on this. According to Bullen [17], there are various models of the earth’s density: For our 

work, we are going to use his 2B  model (see Table 1 for the table and Fig. 7 the graph). 

The earth’s core, as mentioned before, is composed primarily of iron (Fe; 56 g/mol, 26 

electrons/atom); while the mantle, according to Palme and O’Neill [18], is composed 

primarily of MgO (36%; 40g/mol, 20 electrons/atom) and SiO2 (51%; 60g/mol, 30 
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electrons/atom). So the mantle (depth up to 2900 km) has an electron concentration of 

about 3x10
23 

electrons/g while the core has a concentration of 2.8 x 10
23

 electrons/g.  

Table 1. The earth density as a function of depth from the surface (data is from Bullen’s 

B2 model) 
 

Earth density (g/cm
3
) Depth from the surface (km) 

3.32 33 

3.51 245 

4.49 984 

5.06 2000 

5.4 2700 

5.69 2886 

11.39 4000 

11.87 4560 

12.3 4710 

12.74 5160 

13.03 6371 

 

Density of the earth

y = -4.8136x3 + 88.758x2 + 151.45x

0

1000

2000

3000

4000

5000

6000

7000

1 2 3 4 5 6 7 8 9 10 11

x = density (g/cm^3)

y
 =

 d
e
p

th
 (

k
m

)

 

Figure 7. Plot of Bullen’s B2 model of the earth’s density 



 23 

Using the relation that time (in s) is 
3

8

(6371 ) 10

3 10 /

L km depth x
t

c x m s

−
= =  (the depth is in 

km) and the data in table 1, we get a table of electron density values vs. time and its 

graph (see Table 2 and Fig. 8).  

Table 2. Electron density as a function of time elapsed since neutrinos leave the earth’s 

core. 

Time (s) Electron density 
3( )m−

 

0.00E+00 3.91E+30 

4.04E-03 3.82E+30 

5.37E-03 3.69E+30 

6.04E-03 3.56E+30 

7.90E-03 3.42E+30 

1.16E-02 1.59E+30 

1.22E-02 1.51E+30 

1.46E-02 1.42E+30 

1.80E-02 1.26E+30 

2.04E-02 9.83E+29 

2.11E-02 9.30E+29 

 

Electron density vs time

y = 1E+36x
3
 - 4E+34x

2
 + 1E+32x + 4E+30

0

5E+29

1E+30

1.5E+30

2E+30

2.5E+30

3E+30

3.5E+30

4E+30

4.5E+30

0.00E+00 5.00E-03 1.00E-02 1.50E-02 2.00E-02 2.50E-02

x = t (s)

y
 =

 N
_

s
u

b
_

e
 

(e
le

c
tr

o
n

s
/m

^
3

)

 
Figure 8. Plot of electron density as a function of time (i.e. the time that has elapsed since 

the neutrinos start out from the core of the earth). 

 

Now we are ready to calculate the transition probability, using {21} and {23}. 

These equations, however, are not in their proper units, so we need to multiply them by a 
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conversion factor. In {21}, for instance, the expression
2

0

2 ( )F eKG N t dt

m t∆

∫
needs to be 

dimensionless. In our data (since we assumed that c is unity throughout our equations) we 

actually have K in units of MeV and 2

0m∆  in units of 2
eV . If we wish to convert them to 

MKS units (that is, 1
J

− ), we will have to multiply 
2

0

K

m∆
by a factor of 246.25 10x . Since 

14 24.5 10
F

G x J
−=  and 

( )eN t dt

t

∫
is in units of 3

m
− , the whole expression will be in units 

of 

3
2

3

s

kgm

 
 
 

; so to make the expression dimensionless we need to multiply it by 

3( )cℏ = 773.16 10x
−

3
2

3

s

kgm

−
 
 
 

. Putting in all these conversion factors and integrating 

30 6 3 4 2( ) 10 (10 4 10 100 4)
e

N t t x t t= − + +  from Fig. 4 and dividing it by t, we finally get: 

2
N

θ (t)=

( )
( )

7 5 3 4 2

0 2

0 0

1
arctan

(1.26 10 ) (2.5 10 1.3 10 50 4)
cot 2

sin 2

x K x t x t t

m
θ

θ

−

 
 
 
 − + +

− 
∆ 

 {33} 

The transition probability given in {23} is 
2

2 2 ( )
sin (2 ( ))sin (1.27 )N

trans N

m t
P t L

K
θ

∆
= , 

where 2 ( )
N

m t∆  is in 2
eV , K in MeV and L in km. Using the relation L= ct/1000 and the 

relation between 2 ( )
N

m t∆  and 2

0m∆  as given in {20}, we get: 

 
2

2 2 5 0 0sin(2 )
( ) sin (2 ( ))sin 3.8 10

sin(2 ( ))
trans N

N

m
P t t x t

K t

θ
θ

θ

 ∆
=  

 
  {34} 

where 2 ( )
N

tθ is given by {33}. 
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Fig. 9 gives a plot of the allowed values of 2

0m∆  and 0sin(2 )θ . We shall take 4 

results from the LMA (Large Mixing Angle) region together with several K values and 

plot ( )
trans

P t in each of these cases. These plots can be found in Figs. 10-13. 

 

Figure  9. Plot of the allowed MSW solutions 
2

0m∆ - 0sin(2 )θ  parameter space as 

deduced from the results of the Homestake, Superkamiokande, Gallex and Sage 

experiments (taken from an article from Borexino’s main website). The results we will be 

using will be taken from the Low Mixing Angle (LMA) region, i.e. the top left “block” 

on the plot. 
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Figure 10. Transition probabilities ( )
trans

P t  vs. time (s) at 
2

0m∆ =1.8x10^(-5), 

0sin(2 )θ =0.87 for neutrinos at 0.2 MeV, 0.5 MeV, and 0.8 MeV. 

 
 

________ 0.2 MeV 
________ 0.5 MeV 
________ 0.8 MeV 
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Figure 11.  transition probabilities ( )
trans

P t at
2

0m∆ =4x10^(-4), 0sin(2 )θ =0.95. 
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Figure 12. Transition probabilities ( )
trans

P t  at 2

0m∆ =8x10^(-6), 0sin(2 )θ =0.87 for 

neutrinos at 0.2 MeV, 0.5 MeV, and 0.8 MeV. 

 
 

 

________ 0.2 MeV 
________ 0.5 MeV 
________ 0.8 MeV 
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Figure 13. transition probabilities ( )
trans

P t  at 2

0m∆ =10^(-4), 0sin(2 )θ =0.86. 
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We can find the probability of 
e

ν produced in the core being detected as µν  by 

putting in /
E

t R c=  into ( )
trans

P t . This probability varies with momentum (K) and 2

0m∆ , 

as shown in Table 3 below, ranging from 0.0049 (for K, 2

0m∆  and 0θ values of 0.8 MeV, 

6 28 10x eV
−  and 0.87, respectively) to 0.74 (for K, 

2

0m∆  and 0θ  values of 0.5 MeV, 

4 210 eV
− and 0.86, respectively). 

Table 3. The various different transition probabilities for neutrinos with different values 

of momentum, 
2

0m∆ , and sin(2 )θ  

K(momentum) ( 2

0m∆ , sin(2 )θ ) Transition 

probability (
trans

P ) 

 

Figure 

reference 

(in Fig.16) 

0.2 MeV 6(8 10 ,0.87)−×  0.0760 16.7 

 4(4 10 ,0.95)−×  0.16 16.6 

 5(1.8 10 ,0.87)−×  0.33 16.5 

 4(10 ,0.86)−  0.45 16.4 

0.5 MeV 6(8 10 ,0.87)−×  0.0125 16.11 

 4(4 10 ,0.95)−×  0.0276 16.9 

 5(1.8 10 ,0.87)−×  0.0600 16.8 

 4(10 ,0.86)−  0.74 16.1 

0.8 MeV 6(8 10 ,0.87)−×  0.0049 16.12 

 4(4 10 ,0.95)−×  0.55 16.2 

 5(1.8 10 ,0.87)−×  0.0247 16.10 

 4(10 ,0.86)−  0.53 16.3 
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Finally, we are ready to plot the number of µν  detected by Borexino per year 

based on these probabilities. This time there is no background, though. These plots can be 

seen in Fig. 16 (Table 3 has listed the different probability values possible for neutrinos 

with different momentum and location in the LMA parameter space, with references to 

the figures in Fig. 16). 

Figure 16: Figs. 16.1) through 16.l2) are plots of the number of µν  detected/year by 

Borexino for various transition probabilities, depending on the momentum and location in 

the LMA parameter space. Table 3 explained which figure refers to which data, and the 

note below further explains the pictures. 

 

------------------------------------------------------------------------------------------------------------ 
NOTE: The different colors in the figures refer to the various concentrations of K (some plots, 

especially of those neutrinos having low transition probabilities, do not have all colors pictured 

due to the very low number of neutrinos that can be detected at that concentration level): 

_________ 7000 ppm 

_________ 4000 ppm 

_________ 2000 ppm 

_________ 1000 ppm 

_________ 500   ppm 

------------------------------------------------------------------------------------------------------------ 
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Figure 16.1: Number of µν  detected/year for a transition probability of 0.74 (see table 3 

above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  

 
 

Figure 16.2: Number of µν  detected/year for a transition probability of 0.55 (see table 3 

above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  
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Figure 16.3: Number of µν  detected/year for a transition probability of 0.53 (see table 3 

above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  

 

 
Figure 16.4: Number of µν  detected/year for a transition probability of 0.45 (see table 3 

above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  
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Figure 16.5: Number of µν  detected/year for a transition probability of 0.33 (see table 3 

above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  

 

 
Figure 16.6: Number of µν  detected/year for a transition probability of 0.16 (see table 3 

above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  



 35 

Figure 16.7: Number of µν  detected/year for a transition probability of 0.076 (see table 3 

above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  

 

 
Figure 16.8: Number of µν  detected/year for a transition probability of 0.06 (see table 3 

above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  
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Figure 16.9: Number of µν  detected/year for a transition probability of 0.0276 (see table 

3 above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  

 

 
Figure 16.10: Number of µν  detected/year for a transition probability of 0.0247 (see 

table 3 above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  
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Figure 16.11: Number of µν  detected/year for a transition probability of 0.0125 (see 

table 3 above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  

 

 

 
Figure 16.12: Number of µν  detected/year for a transition probability of 0.0049 (see 

table 3 above for the corresponding values of the parameters K, 
2

0m∆  and sin(2 )θ ) 
 

Number of µν detected/year 

 
cos α  
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4) Conclusion 

 The behavior of neutrinos produced by K
40

19 in the earth’s core has been analyzed, 

both in the oscillating and non-oscillating cases. The concentration of K
40

19  in the core is 

not yet known, so the analyses above have always focused on answering the question, 

“Approximately, what is the concentration at which there will be so few neutrinos 

produced that they are practically unobservable?”  

If we ignore oscillations, Borexino will also produce (electron) neutrinos (called 

background) due to its impurities. Thus small concentrations of K
40

19 will produce so few 

neutrinos that they are indistinguishable from the background and are therefore 

unobservable; in the best case, a concentration of 800-900 ppm is necessary. In fact, a 

much higher concentration might be needed: in reality, neutrino and electron produced by 

a radioactive element will have various scattering angles, thus causing an uncertainty in 

the variable cosα (see Fig. 3 for an illustration of the scattering angleα ). This 

uncertainty will make neutrino detection more difficult (hence the possible requirement 

that K
40

19 concentration be higher than 800-900 ppm).  

If we take neutrino oscillation (
e

ν -> µν ) into account, there obviously will be no 

background. The probability that 
e

ν will be detected as µν  vary considerably depending 

on the values of ( 2

0m∆ , 0sin(2 )θ ) in the Low Mixing Angle (LMA) parameter space (see 

Fig. 9); it ranges from 0.0049 to 0.76 (see Table 3). Accordingly, the number of µν  

detected/year also varies considerably; and thus the minimum required concentration of 

K
40

19  for µν  detection also varies considerably, depending on the values of 
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2

0m∆ and 0sin(2 )θ , see Fig. 16. For a transition probability value of 0.76 (Fig. 16.1), for 

example, a concentration of 500 ppm might still be acceptable; but for a probability value 

of 0.0049 (Fig. 16.12), it is very clear that a minimum concentration of 4000 ppm is 

required for neutrino detection. If we can narrow the allowed LMA parameter space (see 

Fig. 9) in the future, the resulting variation in transition probability might not be so 

enormous.  
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