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ABSTRACT

In this dissertation we study the electronic properties of certain two-dimensional chiral

electron systems. We study the static and dynamic screening of gapped bilayer graphene

and find important qualitative differences between the dielectric screening function ob-

tained using a simplified 2-band model and that obtained using a more sophisticated

4-band model. We also formulate a continuum model to study the low-energy electronic

properties of heterostructures formed by graphene on a strong three-dimensional topolog-

ical insulator (TI) both for the case of commensurate and incommensurate stacking. We

find that the proximity of the TI induces a strong enhancement of the spin-orbit coupling

in graphene that can be tuned via the twist angle. Additionally, we examine the effect

of a spin-active interface on the symmetry of proximity-induced superconducting pairing

amplitudes in topological insulators. We compare our results to those for normal metals

and ferromagnetic materials finding that the nontrivial spin chirality of the TI leads to

qualitatively different behavior of the pairing amplitude. Lastly, we study the many-body

instabilities of the Dirac states predicted to arise on the surfaces of topological Kondo

insulators identifying regions of parameter space in which the system exhibits spin density

wave, and charge density wave order.
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ELECTRONIC PROPERTIES OF CHIRAL TWO-DIMENSIONAL MATERIALS



CHAPTER 1

Introduction

The archetypal instance of a two-dimensional fermionic system in condensed matter

is the two-dimensional electron gas (2DEG). As the name would suggest, this is a system

which behaves as an ensemble of non-interacting fermions confined to a two-dimensional

plane, typically having the familiar parabolic energy-momentum relation, Ep = p2/2m∗,

except with an effective mass m∗ usually differing from the free electron mass, me. 2DEGs

can be found in a variety of solid state systems including at the 111 surface of Cu, confined

to the surface of liquid He, and in Metal-Oxide-Semiconductor structures [1]. Much of the

behavior of the electrons comprising a 2DEG has been thoroughly studied and many inter-

esting results have appeared in the literature [1]. However, there are a number of systems

in which the low energy fermionic excitations possess a spin-like degree of freedom that

exhibits a nontrivial texture in momentum space. In these chiral systems the interplay

between momentum and spin degrees of freedom can lead to a number of interesting devia-

tions from the behavior of standard non-chiral 2DEGs. In this dissertation we will consider

three distinct types of chiral 2DEGs and explore some of their electronic properties. We

will also consider the electronic properties of heterostructures composed of these chiral
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materials.

In Chapter 2 we discuss the sense in which graphene, bilayer graphene, and topological

insulators exhibit “chiral” two-dimensional electronic states and explain the origin of the

chirality manifested in each system. Furthermore, we introduce the model Hamiltonians

used in subsequent chapters to investigate the properties of chiral two-dimensional systems.

In Chapter 3 we study the static and dynamic screening of gapped bilayer graphene

using the models discussed in Chapter 2. We compare results obtained using a robust

4-band model to results from the literature which were obtained using a simplified 2-band

model. We find important qualitative differences between the dielectric screening function

obtained using the two models. In particular within the 4-band model in the presence

of a band-gap the static screening exhibits Kohn anomalies that are absent within the

2-band model. We also find that the plasmon modes have qualitatively different character

in the 4-band model compared to 2-band results. Additionally, we characterize the effect

of trigonal warping on the screening properties of bilayer graphene.

In Chapter 4 we formulate a continuum model to study the low-energy electronic

states of heterostructures formed by graphene on a strong three-dimensional topological

insulator (TI) both for the case of commensurate and incommensurate stacking of the two

lattices. The incommensurability can be due to a twist angle between graphene and the

TI surface, or a lattice mismatch between the two systems. We find that the proximity of

the TI enhances the spin-orbit coupling in the graphene and that this effect can be tuned

via the twist angle.

In Chapter 5 we examine the effect of a spin-active interface on the symmetry of

proximity-induced superconducting pairing amplitudes in topological insulators. We de-

velop a model to investigate the leading order contribution to the pairing amplitude con-

sidering three different kinds of spin-active interfaces: (i) those that induce spin-dependent

scattering phases, (ii) those that flip the spin of incident electrons, and (iii) interfaces that
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both induce spin-dependent phases and flip the spins of incident electrons. We find that

in cases (i) and (iii) odd-frequency triplet pairing is induced in the TI while for case (ii)

no odd-frequency pairing is induced to leading order. We compare our results to those for

normal metals and ferromagnetic materials finding that the nontrivial spin chirality of the

TI leads to qualitatively different behavior.

In Chapter 6, we introduce a tight-binding model for studying the surface states of

topological Kondo insulators. We study the relationship between the model parameters

and characteristics of the surface band structure then use mean-field theory to study the

many-body instabilities of these systems. Regions of parameter space are identified in

which the system exhibits spin density wave, and charge density wave order.
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CHAPTER 2

Model Hamiltonians for

Two-Dimensional Chiral Electron

Systems

As noted in Chapter 1, some condensed matter systems can be well-described by an

effective Hamiltonian whose eigenstates, |ψk⟩, possess a spin-like degree of freedom, S,

such that the expectation values of its components, ⟨Si⟩ = ⟨ψk|Ŝi|ψk⟩, depend on the

direction of the momentum, k, in a nontrivial way. We refer to such states as “chiral”.

Chiral states can emerge in a number of different contexts in condensed matter systems,

with the spin degree of freedom winding in different ways around the fermi surface as

shown in Fig. 2.1. Furthermore, the chiral spin degree of freedom need not be the real

electron spin, as we will see in the case of graphene-based materials. One unifying class of

materials which includes, as a subset, many chiral materials is the set of Dirac materials,

whose quasiparticles are better described as massless Dirac fermions. This class includes

graphene, and the surface states of topological insulators [2–6]. In these Dirac materials the
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kinetic energy is proportional to the momentum, vp, just like massless relativistic particles

but with a speed v that depends on the details of the system. For example, in graphene

v ≈ 106m/s≈ c/300. The fact that quasiparticles obey the Dirac equation instead of the

Schrödinger equation can affect a variety of electronic properties, for example, the integer

quantum Hall effect and localization [2, 3, 7, 8].

FIG. 2.1: Three different examples of chirality. Each point on the circle represents a direction
in momentum space while the arrows represent the direction of a spin, or pseudospin, degree
of freedom. (a) Chirality of single layer graphene in the K valley with pseudospin aligned (or
anti-aligned) with the direction of momentum. (b) Chirality found in bilayer graphene with
pseudospin winding twice around the Fermi surface. (c) Chirality found in topological insulators
with spin perpendicular to the direction of momentum.

Dirac materials are not alone in having nontrivial chirality. Multiple layers of graphene

can be stacked in such a way to give rise to a number of different unique chiralities [8].

In the following sections we will discuss three materials: graphene, bilayer graphene, and

topological insulators. In each case we will present the Hamiltonian(s) used to model their

behavior and discuss the kind of chirality exhibited by the system. In subsequent chapters

we will use these Hamiltonians to examine the electronic properties of these materials and

their heterostructures.
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2.1 Graphene

No discussion of chiral two-dimensional materials could begin without mentioning

graphene, a one-atom-thick sheet of carbon atoms arranged in a honeycomb lattice. With

an extraordinarily high room temperature mobility, high volumetric area to mass ratio,

incredible tensile strength, and numerous other superlative properties, graphene has at-

tracted a great deal of attention since its isolation in 2005 [8–11]. In this dissertation our

focus will be on graphene’s electronic properties, specifically, on the chiral Dirac electron

states it hosts at special k-points in its Brillouin zone. Interestingly, when multiple sheets

of graphene are stacked appropriately, the low energy electronic states of these systems

appear to possess their own unique chirality. One example of a chiral graphene multilayer

is A-B stacked bilayer graphene. This system shows great promise for applications in

electronics since a gap can be opened and tuned by applying an electric field perpendicu-

lar to the two layers [12–17]. In this dissertation we will focus on monolayer and bilayer

graphene.

2.1.1 Single Layer Graphene: A Two-Dimensional Dirac Mate-

rial

Single layer graphene is a one-atom-thick allotrope of carbon arranged in a honeycomb

structure [8]. Isolated carbon atoms possess six electrons, one pair fill the 1s2 shell, with the

remaining four occupying the 2s and 2p shells. These electrons can hybridize in several

different configurations leading to flexible bonds, giving rise to all of organic chemistry

and, ultimately, life itself [8, 18, 19]. In graphene, the pair of electrons in the 1s2 state

remain bound to each carbon atom and do not participate in the electron dynamics of

the material at large. However, from the remaining four electrons, one s-electron and two

p-electrons hybridize, sp2 hybridization, creating three σ bonds 120◦ apart and in the same
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plane [8, 19]. The electrons participating in the σ bonds in graphene give rise to a filled

valence band and aside from the strength of the graphene lattice do not participate in the

electron dynamics. With the 1s2 and sp2 states fixed in relatively inert configurations the

only remaining electronic states are the single pz electrons associated with each carbon

atom, where z is the direction perpendicular to the plane formed by the sp2 hybridized

bonds and hence the plane of the graphene. These residual pz states hybridize with their

neighbors to create the filled π band and unfilled π∗ band. It is at the intersection of

these two bands, π and π∗, that an effective Dirac Hamiltonian emerges. The dynamics of

these electrons can be described remarkably well by a tight-binding model, as confirmed by

band structure calculations and most experiments [8, 18]. While this picture appears to be

consistent with most experiments there is still much work devoted to many-body effects in

graphene and other Dirac materials, as we will discuss in Chapter 6. We will now proceed

by presenting the tight-binding model for monolayer graphene and from this derive the

Dirac Hamiltonian which approximates it at the K and K ′ points in the Brillouin zone.

FIG. 2.2: Single layer graphene. (a) Direct lattice for single layer graphene with sublattices, A
and B, and primitive vectors a1 and a2 labeled. (b) Sketch of the Brillouin zone for graphene
with reciprocal primitive lattice vectors b1 and b2 and K, K ′ points labeled.

Before we present the Hamiltonian for graphene, it will be beneficial to make the

geometry of the lattice structure more explicit. Graphene is arranged in a honeycomb
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lattice which, mathematically, we describe as a triangular Bravais lattice in which the unit

cell contains two carbon atoms which we denote A and B, see Fig. 2.2. This sublattice

degree of freedom is what gives rise to many of graphene’s unique electronic properties.

To define any two-dimensional Bravais lattice one must specify the two primitive vectors

which generate it and the basis vectors defining the structure within the unit cell. For

concreteness we choose the primitive vectors and basis vectors to be

a1 = a
√
3

(√
3

2
x̂+

1

2
ŷ

)
; a2 = a

√
3

(√
3

2
x̂− 1

2
ŷ

)

dA = 0; dB = ax̂

(2.1)

where ai is a primitive vector, dα is the basis vector for sublattice α, and a = 1.42 Å denotes

the carbon-carbon distance. With the direct lattice defined according to the conventions

in Eq 2.1 we can write the reciprocal lattice as a triangular Bravais lattice generated by

the reciprocal primitive lattice vectors:

b1 =
4π

3a

(
1

2
x̂+

√
3

2
ŷ

)

b2 =
4π

3a

(
1

2
x̂−

√
3

2
ŷ

)
.

(2.2)

With the lattice structure suitably defined for graphene in both real space and recip-

rocal space, we now turn our attention to the tight-binding Hamiltonian for graphene. In

graphene, to very good approximation, the states are spin degenerate [3, 20–25]. Thus,

ignoring spin, the tight-binding Hamiltonian for graphene with only nearest-neighbor hop-

ping is given by:

H = γ0
∑

⟨ij⟩

c†A,icB,j + h.c. (2.3)

where c†α,i (cα,i) creates (annihilates) an electronic state at site i on sublattice α, ⟨ij⟩
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denotes a sum over nearest-neighbors, and γ0 is the nearest-neighbor hopping. We choose

to write γ0 to be consistent with the naming convention of the Slonczewski-Weiss-McClure

model of graphite whose conventions we will also employ in our study of bilayer graphene.

We make the transformation to crystal momentum space by writing

cα,i =
1√
N

∑

k

e−ik·(ri+dα)cα,k

where the sum extends over the first Brillouin zone, N is the number of lattice sites, ri

is the real space vector associated with site i, and α is the sublattice label. After this

transformation, it is straightforward to show that H becomes H =
∑

k Ψ
†
kĥkΨk where

Ψk = (cA,k cB,k)T and ĥk is the Hamiltonian matrix which we can write in sublattice

space as:

ĥk =

⎛

⎜⎝
0 γ0S(k)

γ0S(k)∗ 0

⎞

⎟⎠ (2.4)

where S(k) = e−iakx + 2ei
a
2 kx cos a

√
3

2 ky comes from the sum over the nearest neighbors

during the transformation to k-space. It is instructive to look at the resulting band struc-

ture given by E±(k) = ±γ0
√
3 + 2 cos a

√
3ky + 4 cos a

√
3

2 ky cos
3a
2 kx and shown in Fig. 2.3.

From Fig. 2.3 we see that at certain points in the Brillouin zone the dispersion vanishes,

these correspond to the points K and K ′ as shown in Fig. 2.2. From Fig. 2.3 we can see

that around these points of vanishing energy the dispersion appears linear in momentum,

reminiscent of massless relativistic particles. These regions are referred to as the K and

K ′ valleys. By expanding Eq. 2.4 around these points we will see that the effective Hamil-

tonian in these valleys appears to be a two-dimensional analogue of the Dirac equation for

massless relativistic particles.

To examine the effective Hamiltonian at the Brillouin zone corners K and K ′ we

perform a Taylor series expansion of S(K + p) and S(K ′ + p) around p = 0. After
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FIG. 2.3: Energy bands for single layer graphene over full Brillouin zone. Notice the dispersion
appears linear near special points at the edges of the Brillouin zone.

some straightforward algebra we find S(K + p) ≈ 3a
2 e

i 5π6 (px − ipy) and S(K ′ + p) ≈
3a
2 e

i 5π6 (px + ipy). We can absorb the phase ei
5π
6 into the definition of Ψk by performing a

unitary transformation in each valley. Thus, around the K and K ′ points the Hamiltonian

matrix can be written as:

ĥK
k =

⎛

⎜⎝
0 !vF (kx − iky)

!vF (kx + iky) 0

⎞

⎟⎠

ĥK′

k =

⎛

⎜⎝
0 !vF (kx + iky)

!vF (kx − iky) 0

⎞

⎟⎠

(2.5)

where vf = 3aγ0
2! . We can make the analogy to the Dirac equation more explicit by rewriting

these matrices in terms of Pauli matrices ĥK
k = !vFσ · k and ĥK′

k = !vFσ∗ · k. Then,

following the prescription pi → −i ∂
∂xi

we obtain ĥK
x = −i!vFσ·∇x and ĥK′

x = −i!vFσ∗·∇x,

which are two-dimensional analogues of the Dirac equation for massless particles [8].
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Notice that the eigenstates of Eq. 2.5, in addition to being eigenstates of energy

are also eigenstates of the operator k · σ/k which, if σi were a spin operator, would be

a helicity operator. However, retracing our derivation we see that σi exists in sublattice

space. Therefore, by identifying the sublattice degree of freedom as a sublattice pseudospin

we see that the direction of the pseudospin in graphene is locked with the direction of the

crystal momentum. In this sense the electronic states in graphene are chiral. The chiral

nature of these states leads to the suppression of backscattering of electronic states in

graphene and affects many of its electronic properties including quantum Hall effect and

localization [2, 3, 7, 8].

It turns out that the gapless nature of these states is a symmetry-protected property

of graphene related to the system’s invariance under time-reversal and spatial inversion.

Under time reversal, T , the Hamiltonian at the K point transforms as T : ĥK → ĥ∗
K′ ,

while under spatial inversion, I, sublattice A and B are exchanged and so we have I :

ĥK → σ1ĥK′σ1. Thus, under simultaneous time reversal and spatial inversion we have

T I : ĥK → σ1ĥ∗
Kσ1. In pristine graphene the symmetry of the crystal combined with the

equivalence of the A and B sublattices impose spatial inversion symmetry while the absence

of a magnetic field imposes time-reversal symmetry. Ergo, at the K (and, equivalently,

K ′) point we have the restriction that:

ĥK = σ1ĥ
∗
Kσ1.

Now, because ĥK is a 2×2 hermitian matrix it can be expressed as the sum of Pauli

matrices:

ĥK =
3∑

i=1

hiσi.

By imposing the above constraint due to symmetry we can see that h3 = 0 which means
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that the system cannot develop a gap at the K or K ′ point without breaking either time-

reversal or spatial inversion symmetry. This proof suggests that one could potentially

open a band gap by breaking the sublattice symmetry, as has been investigated both

theoretically [26] and experimentally using hexagonal boron nitride as a substrate [27].

2.1.2 Bilayer Graphene: A Novel Chiral Hamiltonian

When graphene is made through micromechanical cleavage, frequently the resulting

samples contain regions of bilayer graphene [9–11]. The most common stacking arrange-

ment for bilayer graphene in nature is the A-B stacking, also known as Bernal stacking,

shown in Fig. 2.4. In this arrangement atoms from sublattice A of the top layer sit on

top of atoms from sublattice B of the bottom layer. To model the behavior of electrons

FIG. 2.4: Bernal stacked bilayer graphene lattice with hopping parameters γ1, and γ3 labeled.

in these systems one can employ a tight-binding model similar to the case of single layer

graphene but, in addition to the intralayer hopping parameter γ0, we must include the

various relevant interlayer hopping parameters, the most important of which are labeled
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in Fig. 2.4 [8, 11, 28, 28, 29]. This tight-binding Hamiltonian can be written:

H = γ0
∑

⟨ij⟩

∑

m

(
c†A,m,icB,m,j + h.c.

)
+ γ1

∑

i

∑

m

(
c†A,1,icB,2,i + h.c.

)

+ γ3
∑

⟨ij⟩

(
c†A,2,icB,1,j + h.c.

)
+

∆

2

∑

i,m,α

(−1)2m
(
c†α,m,icα,m,i + h.c.

) (2.6)

where c†α,m,i (cα,m,i) creates (annihilates) an electronic state on sublattice α in layer m

at site i, γ0 is the same intralayer hopping term inherited from single layer graphene,

γ1 is the direct hopping parameter from sublattice A in layer 1 to sublattice B directly

beneath in layer 2, γ3 is the hopping term coupling states in sublattice B of layer 1 with

the three nearest neighbor sites on sublattice A of layer 2, and ∆ takes into account a

possible electric bias between the two layers. Other hopping terms can also be included in

Eq. 2.6 however these are much smaller than γ0, γ1 and γ3 and have been shown to have a

minimal effect on the low energy electronic properties [8, 11, 28, 28, 29]. Following a similar

analysis to the previous section we can find the Hamiltonian matrix for bilayer graphene in

k-space. Once again we find there are two decoupled valleys, K and K ′. In the K valley,

the effective Hamiltonian for bilayer graphene takes the form H =
∑

k Ψ
†
kĥ

BLG
k Ψk where

Ψk = (cA,1,k cB,1,k cA,2,k cB,2,k)T and the Hamiltonian matrix for bilayer graphene is:

ĥBLG
k =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

∆/2 !vF (kx − iky) 0 3γ3a(kx + iky)

!vF (kx + iky) ∆/2 γ1 0

0 γ1 −∆/2 !vF (kx − iky)

3γ3a(kx − iky) 0 !vF (kx + iky) −∆/2

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

. (2.7)
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This can be rewritten in a more compact notation:

ĥBLG
k =

∆

2
τ3 + !vF (kxσ1 + kyσ2) +

γ1
2
(σ1τ1 + σ2τ2)

+
3

2
γ3a [kx(σ1τ1 − σ2τ2)− ky(σ1τ2 + σ2τ1)]

(2.8)

where σi and τi are Pauli matrices acting in sublattice space and layer space, respectively.

As shown in Fig. 2.5 this model has four bands with roughly parabolic dispersion at low

energy, interpolating to a more linear dispersion at higher energy. One pair of bands is

separated by a gap equal to γ1 due to the formation of interlayer dimer states [28]. At very

small wavevectors the term proportional to γ3 breaks up this parabolic dispersion into four

linear dispersions separated in k-space, Fig. 2.5, and thus adds a trigonal warping to the

otherwise isotropic bands. This property of the γ3 term can manifest itself as qualitative

features in the linear response of this system, as we show in Chapter 3.

Notice that, in the absence of an interlayer bias (∆ = 0), just as in the case of single

layer graphene, this Hamiltonian admits gapless zero energy states due to the preservation

of inversion symmetry. However, by applying an electric field perpendicular to the plane

of the crystal an interlayer bias can be generated (∆ ̸= 0) which breaks the inversion

symmetry and consequently opens a gap as shown in Fig. 2.5(b). By varying the strength

of the electric field this gap can be tuned, as shown experimentally [12–17], and can

manifest itself in the screening and collective properties of the systems as we explore in

Chapter 3.

Notice that, unlike the case with single layer graphene, this Hamiltonian is not mani-

festly chiral due to the additional hopping terms. However, as shown in [28] at low energies,

E << γ1, the split dimer bands can be neglected and this four band model Hamiltonian can
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FIG. 2.5: Energy bands for bilayer graphene. (a) Bilayer graphene dispersion calculated without
trigonal warping and without a bias, ∆ = 0, using the four-band model (solid) and two-band
model (dashed). (b) same as (a) but with ∆ = 100meV. (c) Plot of dispersion near zero energy
showing the effect of trigonal warping.

be projected onto the low energy bands to arrive at the following two-band Hamiltonian:

ĥBLG
k =

⎛

⎜⎝
∆/2 !2

2m(kx − iky)2

!2
2m(kx + iky)2 −∆/2

⎞

⎟⎠ . (2.9)

Unlike the four-band model in Eq. 2.7, in the absence of a an interlayer bias, the bands for

this model are exactly parabolic, Fig. 2.5, with effective mass m = γ1/2v2F . Furthermore,

we can express this Hamiltonian in terms of Pauli matrices as:

ĥBLG
k =

!2
2m

(σ · k)2 + ∆

2
σ3. (2.10)

For ∆ = 0, we can see that the eigenstates of this two-band Hamiltonian are manifestly

chiral, but not in the same way as single layer graphene. Instead of winding once around

the unit sphere in momentum space, the pseudospin vector for states in bilayer graphene

winds twice around the unit sphere, as shown in Fig. 2.1(b). This novel chirality allows

backscattering, unlike single layer graphene, but has a number of unique signatures in both

quantum Hall experiments [28] and screening which we will discuss in Chapter 3.
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2.2 Topological Insulators

Another example of a two-dimensional condensed matter system hosting Dirac-like

Fermions is the surface of a three-dimensional topological insulator or, more precisely,

the interface between a trivial insulator, like the vacuum, and a strong three-dimensional

topological insulator (3DTI), like Bi2Se3 [30, 31]. At such an interface surface states may

be labeled with a two-dimensional crystal momentum k and the behavior of the symmetry-

protected Dirac states can be described by the Hamiltonian matrix [30–33]:

Hk = !vF n̂ · (σ × k) (2.11)

where vF is the velocity associated with the linearly dispersing surface states, n̂ is the

unit vector normal to the interface, and σ is the vector of Pauli matrices in spin space.

A number of real materials have been confirmed to fall into this class, including: the

alloy Bi1−xSbx, and the stoichiometric crystals Bi2Se3, Bi2Te3, and Sb2Te3. In this section

we will provide some background on three-dimensional topological insulators, explain the

reason they are protected by symmetry and elucidate the sense in which these insulators

are “topological”.

According to the band theory of solids, electronic states in a crystal are characterized

by a crystal momentum, k, defined in a periodic Brillouin zone. The Bloch states, |um(k⟩,

are defined in a single unit cell and are eigenstates the Bloch Hamiltonian, H(k), with

eigenvalues, Em(k), defining a band structure in k-space. Within this paradigm, a mate-

rial is an insulator when there is a gap between the filled valence bands and the empty

conduction bands. While the size of the band gaps may differ between insulators one can

imagine tuning the parameters of H(k) to interpolate continuously between them without

closing the energy gap. In this sense one can define equivalence classes for insulators. The
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vacuum from relativistic quantum mechanics can be viewed as possessing a gap formed

between a filled valence band of positrons and a conduction band of electrons and is thus

an insulator. We will define a trivial insulator as one that is in the same equivalence class

as the vacuum. Topological insulators are those insulators which are not equivalent to the

vacuum. As we will explain, it is possible to assign a topological invariant to describe the

equivalence classes of different insulators.

One state with a gapped spectrum not equivalent to the vacuum is an integer quantum

Hall state. This state arises when electrons are confined to two-dimensions and subjected

to a strong magnetic field leading to quantized circular orbits and a quantized spectrum

of Landau levels with energies En = !ωc(n + 1/2) where ωc is the cyclotron frequency. If

an integer number, N , of Landau levels are filled then it is clear that an energy gap exists

between the occupied and empty levels, just like in an insulating state. However, unlike a

trivial insulator, the application of an electric field will cause the cyclotron orbits to drift

generating a Hall current described by the quantized Hall conductivity

σxy =
Ne2

h
.

It was shown in [34], by computing σxy using the Kubo formula, that the integer, N ,

quantizing the Hall conductivity is identical to the total Chern number n =
∑

m nm where

the sum is over the occupied bands and nm is the Chern number associated with band m

defined by

nm =
i

2π

∫
dk∇× ⟨um(k)|∇k|um(k)⟩ (2.12)

where the integral is taken over the Brillouin zone. The Chern number is invariant in

the sense that smooth variations in the Hamiltonian cannot change it. Therefore, it can

be used to define equivalence classes of 2D insulators distinguished by different values of
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n ∈ Z. However, the Hall conductivity is odd under time reversal, T , [30, 35] so this

formalism doesn’t apply in a T -invariant system.

Before we continue our discussion of topological insulators, it will help us to establish

a result known as Kramer’s theorem which states that if a spin 1/2 particle is described by

a T -invariant Hamiltonian H then all eigenstates of H are degenerate. To prove this we

start by noting that the time reversal operator may be represented as T = eiπSy/!K where

Sy is the spin operator and K is the complex conjugation operator. Then we assume that,

on the contrary, there exists an eigenstate, |ψ⟩, of H which is not degenerate. Since T

commutes with H we know that |ψ⟩ is also an eigenstate of T with non-zero eigenvalue c.

Thus:

T |ψ⟩ = c|ψ⟩

T 2|ψ⟩ = |c|2|ψ⟩.

Furthermore, it is straightforward to show that for a spin 1/2 system T 2|ψ⟩ = −|ψ⟩ and

hence |c|2 = −1. Therefore, we have arrived at a contradiction and must conclude that all

eigenstates of H are degenerate. In a system with no spin-orbit coupling this degeneracy

is the usual spin degeneracy; however, in systems in which spin-orbit coupling splits this

degeneracy Kramer’s theorem has nontrivial implications.

If a Bloch Hamiltonian, H(k), is T -invariant then under time reversal we have

TH(k)T−1 = H(−k).

It turns out that the Chern number as defined above vanishes in these systems. However, it

is possible to define equivalence classes of topologically distinct 2D T -invariant insulators
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characterized by a Z2 index, ν = 0, 1. One way to see that this index should be in Z2 is to

consider the boundary of the 2D T -invariant insulator with strong spin-orbit coupling. If

there are edge states at the boundary, by Kramer’s theorem the bands must be degenerate

at special T -invariant points in the 1D projected Brillouin zone: k = 0 and π/a. Away

from these points the spin-orbit coupling will split the degeneracy. However, between

these two points the bands must cross the Fermi surface either an even or an odd number

of times. If the bands cross the Fermi surface an even number of times then the edge

state bands can be smoothly pushed either below or above the Fermi surface and thus be

removed without closing the gap. However, if the edge state bands cross the Fermi surface

an odd number of times they cannot be smoothly pushed out of the gap without closing

it. Whether or not there are edge states and how many times they cross the Fermi surface

is determined by the topological class of the 2D bulk Hamiltonian.

The Z2 index characterizing the topological classes of 2D T -invariant insulators may

be formulated in terms of the unitary matrix:

wmn(k) = ⟨um(k)|T |un(−k)⟩

where T is the time-reversal operator and |un(k)⟩ is an occupied Bloch state. In the 2D

Brillouin zone there are four points, Γa, where |un(Γa)⟩ = |un(−Γa)⟩. It can be shown that

wmn(Γa) is an antisymmetric matrix and so its determinant is the square of its Pfaffian.

Thus, we can see that

δa ≡
Pf[w(Γa)]√
det[w(Γa)]

= ±1.

With this definition it can be shown that the Z2 invariant, ν, is given by

(−1)ν =
4∏

a=1

δa. (2.13)
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This formulation can be generalized to three-dimensional (3D) T -invariant insulators.

However, in 3D we define four Z2 topological indices (ν0; ν1, ν2, ν3). These indices are

related to the Pfaffian of the T operator evaluated at the eight T -invariant points of the

bulk 3D Brillouin zone. Thus, there exist 16 distinct classes of 3DTIs however, the index

ν0 determines two main categories of 3DTIs: the weak topological insulators (WTI) for

ν0 = 0, and strong topological insulators (STI) for ν0 = 1 [5]. The WTIs possess an even

number of Dirac points in the surface 2D Brillouin zone, while the STIs possess an odd

number of Dirac points. While the WTI surface states are vulnerable to localization via

disorder the STI surface states cannot be localized even in the presence of strong disorder

[5, 30]. For a STI, by T -symmetry, states with opposite momentum possess opposite spins

leading to a Berry phase of π. This in fact leads to weak antilocalization [30].

Bi2Se3 is an example of a STI with one Dirac cone located at the center of the 2D

Brillouin zone, whose states are described by Eq. 2.11. This appears to violate the Nielsen-

Ninomiya Fermion doubling theorem [36] which states that it is impossible to construct a

non-interacting lattice hopping model possessing an odd number of chiral Fermion states

[3]. However, the Nielsen-Ninomiya theorem is circumvented in this case because it can be

shown that the interface on the opposite side of the bulk possesses the Dirac states with

opposite chirality [3, 30].

Due to their unique spin chirality, research on topological insulators has exploded in

recent years. After the alloy Bi1−xSbx was found to host chiral Dirac surface states, using

spin polarized ARPES [37], the stoichiometric crystals of Bi2Se3, Bi2Te3, and Sb2Te3 were

found to host similar states. The fact that these are stoichiometric crystals means they are

easier to grow and control. Furthermore, their surface states are nearly perfect Dirac cones

and, unlike Bi1−xSbx, they possess sizable bulk band gaps. For instance, Bi2Se3 has a bulk

band gap of 0.3eV meaning the topological surface states persist to room temperature [30].

In Chapter 4 we study the possibility of inducing the same spin chirality associated with
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3DTI surface states in graphene via proximity effect. While in Chapter 5 we study some

of the possible exotic superconducting states that can be induced at the interface between

a 3DTI and a superconductor. Finally, in Chapter 6 we explore the effect of interactions

on these surface states.
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CHAPTER 3

Screening and Collective Modes in

Gapped Bilayer Graphene

This chapter is based on the work found in [38]. As we touched on in Chapter 2,

bilayer graphene (BLG) has many unique electronic properties that make it an extremely

interesting system. In this chapter we focus on BLG that is formed by two Bernal stacked

layers of graphene. When placed on an insulating substrate the electrons in BLG form an

ideal two-dimensional electron gas (2DEG) with a very high room temperature mobility, in

particular when Boron Nitride is used as a substrate [39–41]. In pristine BLG the conduc-

tion and valence bands touch at points, charge neutrality points (CNPs), at the corners of

the Brillouin zone. At very low energy around these points the bands are approximately

parabolic. However, by applying a perpendicular electric field inversion symmetry can

be broken opening a band-gap (∆) proportional to the interlayer bias [12–17]. Moreover,

recent experiments [42–45] provide strong evidence that at low temperatures and dopings

the electrons in BLG might be in a spontaneously broken symmetry state [46–55]. All

these facts make BLG an extremely interesting system both from a fundamental physics
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point of view and for its possible technological applications. As a consequence the accurate

knowledge of the electronic properties of BLG is of great interest.

One of the most important physical quantities to characterize the electronic proper-

ties of a system is the dielectric function ϵ(q,ω). This quantity determines the effective,

screened, Coulomb interaction among the electrons in the system and is therefore essen-

tial for the calculation of all the electronic properties. Experiments suggest that in most

BLG samples charge impurities close to the surface of the substrate or placed between

the substrate and the BLG layer are the dominant source of scattering [11]. In this situ-

ation knowledge of the static dielectric function, ϵ(q,ω = 0) is essential to calculate the

d.c. conductivity. Moreover, in the case of magnetic adatoms placed on BLG, the static

polarizability determines the effective Ruderman-Kittel-Kasuya-Yoshida (RKKY) interac-

tion between the magnetic adatoms [1]. The dynamic dielectric function determines the

optical properties of the system and the collective electronic modes, plasmons. Previous

works [56–61] have studied the case of gapless BLG (in addition to gapless single and mul-

tilayer systems [62–64]). In the presence of a gap some of the symmetries that simplify the

calculation of the response functions in gapless BLG disappear. In part for this reason the

only results available [65] for the dielectric function in gapped BLG were obtained using

the simplified effective low energy 2-band model discussed in Chapter 2 [28, 29]. This

model neglects features of the band-structure of BLG that can strongly affect the response

function, especially when ∆ ̸= 0. In particular, in the 4-band model, in the presence of a

band-gap the bands, at low energy, acquire a characteristic “sombrero” shape [28], see Fig.

3.1 (a), that is not captured by the simplified 2-band model. In this work we obtain ϵ(q,ω)

for gapped graphene using the full 4-band model and the random phase approximation

(RPA). We find that the nonmonotonic dispersion of the fermionic excitations close to the

CNP profoundly modifies the static and dynamic screening properties of BLG. In addition

we study the effect of trigonal warping on ϵ(q,ω). In all calculations in this chapter we
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assume translation invariance.

3.1 Model

As discussed in Chapter 2, the four-band continuum model Hamiltonian for BLG

can be expressed as H0 =
∑

k Ψ
†
kh(k)Ψk where Ψ†

k (Ψk) is the 4-component creation

(annihilation) operator Ψ†
k = (a†k,1, b

†
k,1, a

†
k,2, b

†
k,2) (Ψk = (ak,1, bk,1, ak,2, bk,2)) with a†k,i

(ak,i), b
†
k,i (bk,i) the creation (annihilation) operator for an electron with wavevector k in

layer i on sublattice A and B respectively, and h(k) is the matrix

h(k) =
∆

2
τz + !vF (kxσx + kyσy)−

γ1
2
(σxτx + σyτy)

+
3

2
γ3a [kx(σxτx − σyτy)− ky(σxτy + σyτx)] . (3.1)

In Eq.3.1 σ’s, τ ’s are 2x2 Pauli matrices representing the sublattice and layer degrees

freedom respectively, vF is the Fermi velocity at the Dirac point of a single graphene layer,

γ1 is the direct hopping parameter (from a site on sublattice A in layer 1 to the nearest

neighbor site on sublattice B in layer 2), γ3 is the trigonal warping hopping parameter (from

a site on sublattice B in layer 1 to the three nearest neighbors on sublattice A in layer 2),

a = 1.42Å is the in-plane lattice constant, and∆ is the band gap at k = 0. Throughout this

work, for concreteness, we assume vF = 106m/s, γ1 = 0.35eV, and γ3 = (3/4)γ1 = 0.26eV,

however the main features of our results do not depend on the precise values chosen for

these parameters.

The Coulomb interactions are described by the Hamiltonian

Hi = (1/2A)
∑

q

[V+(q)ρ̂qρ̂−q + V−(q)d̂qd̂−q]
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where A is the sample area, ρ̂q (d̂q ) the operator for the sum (difference) of the densities

ρ̂q,i in the two layers, V±(q) = (VS(q) ± VD(q))/2 with VS(q) = 2πe2/(ϵq) the Coulomb

interaction between electrons in the same layer and VD = 2πe2(e−qd)/(ϵq) the Coulomb

interaction between electrons in different layers, d = 3.35Å the distance between the two

layers, and ϵ the background dielectric constant. For the work presented in this chapter

we assume α ≡ e2/ϵ!vF = 0.5 and temperature T = 0.

3.2 Polarizability and Dielectric Function

For most of the electronic quantities of interest, such as the conductivity, as long as

q ≪ 1/d BLG can be treated as a single 2D electronic system and therefore the dielectric

function that enters the calculation of these quantities is the one associated with the sum

of the densities in the two layers. Within the random phase approximation we may express

this dielectric function as:

ϵ(q,ω) = 1− V+(q)Π(q,ω)

where

Π(q,ω) = g
∑

λ,λ′

∫
dk

(2π)2
nλ,k − nλ′,k+q

!ω + ϵλ,k − ϵλ′,k+q + iη

× |(U †
kUk+q)λ,λ′ |2 (3.2)

is the polarizability, also known as the density-density response function. The polarizability

describes the response of the electron density to an external field that couples to the density

operator as explained in [1]. In Eq. 3.2 g = gsgv = 4 is the total spin (gs) and valley (gv)

degeneracy, λ, λ′ are the band indices, nλ,k is the Fermi-Dirac distribution function for a

particle in band λ with wavevector k, ϵλ,k is the energy of a fermionic state in band λ with
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momentum k, and Uk is the unitary matrix that diagonalizes the Hamiltonian H0. From

Fig. 3.1 (b) we see that the intraband wave-function overlap |(U †
kUk+q)λ,λ|2 for the 4-band

model is quite different from the one for the 2-band model, especially when ∆ ̸= 0.

In Fig. 3.1 (c) the results for the static polarizability Π(q,ω = 0) are shown for

fixed doping n = 1012 cm−2 and different values of ∆. We see that for ∆ ̸= 0 the re-

sults obtained with the 4-band model are quite different from the ones obtained with

the 2-band model. In the 2-band model Π(q, 0) exhibits a cusp, associated with a Kohn

anomaly, only for q = 2kF (kF being the Fermi wavevector), whereas in the 4-band model

Π(q, 0) exhibits Kohn anomalies also for values of q < 2kF . This is due to the non-

monotonic behavior exhibited by the low energy band structure in the 4-band model for

∆ ̸= 0, Fig. 3.1 (a). Consequently, in the 4-band model, for ∆ ̸= 0, for fixed n (∆) when

∆ > ∆c ≡ !vF
√
πn (|n| < nc ≡ ∆2/(π!2v2F )) the Fermi surface is multiply connected.

Neglecting trigonal warping for n < nc the Fermi surface is formed by two circumfer-

ences, of radius kF± = (1/!vF )
√
ϵ2F +∆2/4±

√
ϵ2F (γ

2
1 +∆2)−∆2/4 respectively, with

ϵF = (1/2)
√

(!4v4Fπ2n2 +∆2γ21)/(γ
2
1 +∆2) (see inset of Fig. 3.1 (b)). In this situation we

can expect additional Kohn anomalies corresponding to values of q joining points on the

same connected part of the Fermi surface and on disconnected parts of the Fermi surface.

For n = 1012 cm−2 we have that ∆c ≈ γ1/3. When ∆ = ∆c the Fermi energy just touches

the top of the sombrero. In this case we only have one additional Kohn anomaly for q = kF

in addition to the q = 2kF one, see Fig. 3.1 (c). For ∆ > ∆c the Fermi energy cuts the

sombrero region and so we have Kohn anomalies for q = kF+ − kF−, and q = 2kF− in

addition to the one for q = 2kF+ as shown in Fig. 3.1 (c). Intuitively, one might expect to

observe an additional anomaly for q = kF++kF−, however the points on the Fermi surface

connected by this value of q have Fermi velocities with the same sign and therefore the

anomaly is suppressed. Fig. 3.1 (d) shows the dependence of Π(q, 0) on q and the density

for ∆ = γ1/2. From this figure we see the evolution of the Kohn anomalies with doping
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FIG. 3.1: Static polarizability, band structure, and chirality factors for bilayer graphene. (a)
Lowest conduction band for ∆ = γ1/2, γ1/3, 0. The solid (dash-dot) curves are obtained using
the 4-band (2-band) model. The horizontal dashed lines indicate the 4-band Fermi energy
for doping n = 1012cm−2 for ∆ = γ1/2, γ1/3, 0 from top to bottom. (b) Chirality factors,
|(U †

kUk′)λλ|2, evaluated for |k| = |k′| = kF for the 2-band model at ∆ = 0, γ1/2, denoted by
the black solid and dashed lines respectively, and the 4-band model for ∆ = γ1/2, 0. θ is the
angle between k and k′. For the case ∆ = γ1/2 in the 4-band model there are three possible
intraband overlap scenarios we can consider: (i) k and k′ both lie on the Fermi surface at
wavevector kF+, (ii) k and k′ both lie on the Fermi surface at wavevector kF−, (iii) k lies on
the Fermi surface at wavevector kF+ while k′ lies on the fermi surface at kF−. (c) Π(q, 0) for
n = 1012cm−2 without trigonal warping. Solid (dashed) curves are the results obtained using
the 4-band (2-band) model. (d) Contour plot of polarizability, Π(q, n,ω = 0), as a function of
q and doping n for ∆ = 1/2γ1.
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in gapped BLG, in particular we can observe the merging of some of the anomalies for

specific values of the doping.

As discussed in Chapter 2 and displayed in the left panels of Fig. 3.2, in the pres-

ence of trigonal warping the energy-bands become anisotropic [28, 29]. In particular, at

low energies the lowest bands exhibit four degenerate minima. The modifications of the

fermionic energy bands due to the trigonal warping are reflected in the polarizability, as

shown by the right panels of Fig. 3.2. Π(q, 0) becomes strongly anisotropic, the number

and position of the Kohn anomalies becomes dependent on the direction of q.

The dynamic dielectric function ϵ(q,ω) for fixed doping n = 1012 cm−2 and ∆ < ∆c,

∆ = ∆c, ∆ > ∆c for the case in which γ3 = 0 (no trigonal warping) is shown in Fig. 3.3.

The white lines show the plasmon dispersion, the black solid (dashed) lines show the

boundaries of the intraband (interband) particle-hole continuum. We see that as ∆ crosses

∆c the dispersion of the plasmon mode outside the particle-hole continuum doesn’t change

substantially. The plasmon mode inside the particle hole-continuum on the other hand

is qualitatively different for ∆ < ∆c and ∆ > ∆c, an effect that is not captured by the

2-band model [65].

In the presence of trigonal warping ϵ(q,ω) becomes strongly anisotropic and this is

particularly evident when the Fermi energy cuts the sombrero region. Fig. 3.4 shows the

results for ϵ(q,ω) for different directions of q obtained taking into account trigonal warping.

From the figure the strong anisotropy of ϵ(q,ω) when γ3 ̸= 0 is evident. In particular, we

see that the plasmon dispersion inside the p-h continuum has a strong dependence on the

direction of q.

For the case with no trigonal warping in the long-wavelength limit q ≪ ω/vF using
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FIG. 3.2: Fermi surface and polarizability for gapped bilayer graphene with trigonal warping.
(Left Column) Equipotential lines for the lowest energy band within the 4 band model with
trigonal warping γ3 = 3γ1/4 and ∆ = 0, 1/3γ1, 1/2γ1 from top to bottom. (Right Column)
Polarizability for n = 1012 cm−2, trigonal warping γ3 = 3γ1/4, and ∆ = 0, 1/3γ1, 1/2γ1 from
the top panel to bottom one. kF,γ3=0 is kF+ in the limit γ3 = 0.
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FIG. 3.3: RPA dielectric function for gapped bilayer graphene. The left (right) column shows
the real (imaginary) part of ϵRPA(q,ω) for∆ = 0, ∆ = γ1/3, ∆ = γ1/2 from top to bottom. The
plasmon dispersion is denoted by white curves. The boundaries for the intraband (interband)
particle-hole continuum are indicated with black solid (dashed) curves.
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FIG. 3.4: RPA dielectric function for bilayer graphene with trigonal warping. With trigo-
nal warping the dielectric function is anisotropic in momentum. To exhibit the anisotropy
we present plots along straightline paths with different angles relative to the kx-axis: θ =
0◦, 15◦, 30◦ (top to bottom). The left (right) column shows the real (imaginary) part of
ϵRPA(q,ω) with ∆ = γ1/2. The white curves denote the plasmon dispersion, the black curves
denote the boundaries of the particle-hole continuum. kF,γ3=0 is kF+ in the limit γ3 = 0.
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the 4-band model for the polarizability, up to order q2, we have:

Π(q,ω) =
gq2

4πω2

[
kF+

∂ϵk
∂k

∣∣∣∣
kF+

− kF−
∂ϵk
∂k

∣∣∣∣
kF−

]
(3.3)

We notice that in Eq. 3.3 there is a term proportional to kF− that is absent in the 2-band

model. Replacing this expression in the equation for the RPA ϵ(q,ω) we find the plasmon

dispersion:

ω =

[
g

2
!vFαq

(
kF+

∂ϵk
∂k

∣∣∣∣
kF+

− kF−
∂ϵk
∂k

∣∣∣∣
kF−

)]1/2
. (3.4)

This dispersion is general and valid both for n < nc and n > nc; however, in the latter

case kF− = 0. From Eq. 3.4 using the appropriate expressions for kF+, kF− and ϵk we find

ω(q) =

√
qge2γ21
ϵF ϵ

F (n̂, ∆̂) (3.5)

where n̂ ≡ !2v2Fπn/γ21 , ∆̂ ≡ ∆/γ1, with the Fermi energy, ϵF , and functions F (n̂, ∆̂) given

by:

2-band model:

F (n̂, ∆̂) = n̂

ϵF = γ1[n̂2 + ∆̂2/4]1/2

4-band model 4-band model (sombrero region)

F (n̂, ∆̂) =

√√√√√ n̂

2

√
1 + 4n̂(1 + ∆̂2)− (1 + ∆̂2)
√

1 + 4n̂(1 + ∆̂2)
F (n̂, ∆̂) =

1

2

√

n̂
∆̂4 + 2∆̂2 − n̂2

∆̂4 + 2∆̂2 − n̂2 + 1

ϵF =
γ1
2

√
2 + ∆̂2 + 4n̂− 2

√
1 + 4n̂(1 + ∆̂2) ϵF =

γ1
2

√
n̂2 + ∆̂2

1 + ∆̂2
.

In Fig. 3.5 (a) we compare the results for the plasmon dispersion obtained numerically

using the 4-band model with the ones given by Eq. 3.5 using ∆ = γ1/2 for a given value

33



of n. Following the overall theme of this chapter, we see that the 2-band results differ

substantially from the 4-band results. At low densities (n < nc) this is due to the fact that

the 2-band model does not capture the nonmonotonic band structure, i.e. the fact that in

the 2-band model in Eq. 3.4 there is no term kF−∂ϵk/∂k|kF− . For n > nc this is due to the

fact that in the 4-band model the dispersion is closer to linear than parabolic as it is in the

2-band model, in analogy to what happens in the gapless case [61]. This is summarized in

Fig. 3.5 (b) that shows the ratio ω4−band/ω2−band between the plasmon frequency obtained

within the 4-band and the 2-band model as a function of n for different values of ∆.

Notice, that in the long-wavelength limit this ratio (see Eq. 3.5) is independent of q and

is a function only of n and ∆.

FIG. 3.5: Long wavelength plasmon dispersion for gapped bilayer graphene. (a) Comparison
of the plasmon dispersion for ∆ = γ1/2 obtained using the full 4-band model, and the 2-band
model for n = 2.7× 1012cm−2 (b) Ratio ω4−band/ω2−band as a function of doping for different
value of ∆. For ∆ ̸= 0 and n → 0 the ratio ω4−band/ω2−band diverges.

3.3 Summary

In this chapter we studied the static and dynamic screening of gapped bilayer graphene

using the full 4-band model. We found that the static screening obtained using the 4-
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band model is qualitatively different from the one obtained from the 2-band model. In

particular in the 4-band model, when the gap is nonzero, the static polarizability exhibits

Kohn anomalies not present in the 2-band model. For the dynamic screening we found

that the plasmon frequency within the 4-band model is substantially different from the

one obtained within the 2-band model especially at low densities when ∆ ̸= 0. We also

characterized the strong anisotropic properties of the static and dynamic screening due

to the trigonal warping. We found that in the presence of trigonal warping in gapped

graphene the number of Kohn anomalies depends not only on the doping and the band-

gap but also on the direction of the momentum. Our results, in particular the identification

of additional Kohn anomalies, and the strong anisotropic nature of the screening in the

presence of trigonal warping, have important implications for understanding of the phonon

spectrum and the nature of the RKKY interaction in gapped bilayer graphene, and are

therefore expected to have clear experimental signatures. Moreover our results also apply

to the case in which a gap opens due to the realization of a spontaneously broken symmetry

state and could then be used to identify and characterize such a state.
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CHAPTER 4

Proximity Effect in

Graphene-Topological Insulator

Heterostructures

This chapter is based on the work from [66]. As discussed in Chapter 2, the surface of

strong three-dimensional (3D) topological insulators (TIs) [30] and graphene [9, 10] have a

very similar low-energy electronic structure in that the conduction and the valence bands

touch at isolated points, the Dirac points (DPs), and around these points the fermionic

excitations are well described as massless two-dimensional (2D) chiral Dirac fermions for

which the phase of a two-state quantum degree of freedom is locked with the momentum

direction. However, there are also important differences between these materials. One

important difference is that in TIs the electron-phonon scattering is much stronger than

in graphene, which can decrease the carrier mobility in contrast to graphene which has the

highest room-temperature mobility of any known material. Another major difference is

that in graphene the chirality is associated with the sublattice degree of freedom in contrast
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to the TI surface (TIS) in which it is associated with the intrinsic electron spin and caused

by strong spin-orbit (SO) coupling. Heuristically, one might expect that proximity to the

TIS could enhance the SO coupling of graphene thus creating a novel 2D system with

non-trivial spin textures and high, room-temperature, electron mobility. This approach

to enhance the SO coupling in graphene appears to be more practical than previously

proposed approaches [67, 68] that rely on doping graphene with heavy adatoms. These

facts, together with recent experimental progress in manufacturing heterostructures [69, 70]

motivated us to study graphene-TI heterostructures.

In what follows we study the low-energy electronic properties of heterostructures

formed by graphene placed on the conducting surface of a 3D TI. As we will show, not only

does the proximity of a TIS enhance the SO coupling in graphene, and bilayer graphene

(BLG), but this enhancement can be controlled via a relative twist between the graphene

lattice and the TIS lattice. The presence of a relative rotation typically induces an incom-

mensurate stacking of the graphene and the substrate [40, 41, 71–100]. As a consequence

we develop and present a theory that is able to take into account the incommensurability

between graphene and the TIS. This is difficult to achieve via standard approaches, like

density functional theory (DFT) [101], and tight-binding models, due to the computational

cost of these approaches for incommensurate structures. A continuum model, on the other

hand, can effectively treat heterostructures with incommensurate stacking. To develop the

theory for incommensurate structures; however, we need a continuum model for the com-

mensurate limit. Thus, we will first present such a model and then, starting from it, derive

a model able to treat incommensurate graphene-TI structures. Our results show that in

graphene-TI heterostructures the proximity effect induces a strong enhancement of the SO

coupling in graphene, non-trivial spin and pseudospin textures on the bands, and that all

these effects can be tuned to great extent via the relative rotation between graphene and

the TI. Moreover, we present results for the case in which tunneling processes with finite
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momentum transfer are present.

4.1 Basic Considerations

We consider the TI material to be a Tetradymite such as Bi2Se3, Bi2Te3, and Sb2Te3.

The projected surface Brillouin zone (BZ) is hexagonal with a single DP at the zone

center [32]. Let a2 be the effective lattice constant that corresponds to the surface BZ

and a1 = 2.46Å the graphene lattice constant. Defining the ratio a2/(
√
3a1) ≡ 1 +

δ we have δ < 0.01 for Sb2Te3 and δ ≈ −0.03% (δ ≈ 0.03% ) for Bi2Se3 (Bi2Te3).

Thus, the study of the commensurate
√
3×

√
3 stacking pattern is expected to be a good

approximation for a graphene-Sb2Te3 heterostructure and for developing the theory for

incommensurate structures. The Hamiltonian describing the electronic degrees of freedom

of the heterostructure can be written as H = Hg+HTIS+Ht, where Hg is the Hamiltonian

for an isolated sheet of graphene, HTIS is the Hamiltonian for the TIS, and Ht describes

tunneling processes between graphene and the TIS. As we discussed in Chapter 2 the long

wavelength physics of graphene is described by a pair of 2D massless Dirac Hamiltonians:

Hg ,K =
∑

p,σ,ττ ′

c†K+p,τ,σ (!v1τ · p− µ1)ττ ′ cK+p,τ ′,σ

and

Hg,K′
=
∑

p,σ,ττ ′

c†K′+p,τ,σ (!v1τ ∗ · p− µ1)ττ ′ cK′+p,τ ′,σ

where c†K+p,τ,σ (cK+p,τ,σ) creates (annihilates) a Dirac fermion on sublattice τ (A,B) with

spin σ (↑, ↓) at a Dirac wave vector pmeasured from one of the two inequivalent BZ corners

(K- and K ′-valley) located at wave vectors K and K′ (|p| ≪ |K|), τ =

(
τx, τ y

)
are

Pauli matrices acting on the sublattice space, v1 ≈ 106m/s is the Fermi velocity, and µ1
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is the chemical potential. The TIS states near its Dirac point can be described by an

effective 2D continuum model [32, 33]:

HTIS =
∑

k,σσ′

a†k,σ [!v2 (σ × k) · ẑ− µ2]σσ′ ak,σ′

where a†k,σ (ak,σ) creates (annihilates) a surface massless Dirac fermion with spin σ at wave

vector k measured from the zone center (Γ-point), σ =

(
σx, σy

)
are Pauli matrices

acting on spin space, ẑ is the unit vector along the z direction, and µ2 is the chemical

potential. In Bi2Se3, Bi2Te3, and Sb2Te3, the Fermi velocity v2 is roughly half of that in

graphene, hence in the remainder of this chapter we assume v2 = v1/2. In our model we

neglect the hexagonal warping of the TIS bands due to higher order terms in k in HTIS

[102]. Such effects are only important at relatively high energies ! 200 meV away from

the TI’s DP [102, 103] and we are only interested in the energy range close to the TI’s

DP. We also neglect effects due the TI’s bulk states [104] for two reasons: (i) in current

experiments the effect of the bulk states can be strongly suppressed via chemical and field

effect doping [103, 105–107], and by using TI thin films [108, 109]; (ii) the most interesting

situation arises when the bulk states can be neglected: in this case the properties of the

systems are dominated not by the TI’s bulk states but by the states resulting from the

hybridization of the graphene and the TI’s surface states. The form of Ht depends on the

stacking pattern and the interface properties as we show below.

4.2 Commensurate Stacking

We first consider the graphene-TI heterostructure in a
√
3×

√
3 commensurate stack-

ing, in which each TIS atom is directly underneath a carbon atom. The strongest tunneling

is expected to occur between the directly stacked atoms, among which all the carbon atoms
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can be shown to belong to one sublattice. For concreteness, we will choose this to be the A

sublattice. As a result of the periodic tunneling potential, in the BZ of the heterostructure

the original graphene BZ is folded such that the two valleys are both located at the zone

center overlapping with the DP of the TIS, Fig. 4.1 (a), (b). In this case the tunneling

Hamiltonian can be written as Ht =
∑

k,λ,τ,σ tτa
†
k,σcλ,k,τ,σ + h.c., where λ = K,K ′ and

the tunneling matrix elements tA = t, tB = 0 are assumed to be spin and momentum

independent. The Hamiltonian for such a structure takes the form

Ĥk =

⎛

⎜⎜⎜⎜⎝

Ĥg,K
k 0 T̂ †

0 Ĥg,K′

k T̂ †

T̂ T̂ ĤTIS
k

⎞

⎟⎟⎟⎟⎠
, T̂ =

⎛

⎜⎝
t 0 0 0

0 0 t 0

⎞

⎟⎠ , (4.1)

where the graphene blocks are 4×4 matrices in sublattice and spin space whereas the TIS

block is a 2× 2 matrix in spin space.

We can gain some insight using a perturbative approach [110]. In this approach

the effect of tunneling processes on the graphene spectrum is captured by the self-energy

Σ̂k(iωn) = V̂ †Ĝ0
k(iωn)V̂ , where Ĝ0

k(iωn) is the Green’s function of the TIS and V̂ is the

tunneling vertex. In the basis formed by the eigenstates of the Hamiltonian of isolated

graphene, Φλ,k,α,σ, where α = ± refer to the 4-fold degenerate upper and lower bands we

obtain

Σ̂k(iωn) =

⎛

⎜⎝
ΣS

k(iωn) e−i(θk−π
2 )ΣA

k (iωn)

ei(θk−
π
2 )ΣA

k (iωn) ΣS
k(iωn)

⎞

⎟⎠

⊗ (Iα + σx
α)⊗ (Iλ + σx

λ) , (4.2)

where ΣS/A
k (iωn) = (t2/2)GS/A

k (iωn) with GS/A
k (iωn) =

[
1

(iωn−!v2k+µ2)
± 1

(iωn+!v2k+µ2)

]
/2,

and the first 2 × 2 matrix acts in the spin space, (Iα + σx
α) acts in the band space, and
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FIG. 4.1: Schematic of stacked graphene-topological insulator heterostructure and electronic
structure for commensurate stacking. (a) Schematics of the

√
3×

√
3 stacked graphene BZ (dark)

and TIS BZ (light) in the repeated zone scheme without tunneling. (b) Folded BZ after turning
on tunneling. (c) Renormalized bands of SLG-TIS for µ1 = µ2 = 0. Here k0 ≡ 830meV/(!v2).
(d) Spin texture on the bands at E = 80meV. The arrows indicate spin directions. (e) Texture
of the in-plane component of the pseudospin at E = 80meV, (f) shows the full pseudospin
orientation on the three Fermi surfaces closest to the Γ̄ point. (g) Renormalized bands of BLG-
TIS. (h) Renormalized bands of SLG-TIS for µ1 = 0, µ2 = 100 meV. (i) Rashba-like splitting
∆R in SLG-TIS and BLG-TIS as a function of t.
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(Iλ + σx
λ) in the valley space. I is the 2 × 2 identity matrix and θk = arctan(ky/kx). The

appearance of non-zero off-diagonal spin components with phase factor
(
θk − π

2

)
in the

self-energy indicates an induced helical spin texture on some of the graphene bands.

We can also obtain the eigenvalues and eigenstates of the model numerically by di-

agonalizing Eq. 4.1. In this case we find that the renormalized graphene bands in the

perturbative approach coincide with those obtained by direct diagonalization. Figure

4.1(c) shows the band structure of a graphene-TI heterostructure with t = 45meV and

µ1 = µ2 = 0. We see that the fourfold degeneracy of the original graphene bands is

partially lifted in Fig. 4.1 (c). It appears that two pairs of graphene-like bands become

gapped and split (blue and red) while two other pairs of graphene bands appear to remain

unchanged and the TI-like bands (green) simply develop a less linear behavior at low ener-

gies. It can be shown that the seemingly unchanged graphene bands are in fact orthogonal

linear combinations of the graphene states from the K and K ′ points. The most explicit

way to show this is by noting that the matrix in Eq. 4.1 can be block diagonalized into

two uncoupled blocks:

Ĥ′
k =

⎛

⎜⎜⎜⎜⎝

Ĥg,K
k 0 0

0 Ĥg,K
k

√
2T̂ †

0
√
2T̂ ĤTIS

k

⎞

⎟⎟⎟⎟⎠
. (4.3)

Thus making the origin of the band structure more apparent. Note that the uncoupled

graphene Hamiltonian appearing in Eq. 4.3 actually emerges from a unitary transformation

which mixes the two valleys. A different choice of unitary transformation would result in

a block that was identical to Ĥg,K′

k instead of Ĥg,K
k .

Using the eigenstates obtained through direct diagonalization both the spin and pseu-

dospin configurations may be computed on the renormalized bands, Fig. 4.1 (d)-(f). We

can see from Fig. 4.1 (d) that, as we suspected from the form of the self-energy, the in-

plane spin on the two gapped bands (forming the two smaller Fermi surfaces) is locked
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perpendicular to the momentum, winding around the Γ point analogous to a system with

Rashba-type SO coupling. These bands seem to be the spin-split descendants of the spin

degenerate graphene bands with one band’s spin winding clockwise and the other winding

counterclockwise. Notice that after coupling to the TIS the graphene bands have a unique

pseudospin structure very different from the pseudospin structure of both the original K

and K ′ valley, shown in Fig. 4.1 (e) and (f). This makes sense considering the fact that the

graphene states which hybridize with the TIS are actually linear combinations of states

from the K and K ′ valleys. This should affect transport measurements in a unique way.

Our model is easily generalized to the case of BLG. One simply needs to replace the

graphene Hamiltonian with the bilayer graphene Hamiltonian. The results for a BLG-TI

heterostructure, Fig. 4.1 (g), shows a similar trend to the results for a SLG-TI heterostruc-

ture. However, as shown in Fig. 4.1 (i), the proximity-induced enhancement of the SO

coupling in BLG is much larger than in single layer graphene (SLG). This could be a

consequence of the fact that, at low energies, BLG has a much higher density of states

(DOS) than SLG.

FIG. 4.2: Schematic of incommensurate stacked graphene-topological insulator heterostructure.
Schematic of the graphene and TIS BZs in an incommensurate structure formed from (a) a twist
(b) a lattice mismatch, with the corresponding qj vectors at the K- and K ′-point.

Within our model we can easily account for a difference δµ = µ2 − µ1 between the

TI and graphene chemical potential. By varying δµ the value of k for which the pristine
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bands of the TI and graphene cross, and for which the hybridization is stronger, can be

tuned. Fig. 4.1 (h) shows the case for which µ2 = 100 meV and µ1 = 0. We see that in this

case the induced Rashba splitting is stronger than when µ2 = µ2 = 0. This is consistent

with the fact that the DOS increases as we move away from the DP.

4.3 Incommensurate Stacking

We now consider incommensurate structures. In general, the tunneling matrix ele-

ments can be written as:

Tτ (k2,k1) =
∑

G1,G2

t(k1 +G1)√
3Ω1

eiG1·dτ δk2+G2,k1+G1 (4.4)

where the crystal momentum is conserved by the tunneling process in which a graphene

quasiparticle of wave vector k1 residing on sublattice τ hops to a TIS state with wave vector

k2. Ω1 is the graphene unit cell area and dA = 0, dB =

(
−a0, 0

)
are the positions of

the two carbon atoms in a unit cell with carbon-carbon distance a0. {G1}, {G2} are the

reciprocal lattice vectors of graphene and TIS, respectively. t(k) are the Fourier amplitudes

of the tunneling potential t(r) assumed to be a smooth function of r, the spatial separation

between graphene and TIS atoms projected onto the interface plane. Given that the

graphene-TIS separation distance exceeds the inter-atomic distance in each material, the

dominant tunneling amplitudes of t(k) near the graphene DP are the ones with |k| = KD ≡

|K|. This justifies a restriction of the sum over {G1} to three vectors: g1(= 0), g2, g3,

where the latter two connect a valley with its equivalent first BZ corners. Thus, for small

wave vectors measured from the respective DPs, we have

Ht =
∑

p,τ,σ

3∑

j,l,···=1

[Tτ,ja
†
p+qj ,σcp,τ,σ + T ∗

τ,lc
†
p+qj+q̄l,τ,σap+qj ,σ + . . . ]
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where Tτ,j = t′eigj ·dτ with t′ ≡ t(KD)/
(√

3Ω1

)
, {qj} are the offset vectors between the

graphene DP and the three “nearest-neighbouring” TIS DPs, and q̄l ∈ {−qj}, as shown in

Fig. 4.2. The repeated action of this “nonlocal” coupling generates a k-space lattice [86].

For a rotation angle θ, the separation between the offset DPs is |qj| ≡ q = 2KD sin(θ/2),

for the lattice mismatch q = |δ/(1 + δ)|KD, Fig. 4.2.

For very small twist angles or lattice mismatches such that the dimensionless parame-

ter γ ≡ t′

!v2q > 1, graphene and TIS will be strongly coupled. However, when γ < 1, a weak

coupling theory is valid [78, 86, 88]. In this case, to investigate the low-energy spectrum

of graphene, we can truncate the k-space lattice and use the effective Hamiltonian:

Ĥp =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

Ĥg,K
p T̂ †

1 T̂ †
2 T̂ †

3

T̂1 ĤTIS
q1+p 0 0

T̂2 0 ĤTIS
q2+p 0

T̂3 0 0 ĤTIS
q3+p

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

, (4.5)

T̂1 =

⎛

⎜⎝
t′ t′ 0 0

0 0 t′ t′

⎞

⎟⎠ , T̂2 =

⎛

⎜⎝
t′ t′e−i 2π3 0 0

0 0 t′ t′e−i 2π3

⎞

⎟⎠ ,

T̂3 =

⎛

⎜⎝
t′ t′ei

2π
3 0 0

0 0 t′ t′ei
2π
3

⎞

⎟⎠ .

where t′ = t/3. A similar Hamiltonian is valid for the K ′-valley [111].

Figures 4.3 (a)-(c) show the band and spin structure around the K-point for an

incommensurate graphene-TI heterostructure with γ = 0.2, t′ = 15meV and µ1 = µ2 = 0.

The result for theK ′-point is simply a 60◦ rotation of the result for the K-point. As we can

see in Fig. 4.3 the original twofold spin degeneracy of the graphene Dirac cone is completely

lifted. Furthermore, of the two original degenerate linear bands one is now fully gapped

and the other is no longer linear at the DP. Moreover, the bands acquire non-trivial in-
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FIG. 4.3: Electronic structure for incommensurate stacked graphene-topological insulator het-
erostructure. Splitting of the bands can be tuned with relative twist angle. (a) The band
structure along the path A-B-C-D-A indicated in Fig. 4.2(a). (b),(c) show the spin texture on
the bands at different energies. E0 ≡ !v2q = t′/γ. (d) Splitting (∆) of the low-energy bands as
a function of twist angle for t′ = 30 meV and t′ = 15 meV.
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plane spin textures. An interesting characteristic of graphene-TI heterostructures is that

the features of the band structure and spin texture can be controlled via the twist angle.

By changing the value of θ, for fixed t and energy, the distance between the Fermi pockets

shown in Fig. 4.3 (b) and (c), and their size, can be tuned. In addition, the splitting of

the low energy bands ∆ can be controlled as shown in Fig. 4.3 (d).

In the presence of surface roughness and/or phonons tunneling processes with finite

momentum transfer are allowed. To gain some insight into their possible effect, we consider

the case in which the tunneling amplitude has a Gaussian profile with respect to the

momentum transfer q: tq = t0 exp (−|q|2/(2σ2)), where t0 characterizes the tunneling

strength and σ the variance. To qualitatively understand the effect of such processes, we

study the case of an isolated graphene Dirac cone separated by a large wave vector Q from

the closest TIS DP. Using the perturbative approach outlined above, the proximity effect

on the graphene spectrum is captured by the self-energy

Σ̂Q+p(iωn) = (Iα + σx
α)⊗

⎛

⎜⎝
ΣS

Q+p(iωn) e−i(θQ+p−π
2 )ΣA

Q+p(iωn)

ei(θQ+p−π
2 )ΣA

Q+p(iωn) ΣS
Q+p(iωn)

⎞

⎟⎠ (4.6)

with ΣS/A
Q+p(iωn) = t20Ω2

2π exp
[
− |Q+p|2

σ2

] ∫∞
0 k exp

[
− k2

σ2

]
× I0/1(

2|Q+p|
σ2 k)GS/A

k (iωn)dk, where

In(x), n = 0, 1 are the modified Bessel functions of the first kind. The form of the

phase factors in the off-diagonal spin components of Σ̂ implies an induced spin texture on

graphene with the spin perpendicular to the wave vector Q+ p, Fig.4.4 (a). We find in

this case that the spin degenerate bands are split and the remaining gapless bands are no

longer linear, Fig. 4.4(b). Figures 4.4(c)-(d) show the size of the gap between spin-split

bands as a function of t0 and σ, respectively.
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FIG. 4.4: Induced spin texture in incommensurate stacked graphene-topological insulator het-
erostructure considering a single Fermi pocket. (a) Schematics of the induced spin texture on
graphene (right) from the TIS spin helix (left). (b) Renormalized graphene bands (solid lines)
for t0 = 100meV, σ = 2k0, Spin-split gap (∆) as a function of t0 (c) and σ (d).

4.4 Summary

In conclusion, we have studied the proximity effect of a strong 3D TI on the low-energy

spectrum of graphene in commensurate and incommensurate structures as well as in a case

with surface roughness. To be able to take into account the incommensurability we have

developed a continuous model. Using this model we identified the spin and pseudospin

structure of all the hybridized bands for both commensurate and incommensurate stacking.

The results indicate potential signatures in transport measurements. Additionally, we

showed that the enhancement of the SO coupling is typically much stronger in BLG than

graphene. We also found that these novel properties can be tuned by varying the relative

rotation between the graphene and the TIS lattices.
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CHAPTER 5

Effect of a Spin-Active Interface on

Proximity-Induced

Superconductivity

This chapter is based on work presented in [112]. As we have already seen in the pre-

vious chapters, the combination of layers of different materials, such as TIs and graphene

or bilayer graphene allows the realization of new systems with novel and interesting elec-

tronic properties. There is also a great deal of interest surrounding the novel states found

in heterostructures formed by interfacing a TI surface and superconductors (SCs) [113–

117]. In particular, it has been shown theoretically that Majorana excitations may arise in

certain TI/SC heterostructures by including ferromagnetic materials [118–121]. Addition-

ally, it has been shown theoretically, and there is experimental evidence to suggest, that in

heterostructures formed by a TI and an s-wave SC, via the proximity effect, p-wave triplet

superconducting pairings can be induced in the TI’s surface [114, 122]. More recently

it has also been shown that the proximity of a SC to a TI could induce odd-frequency
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superconducting pairing in the TI’s surface [115–117].

The symmetry of a superconducting state is characterized by the symmetry proper-

ties of the pairing amplitude F (r1, t1; r2, t2) =
∑

α,β ⟨Tcα(r1, t1)cβ(r2, t2)⟩ gαβ, where gαβ

is a metric tensor describing the spin structure of the Cooper pair. Because electrons are

fermions if gαβ describes a spin singlet then the equal time correlation function must be even

in parity F (r1, t; r2, t) = F (r2, t; r1, t) and if it describes a spin triplet then the equal time

correlation function must be odd in parity F (r1, t; r2, t) = −F (r2, t; r1, t). However, spin

triplet pairs can be even in parity and spin singlet pairs can be odd in parity if the pairing

amplitude is odd in time or, equivalently, Matsubara frequency, as was originally proposed

for superfluid He3 [123] and later for superconductivity [124]. This ensures that equal

time correlations vanish enforcing the Pauli principle and leads to a rich variety of pairing

symmetries. Odd-frequency pairing has been, theoretically, shown to develop in ferro-

magnetic insulator/superconductor (FMI|SC) [125], ferromagnetic metal/superconductor

(FMM|SC) [126], and normal metal/superconductor (N|SC) junctions [127–130]. Several

of these works [125, 126, 128, 129] obtained the proximity-induced odd-frequency pairing

amplitudes by including the effect of a spin-active interface, i.e. an interface that induces

a spin dependence of the transmission and reflection amplitudes of the fermionic quasipar-

ticles. These works found that a spin-active interface can modify qualitatively the nature

of the pairing amplitude in N|SC, FMI|SC, and FMM|SC heterostructures.

In this work we investigate the effect of a spin-active interface on the symmetry of the

superconducting pairing induced in the TI surface by proximity to an s-wave superconduc-

tor. Previous works on TI|SC heterostructures [114–117] had not taken into account the

presence of a spin-active interface. In principle any interface between two materials whose

quasiparticle spin states are different can be thought of as spin-active. However, one could

also engineer an interface, A|B, to be spin-active by inserting a thin layer of magnetic

material between A and B. Below we develop a model to describe a generic spin-active
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interface between two effectively 2D systems. We then apply it to the case of a TI|SC

heterostructure with a spin-active interface. Our results show that the presence of a spin-

active interface profoundly affects the nature of the proximity-induced superconducting

pairing in the TI. In particular, we find that in TI|SC heterostructures with a spin-active

interface the odd-frequency components of the pairing amplitude have different spin and

spatial structure from the ones of TI|SC heterostructures with no spin-active interface and

from the ones of N|SC, FMI|SC, and FMM|SC heterostructures with spin-active interfaces

[125–130].

5.1 Model and Setup

Superconductor 
Spin-Active Interface 

3D Toplogical Insulator 

z

FIG. 5.1: Schematic of topological insulator-superconductor heterostructure. Sketch of the
TI|SC heterostructure considered.spin-active interface is present between the superconductor
and the 3D topological insulator. The spin-active interface could be realized by a thin layer of
magnetic material such as EuO.

Figure 5.1 shows schematically a TI-SC heterostructure with a spin-active interface.

We consider three kinds of spin-active interfaces: those which confer a spin-dependent

interfacial phase (SDIP) to quasiparticle states at the interface; those that flip the spins of

quasiparticles at the interface; and those that do both. By SDIPs we refer to the process

whereby quasiparticle states incident on the interface pick up a spin-dependent phase when

transmitted |↑⟩k → eiθ↑,k |↑⟩k and |↓⟩k → eiθ↓,k |↓⟩k. The spin and k-dependence of the
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phases θα,k are determined by the microscopic details of the interface [129, 131–133]. This

process is thought to be a common feature of spin-active interfaces [125, 132, 134–137] and

can be thought of as a precession of the incident electron’s spin about the magnetization

axis of the interface. Let ηk ≡ (θ↑,k + θ↓,k + θ↑,−k + θ↓,−k)/2, δθk ≡ θ↑,k − θ↓,k and

ζk ≡ (δθk − δθ−k)/2, using this convention a spin-singlet pair |↑⟩k |↓⟩−k − |↓⟩k |↑⟩−k is

converted to eiηk
(
eiζk |↑⟩k |↓⟩−k − e−iζk |↓⟩k |↑⟩−k

)
upon scattering at the interface. Hence

a singlet pair in the superconductor develops a triplet component proportional to sin ζk

at the interface. Thus we can see that the most important consequence of the presence of

SDIPs is the conversion of purely spin singlet pairing amplitudes to a linear combination of

singlet and triplet amplitudes at the interface. Any material that possesses this property

could be used to capture the effects we derive for SDIPs. By spin-flipping (SF) we refer to

tunneling processes that do not conserve the spin of transmitted electrons. This process

could be realized by any material whose quasiparticle states are in a spin state that is

a different linear combination of spin up and spin down from the superconductor. An

example of this kind of material would be a ferromagnetic half-metal.

The main difference between a topological insulator and other materials for which

the effect of spin-active interfaces have been studied is that, at low energies, topological

insulator states possess a spin lying in the plane of the surface whose direction is locked

with the direction of the momentum. We will show that this affects the symmetries of the

induced pairing, creating odd-frequency m = 1 triplet (S = 1; m = 1) correlations for any

spin-active interface that confers SDIPs.

To model the system in Fig 5.1 we employ the Hamiltonian: H = HTI + HSC + Ht
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where:

HTI =
∑

k,λ,λ′

(!vẑ · σ × k− µσ0)λλ′c†k,λck,λ′

HSC =
∑

k,λ,λ′

(
ϵkd

†
k,λdk,λ + ∆̂λλ′d†k,λd

†
−k,λ′

)
+ h.c.

Ht =
∑

k,λ,λ′

T̂λλ′c†k,λdk,λ′ + h.c.

(5.1)

where σ0 is the 2 × 2 identity matrix in spin space, σ is the vector (σ1, σ2, σ3) formed

by 2 × 2 Pauli matrices in spin space, k = (kx, ky, 0), v is the Fermi velocity of the

surface states in the TI, µ is the chemical potential in the TI surface, c†k,λ

(
d†k,λ

)
creates a

quasiparticle with momentum k and spin λ in the TI surface (superconductor), ϵk is the

energy of a superconductor quasiparticle state measured from the chemical potential in the

superconductor, ∆̂ = −∆0iσ2 is the order parameter of the superconducting condensate,

and T̂ = (t0σ0 + t · σ) with t = (t1, t2, t3). Notice that the tunneling term accounts for

the possibility of spin-flip processes at the interface if t ̸= 0.

5.2 Proximity-Induced Pairing

To investigate the effect of the spin-active interface on proximity-induced pairing in

the TI we calculate the pairing amplitude in the TI as a function of momentum k and

Matsubara frequency ω, F̂ TI(k,ω). To leading order in T̂ we have:

F̂ TI(k,ω) = ĜTI
0 (k,ω)T̂ F̂ SC

θk
(k,ω)T̂TĜTI

0 (−k,−ω)T (5.2)

where we have included SDIP by a transformation in spin-space at the interface F̂ SC
θk

(k,ω) =

eiηkei
δθk
2 σ3F̂ SC

0 (k,ω)ei
δθ−k

2 σ3 , where F̂ SC
0 (k,ω) = −∆̂/ (ω2 + ϵ2k +∆2

0) is the pairing ampli-

tude in the SC.

Evaluating the expression on the right hand side of Eq (5.2) we find F̂ TI(k,ω) =
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−i∆0

(ω2+ϵ2k+∆2
0)[(iω+µ)2−!2v2k2][(iω−µ)2−!2v2k2]e

iηk f̂TI(k,ω) where

f̂TI(k,ω) = fTI
0 σ0 + fTI

1 σ1 + fTI
2 σ2 + fTI

3 σ3 (5.3)

and

fTI
0 = 2 sin ζk

[
−
(
ω2 + µ2 + !2v2(k2

x − k2
y)
)
(t0t1 − it2t3)

]

+ 2 sin ζk
[
−2!2v2kxky (t0t2 + it1t3) + iω!vky(t20 − 2t23 + |t|2)

]

+ 2 cos ζk
[
!vkxµ(t20 − |t|2)

]

fTI
1 = − sin ζk

[(
ω2 + µ2 − !2v2k2

) (
t20 − 2t23 + |t|2

)]

− sin ζk [4iω!v [kx(t0t2 + it1t3)− ky(t0t1 − it2t3)]]

fTI
2 = sin ζk [4µ!v [kx(t0t1 − it2t3) + ky(t0t2 + it1t3)]]

− cos ζk
[(
ω2 + µ2 + !2v2k2

) (
t20 − |t|2

)]

fTI
3 = −2 sin ζk

[(
ω2 + µ2 − !2v2(k2

x − k2
y)
)
(t1t3 − it0t2)

]

− 2 sin ζk
[
−2!2v2kxky (t2t3 + it0t1) + ω!vkx(t20 − 2t23 + |t|2)

]

− 2 cos ζk
[
i!vkyµ(t20 − |t|2)

]
.

(5.4)

The S = 1 m = ±1 components of the pairing amplitude are given by fTI
0 ± fTI

3 , the

m = 0 triplet component by fTI
1 , while the singlet (S = 0) is given by fTI

2 . From Eq (5.4)

we can see that the presence of a spin-active interface induces odd-frequency triplet corre-

lations in the TI, similar to the case where the TI layer is replaced by a 3D normal metal

or ferromagnetic material [126, 128, 129, 132, 135, 137, 138]. It is interesting to note that

the m = ±1 amplitudes possess a non-trivial k-dependence reminiscent of a chiral state.

Specifically, the odd-frequency components are proportional to |k| sin ζke∓iφk while the

even-frequency components are proportional to |k|2 sin ζke∓i2φk where φk = tan−1 ky/kx.

From Eqs (5.4) we note that if there are no SDIPs, that is ζk = 0, then the fTI
1 component
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does not contribute to f̂TI(k,ω) and the fTI
0 and fTI

3 components are proportional to µ

so that at the Dirac point no triplet correlations are induced in the TI at this order. The

next term contributing to F̂ TI(k,ω) is proportional to T̂ 4 and at this order we do find

odd-frequency triplet correlations even with ζk = 0, however these amplitudes are orders

of magnitude smaller than the singlet contribution in Eq (5.4) and will not be presented

here.

If instead we have ζk ̸= 0 and no spin-flipping (t = 0) then Eqs (5.4) simplify to:

fTI
0 = 2t20!v [µ cos ζkkx + iω sin ζkky]

fTI
1 = −t20 sin ζk

(
ω2 + µ2 − !2v2k2

)

fTI
2 = −t20 cos ζk

(
ω2 + µ2 + !2v2k2

)

fTI
3 = −2t20!v [ω sin ζkkx + iµ cos ζkky] .

(5.5)

From these equations we see that even in the absence of spin-flip processes SDIPs lead to

chiral odd-frequency m = ±1 triplet pairing on a TI surface. However, spin-flip processes

are necessary to give rise to odd-frequency m = 0 triplet pairing and even-frequency

m = ±1 triplet pairing at the Dirac point of the TI.

To gain some insight, we compare these results to the case of a X|S junction with a

spin-active interface where we take X to be a 2D material described by the Hamiltonian

HX =
∑

k,λ(ξkσ0 + h · σ)λλa†k,λak,λ where we assume ξ−k = ξk. For h = 0 this describes

a 2D normal metal (X=N), for h ̸= 0 this describes a ferromagnet (X=F). We make a

distinction between two limits of the F case, one in which h = (0, 0, h) (FZ) and an easy-

plane ferromagnet h = h(cosφ, sinφ, 0) (FE). To calculate the leading order contribution to

the anomalous Green’s function for this kind of system, F̂X(k,ω), (ignoring the effect of the

exchange field on the superconductor) we replace ĜTI
0 (k,ω) in Eq (5.2) with ĜX

0 (k,ω) =

1
(ξk−iω)2−|h|2 [(iω − ξk)σ0 + h · σ]. Evaluating the resulting expression we find F̂X(k,ω) =
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−i∆0

(ω2+∆2+ϵ2k)[ξ
4
k+2ξ2k(ω

2−|h|2)+(ω2+|h|2)2]e
iηk f̂X(k,ω) where

f̂X(k,ω) = fX
0 σ0 + fX

1 σ1 + fX
2 σ2 + fX

3 σ3. (5.6)

and

fX
0 = −i2 cos ζkωh2

(
t20 − |t|2

)

− 2 sin ζk (h1ξk + ih2h3)
(
t20 − 2t23 + |t|2

)

+ 2 sin ζk
(
ω2 + ξ2k − 2h2

2 + |h|2
)
(t0t1 − it2t3)

+ 4 sin ζk (h1h2 + ih3ξk) (t0t2 + it1t3)

fX
1 = 2 cos ζkωh3

(
t20 − |t|2

)

− sin ζk
(
ω2 + ξ2k + 2h2

1 − |h|2
) (

t20 − 2t23 + |t|2
)

− 4 sin ζk (h2h3 + ih1ξk) (t2t3 + it0t1)

+ 4 sin ζk (h2ξk + ih1h3) (t0t2 + it1t3)

fX
2 = cos ζk

(
ω2 + ξ2k − |h|2

) (
t20 − |t|2

)

− 2 sin ζkω [2h1 (t1t3 − it0t2) + 2h2 (t2t3 + it0t1)]

+ 2 sin ζkωh3

(
t20 − 2t23 + |t|2

)

fX
3 = 2 cos ζkωh1

(
t20 − |t|2

)

+ 2 sin ζk (h1h3 + ih2ξk)
(
t20 − 2t23 + |t|2

)

+ 2 sin ζk
(
ω2 + ξ2k − 2h2

1 + |h|2
)
(t1t3 − it0t2)

− 4 sin ζk (h3ξk + ih1h2) (t0t1 − it2t3) .

(5.7)

Notice that the odd-frequency m = 0 triplet component is proportional to h3 cos ζk,

while the m = ±1 triplet component is proportional to (h2 ± ih1) cos ζk hence if the

material has a non-zero exchange field then even for ζk = 0 there is an odd-frequency
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triplet amplitude in contrast to the case of either a normal metal or a TI. At this point we

can use the components in Eqs (5.4, 5.7) to explore the properties of the cases noted above.

The symmetries for the four systems TI|SC, N|SC, FZ|SC, and FE|SC are summarized in

Table 5.1.

TABLE 5.1: Comparison of Proximity-Induced Pairing in TI|SC, N|SC, FZ|SC, and FE|SC
Interface TI|SC N|SC FZ|SC FE|SC
No SF or SDIP S = 0, 1; m = ±1 S = 0 S = 0 S = 0

Even-ω SDIP S = 0, 1; m = 0,±1 S = 0, 1; m = 0 S = 0, 1; m = 0 S = 0, 1; m = 0,±1
SF S = 0, 1; m = ±1 S = 0 S = 0 S = 0
SF and SDIP S = 0, 1; m = 0,±1 S = 0, 1; m = 0,±1 S = 0, 1; m = 0,±1 S = 0, 1; m = 0,±1

No SF or SDIP – – S = 1; m = 0 S = 1; m = ±1
Odd-ω SDIP S = 1; m = ±1 – S = 0, 1; m = 0 S = 1; m = ±1

SF – – S = 1; m = 0 S = 1; m = ±1
SF and SDIP S = 1; m = 0,±1 – S = 0, 1; m = 0 S = 0, 1; m = ±1

Table 5.1 shows that the presence of an interface with SDIPs induces odd-frequency

triplet correlations in TI|SC heterostructures. Another feature of Table 5.1 is that the

FZ|SC and N|SC only develop m = ±1 triplet amplitudes if the interface both confers

SDIPs and is spin-flipping, in contrast to the TI|SC and FE|SC which exhibit m = ±1

triplet amplitudes for all four interfaces. This can be explained by realizing that the

SDIPs convert a singlet pair into a linear combination of singlet and m = 0 triplet but

this mechanism cannot align two spins in a Cooper pair that were originally anti-aligned.

Spin-flipping processes can take the m = 0 triplet state and rotate it out of the plane to

produce an m = ±1 triplet. In the case of the FE and TI, the spin of the eigenstates for

these materials lies in the x-y plane and hence these states are already a linear combination

of |↑⟩ and |↓⟩. This acts as an intrinsic mechanism for aligning the spins of the paired

quasiparticles. For this reason we can see that the FE and TI exhibit m = ±1 triplet

contributions for all four interfaces.
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It is worth noting that the symmetries of the induced pairings in the FE are not

sensitive to the value of the chemical potential while in the case of the TI, for interfaces

that lack SDIPs, the only triplet contributions are proportional to µ so that at the Dirac

point an interface without SDIPs will only give rise to singlet pairing in the TI. Another

difference between the TI and FE is that for the TI odd-frequency pairing only develops

in the presence of SDIPs while odd-frequency pairing is ubiquitous in the FE (and FZ)

for all four interfaces. These qualitative differences between the TI and FE results can be

attributed to the chiral spin structure of the TI, i.e. the fact that k → −k implies s → −s,

where s is the spin of an electron on the surface of a TI.

Note that for the normal metal we see that no odd-frequency amplitudes are induced

at this order. We attribute this to the trivial spin structure of the normal metal whose

Green’s function is even in frequency and proportional to the identity in spin space so the

only way to induce odd-frequency correlations in this material would be through processes

of higher order in T̂ .

5.3 Summary

In this chapter we analyzed proximity-induced superconductivity in TI|S heterostruc-

tures with a spin-active interface. We found the proximity-induced pairing amplitudes

in the TI to be qualitatively different from non-chiral materials. The presence of spin-

dependent interfacial phases give rise to odd-frequency m = ±1 triplet correlations. This

appears to be due to the unique spin structure of the TI surface states. Another in-

teresting feature of the m = ±1 triplet correlations for TI|S structures with a spin active

interface is the fact that both the even and odd-frequency contributions possess non-trivial

k-dependence reminiscent of a chiral state, the odd-frequency terms being proportional to

sin ζke−iφk and the even-frequency terms being proportional to sin ζke−i2φk . Additionally,
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we found the magnitude of the odd-frequency pairing amplitude to be dependent on the

direction of t a quantity that could be tuned by appropriately manufacturing the interface.

Depending on the degree of control one has on the direction of t, this could allow for the

ability to turn the odd-frequency pairing amplitude on or off as desired.
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CHAPTER 6

Many-body instabilities and mass

generation in slow Dirac materials

This chapter is based on work discussed in [139]. One important way the Dirac nature

of quasiparticles manifests itself is in the effect of interactions. If the quasiparticles of a

system obey the Schrödinger equation then the ratio of the average interparticle Coulomb

energy to the average kinetic energy, rs = EC/EK , is related to the density by rs ∝ n−1/d,

[18, 140] where the constant of proportionality depends on characteristics of the material.

In contrast to normal metals, for Dirac materials this ratio is a characteristic of the system,

independent of the electron density, given by α ≡ EC/EK = e2/(!ϵv). In this expression e

is the charge of the electron, ϵ is the material’s dielectric constant, ! is the reduced Planck

constant, and v is the speed of the Dirac particles. Much work has gone into the study

of the phase diagram of graphene with respect to the strength of Coulomb interactions

[4, 18, 140–146]. Some theoretical studies indicate the possibile existence of a critical

value of the coupling constant, αc, such that if α < αc the spectrum remains gapless and

if α > αc the system flows toward the strong coupling regime and is likely to develop a
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gap [18]. Thus far, perturbative and numerical results suggest a theoretical critical value

of αc ≈ 1 [18, 143] while experiments involving suspended graphene, for which α ≈ 2.2,

indicate that no gap exists larger than 0.1meV [147]. Therefore, it is safe to say that the

ground state of Dirac materials in the strong coupling regime is not currently understood.

For this reason we propose to study a class of materials with much smaller Fermi velocity

than that of graphene since this class of materials is likely to possess α ≫ αc and would be

a better candidate for experiments probing the strong coupling regime in Dirac materials.

In previous chapters we have discussed some of the experimentally verified exam-

ples of three-dimensional (3D) topological insulators (TIs) which include: Bi2Se3, Bi2Te3,

and Sb2Te3, all of which have Fermi velocities roughly half of that in graphene [66, 148].

However, there is another class of topological insulators, the topological Kondo insula-

tors (TKI), in which the bulk states are formed by renormalized f -electron levels which

hybridize with conduction electrons to form a milivolt-scale gap in the bulk spectrum

[149–151]. The small gap in these materials combined with the large bulk effective mass

imply that the surface Fermi velocity could be quite small. Some materials theoretically

predicted to fall into this category include SmB6 [152], YbB12 [153], and PuB6 [154]. Fur-

thermore, there is a growing body of experimental evidence demonstrating that SmB6 does

in fact host metallic surface states [155, 156].

In this chapter we present a model to study the surface states of a TKI and proceed

to investigate the possible ordered ground states for these systems within a mean field

theory. From this analysis, we find regions of parameter space for the model that admit

spin density wave and charge density wave solutions. For the case of strictly repulsive

interactions we find that these ordered solutions lie within the region of parameter space

corresponding to the strong coupling regime of Dirac materials (α > αc ≈ 1).
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6.1 Theoretical Model and Methods

To model the 2D surface states of a TKI, we consider a Hamiltonian defined on a

square lattice:

H0 = −i
A

2

∑

α,β,σ

∑

⟨ij⟩

ψ†
i,α,σẑ ·

(
R̂ij × σ

)

αβ
ψj,β,σ

+
∑

α,β,σ

∑

i,j

Γijψ
†
i,α,σσαβψj,β,σ

(6.1)

where α and β are orbital indices, σ is a spin index, R̂ij is the unit vector pointing from

lattice site j to lattice site i, and the matrix Γ̂ is defined as

Γij =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

4Γ ; i = j

−Γ ; i, j nearest neighbors

0 ; otherwise.

(6.2)

The term proportional to A leads to the formation of four separate Dirac points in the

Brillouin zone. The term proportional to Γ acts as a momentum-dependent mass term

which gaps out all of the Dirac points except the one at k = 0 allowing the model to

represent the surface states of a strong TI. Recalling the Nielsen-Ninomiya theorem [36]

this may seem too good to be true. In fact, in the process of adding this term we have

rendered our Hamiltonian spin degenerate, in a sense trading chirality for a linear energy

dispersion. The energy eigenvalues associated with this Hamiltonian in k-space are given

by:

E±
k = ±4Γ

[
sin2 akx

2
+ sin2 aky

2

]

×

√√√√√1 +

(
A

4Γ

)2 sin2 akx + sin2 aky[
sin2 akx

2 + sin2 aky
2

]2 .
(6.3)
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Expanding this dispersion for small k along the kx direction we find:

E±
k ≈ ±

(
aAk +

(3Γ2 − A2)a3

6A
k3

)
. (6.4)

Thus, we can see that to first order in k the dispersion matches the Dirac dispersion with

Fermi velocity given by aA/!. In Fig. 6.1 we plot the full dispersion from Eq. (6.3)

for different ranges of k to demonstrate the Dirac dispersion for a few different values

of the Fermi velocity. It shows that near the Dirac point the parameter A controls the

Fermi velocity; however, for A ≪ Γ we can see that the cubic term in Eq. (6.4) begins

to dominate and the dispersion away from the Dirac point becomes noticeably less linear.

Since we are most interested in the regime in which the model best describes a Dirac

material, in this work we focus on the case in which the chemical potential is close to the

Dirac point.

FIG. 6.1: Band structure for model of topological Kondo insulator. Plots of the band structure
given by Eq. (6.3) along the diagonal of the square Brillouin zone using four different values
of the parameter A: {1/4 (solid, black), 1/8 (dashed, red), 1/16 (dashed-dot, blue), and 1/32
(dotted, green)}; in two different momentum ranges: (a) from k = (−1/5a,−1/5a) to k =
(1/5a, 1/5a) and (b) from k = (−π/a,−π/a) to k = (π/a,π/a). All energies are in units of the
bandwidth.
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In terms of the model parameters the bandwidth is given by:

w =

⎧
⎪⎨

⎪⎩

16Γ ; A ≤ 4Γ

4A2

√
2A2 + 16Γ2

; A > 4Γ

Note that for A ≤ 4Γ the bandwidth is a constant set by the model parameter Γ. In the

analysis that follows we restrict the range of A to A ≤ 4Γ and present all energies in units

of the bandwidth w = 16Γ. We also present all distances in units of the lattice constant a.

To account for interactions we consider the full Hamiltonian: H = H0 + HI , where

HI takes on the form:

HI =
V0

2

∑

σ,σ′

∑

i ̸=j

e−|ri−rj |/λ
√
| ri − rj |2 +d2

ψ†
i,f,σψi,f,σψ

†
j,f,σ′ψj,f,σ′

− U
∑

i

ψ†
i,f,↑ψi,f,↑ψ

†
i,f,↓ψi,f,↓

(6.5)

where V0 controls the strength of the long-range Coulomb interaction between f -electrons

and U is introduced as an on-site interaction between f -electrons, λ is a screening length,

and d is a short distance cutoff.

In our calculations, we replace the exact interaction term HI with the mean field

Hamiltonian:

HMF
I = V0

∑

σ,σ′

∑

i ̸=j

e−|ri−rj |/λ
√
| ri − rj |2 +d2

⟨ni,f,σ⟩ψ†
j,f,σ′ψj,f,σ′

− U
∑

i

(
⟨ni,f,↑⟩ψ†

i,f,↓ψi,f,↓ + ⟨ni,f,↓⟩ψ†
i,f,↑ψi,f,↑

)

+
∑

i

(
∆iψ

†
i,f,↑ψ

†
j,f,↓ +∆∗

iψi,f,↓ψj,f,↑

)
+ E0.

(6.6)

If we wish to include an attractive on-site interaction between f -electrons we set U > 0;

however, if we wish to include on-site Coulomb repulsion we can set U = −V0/d. We may
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choose to write this in a more compact notation as:

HMF
I =

∑

α,β,σ,σ′

∑

i,j

Wiασ,jβσ′ψ†
j,β,σ′ψj,β,σ′

+
∑

i

(
∆iψ

†
i,f,↑ψ

†
j,f,↓ +∆∗

iψi,f,↓ψj,f,↑

)
+ E0

where

Wiασ,jβσ′ =

⎧
⎪⎨

⎪⎩

V0
e−|ri−rj |/λ√
|ri−rj |2+d2

⟨ni,f,σ⟩δαβδαf ; i ̸= j

−U⟨ni,f,σ⟩δαβδαf (1− δσσ′) ; i = j

and

∆i ≡ U⟨ψi,f,↑ψj,f,↓⟩.

Equipped with this mean-field Hamiltonian we perform a Bogoliubov transformation:

ψi,α,↑ =
∑

n

(
γn↑ui,α,n,↑ − γ†n↓v

∗
i,α,n,↑

)

ψi,α,↓ =
∑

n

(
γn↓ui,α,n,↓ + γ†n↑v

∗
i,α,n,↓

)

where γ†nσ (γnσ) creates (annihilates) an eigenstate of the mean-field Hamiltonian H. It

can be shown that the coefficients u and v satisfy the following equations:

ϵn,↑ui,α,n,↑ =
∑

j,β

Hiα↑,jβ↑uj,β,n,↑ +∆ivi,f,n,↓

ϵn,↑vi,α,n,↓ = −
∑

j,β

H∗
iα↓,jβ↓vj,β,n,↓ +∆∗

iui,f,n,↑

ϵn,↓ui,α,n,↓ =
∑

j,β

Hiα↓,jβ↓uj,β,n,↓ +∆ivi,f,n,↑

ϵn,↓vi,α,n,↑ = −
∑

j,β

H∗
iα↑,jβ↑vj,β,n,↑ +∆∗

iui,f,n,↓

(6.7)
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where Hiασ,jβσ′ ≡ H(0)
iασ,jβσ′ +Wiασ,jβσ′ and ϵn,σ are eigenvalues of H = H0 +HMF

I .

Given the solutions to these equations we can write the mean fields as:

⟨ni,α,↑⟩ =
∑

n

| ui,α,n,↑ |2 f(ϵn,↑)

+
∑

n

| vi,α,n,↓ |2 (1− f(ϵn,↓))

⟨ni,α,↓⟩ =
∑

n

| ui,α,n,↓ |2 f(ϵn,↓)

+
∑

n

| vi,α,n,↑ |2 (1− f(ϵn,↑))

∆i = U
∑

n

v∗i,f,n,↓ui,f,n,↑ (1− f(ϵn,↑))

− U
∑

n

v∗i,f,n,↑ui,f,n,↓f(ϵn,↓)

(6.8)

where f(ϵ) = 1
eϵ/kBT+1

is the the Fermi-Dirac distribution function at temperature T and

kB is the Boltzmann constant. Given an initial set of model parameters and a temperature,

Eqs. (6.7) and (6.8) allow us to solve for the density profile and superconducting order

parameter, ∆, self-consistently. In the next section we discuss our progress toward solving

these equations.

In some cases multiple solutions for the same model parameters may be found. In this

case it is useful to compare the free energy associated with each of the solutions, given by:

F = kBT lnZ, where Z is the partition function. The ground state of the system will be

given by the solution with the lowest free energy.

6.2 Numerical Results and Discussion

While it is straightforward to numerically solve Eqs. (6.7) and (6.8) for a finite

system, we can make the computation more efficient by using the supercell technique
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[157], as explained in Appendix A. For a system with a 10 × 10 real space unitcell and

8 × 8 supercell we solved for self-consistent solutions to Eqs. (6.7) and (6.8). For the

following results we focused on the case of nearest neighbor Coulomb interactions only

and the zero temperature limit. In Eq (6.6) we used a screening length of λ = 1 and a

lattice cutoff of d = 1. We considered two limiting cases: the case of a repulsive on-site

interaction (U = −V0), and the case of an attractive on-site interaction that scales with

the Coulomb interaction (U = V0).

FIG. 6.2: Phase diagram for topological Kondo insulator with repulsive on-site interaction.
Plot of the phases for the self-consistent solutions found in different regions of the A,V0-plane.
Note that the region below the line A = 0.25V0 appears to favor the formation of nontrivial
order, suggesting a value of αc of at least 4. The region enclosed by the red dashed line favors
the formation of spin density wave order while in the region enclosed by the black solid line we
find both spin density wave and charge density wave solutions. Outside of these regions the
solution is paramagnetic (PM).

Starting from initial seeds that possessed antiferromagnetic, ferromagnetic, checker-

board and stripe charge density wave (CDW) order in addition to random seeds we found

self-consistent solutions for Eqs. (6.7) and (6.8) using a convergence criterion of 10−3.

Some of the self-consistent solutions that emerged from the different seeds for the same

model parameters differed from each other. In these cases the one with the lowest free
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FIG. 6.3: Charge density wave solution. Plot of the density modulations over a 10×10 real
space unit cell, as observed in the SDW and CDW regions shown in Fig.s 6.2 and 6.4.

FIG. 6.4: Phase diagram for topological Kondo insulator with attractive on-site interaction.
Plot of the phases for the self-consistent solutions found in different regions of the A,V0-plane
for attractive on-site interaction. In the the region to the right of the solid black line the self-
consistent solutions possessed charge density wave order, outside of this region the solution was
paramagnetic (PM).
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energy was taken to be the solution. In Fig. 6.2 we show the regions of parameter space

for which we found solutions in the case of repulsive on-site interactions while in Fig. 6.4

we show the regions of parameter space for which we found solutions in the case with

attractive on-site interactions.

First, we consider the case of on-site repulsion, (U = −V0), Fig. (6.2). Note that

the general trend is consistent with our expectations for Dirac materials. In the region of

strong coupling, α = V0/A > αc, we find Coulomb-driven ordered states, while in the weak

coupling region, V0/A < αc, a paramagnetic (PM) normal metallic state exists. These

results are consistent with a value of αc as high as 6. Additionally, it appears that there is

a critical value of the coupling, Vc ≈ w/3, for this model below which the solution is trivial.

This is in contrast to the case of a Dirac continuum model in which the only parameter

governing the Coulomb interaction is α. This difference can be attributed to the fact that

for very small values of A the band structure appears less linear and eventually the cubic

term becomes more important, as we can see from Eq. (6.4). It is reasonable to expect

that real materials which host slow Dirac states will typically have similar behavior since

the bands for these materials are expected to develop nonzero curvature away from the

Dirac point [150, 151, 155, 156].

Taking a closer look at Figure 6.2 we can see that there are three distinct regions of

the V0,A-plane: a region favoring spin density wave (SDW) order; a region in which SDW

and CDW coexist; and a region in which the solution was PM. Both SDW and CDW

modulations exhibited a checkerboard pattern as shown in the sample plot in Fig 6.3.

Intermediate states were also observed but these appear to be higher energy excitations.

In the SDW region the boundary for the phase along the V0 axis, at approximately one

third of the bandwidth, defines the critical coupling, Vc. We find that above another

critical value of V0 CDW order begins to coexist with the SDW. In the coexistence region

for some model parameters we were able to find solutions with exclusively CDW order but
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it is unclear whether these solutions indicated the existence of an additional region of the

plane in which CDW is truly favored over SDW order, further calculations will be needed

to answer this question.

Next we turn our attention to the case in which we include an on-site attraction,

(U = V0), as shown in Fig. 6.4. In this case we find two regions: a region with CDW

and a PM region. Again, these density modulations followed a checkerboard pattern.

The region that favors CDW begins at V0 ≈ w/3 and covers the rest of the plane. It is

interesting to note that the CDW order appears for V0 > w/3 which is the same as Vc for

the case with repulsive on-site interactions. The region of the plane exhibiting CDW order

is consistent with αc ≈ 1. It should be noted that some of the self-consistent solutions

we found near the transition region V0 ≈ w/3 seemed to possess a small superconducting

order parameter; however, this order parameter was usually just below the convergence

criterion (even when the convergence criterion was lowered to 10−7). We attribute the

absence of a superconducting region to the fact that we restricted ourselves to the case of

half-filling in which there was no density of states to allow for superconducting pairing.

A more detailed study of the region near V0 ≈ w/3 may be interesting for future work

studying this model away from half-filling.

Note from Figure 6.4 the absence of any regions with magnetic order, in contrast to

Figure 6.2 in which SDW order was found. This can be accounted for by a heuristic argu-

ment based on Eq 6.6. Notice that the spin-dependent terms in the mean field Hamiltonian

are given by −U
∑

i

(
⟨ni,f,↑⟩ψ†

i,f,↓ψi,f,↓ + ⟨ni,f,↓⟩ψ†
i,f,↑ψi,f,↑

)
, thus the expectation value of

the contribution to the total energy will be −2U
∑

i⟨ni,f,↑⟩⟨ni,f,↓⟩. For U > 0 we can

see that the energy can be minimized if the sum
∑

i⟨ni,f,↑⟩⟨ni,f,↓⟩ takes on its maximum

possible value. Each term of this sum has a maximum value when ⟨ni,f,↑⟩ = ⟨ni,f,↓⟩ = 1/2.

Therefore the minimum energy can be expected to be achieved in a state with no magnetic

order. However, for U < 0 the system can minimize its energy through an on-site spin
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polarization.

6.3 Summary

In this chapter we presented a model for studying the surface states of a class of

topological Kondo insulators and explored the dependence of the band structure on the

model parameters, identifying the parameters which determine the Fermi velocity at the

Dirac point. We then added interactions to this model, accounting for both Coulomb

interactions as well as the possibility of an on-site attractive interaction. Using mean-

field theory, at zero temperature, we found self-consistent solutions for different model

parameters, investigating the relationship between the Fermi velocity at the Dirac point,

the strength of the interactions and the nature of the self-consistent solutions. For the case

with on-site repulsion we identified three regions of parameter space with different Fermi

velocity and coupling strength: a region which exclusively favored spin density wave order,

a region of coexisting spin density wave and charge density wave order, and a paramagnetic

normal metallic region. We also identified a critical value of the Coulomb interaction

strength Vc ≈ w/3 below which the solutions were normal metallic. When we considered

the case of an attractive on-site interaction we found that the solutions possessed charge

density wave order above this same critical Coulomb interaction strength.
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CHAPTER 7

Conclusion

In this dissertation we have explored the consequences of the nontrivial interplay

between spin and momentum, known as chirality, in various two-dimensional electronic

systems. In each system we explored which features were a direct consequence of the

unique spin-momentum relation and which were a consequence of the geometry of the

band structure.

In Chapter 3 we studied the static and dynamic screening of gapped bilayer graphene

using the models discussed in Chapter 2. We found qualitative differences between the

dielectric screening function obtained using a simplified 2-band model and that obtained

using a more sophisticated 4-band model. In particular we found that, in the presence of

a band-gap, the static screening exhibited Kohn anomalies that were absent within the

2-band model. We also found that the plasmon modes had qualitatively different character

in the 4-band model compared to 2-band results. Additionally, we studied the effect of

trigonal warping on the screening properties of bilayer graphene.

In Chapter 4 we formulated a continuum model to study the low-energy electronic

structure of heterostructures formed by graphene on a strong three-dimensional topological
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insulator (TI) both for the case of commensurate and incommensurate stacking. We found

that the proximity of the TI induced a strong enhancement of the spin-orbit coupling in

graphene that can be tuned via the twist angle.

In Chapter 5 we examined the effect of a spin-active interface on the symmetry of

proximity-induced superconducting pairing amplitudes in topological insulators. We de-

veloped a model to investigate the leading order contribution to the pairing amplitude con-

sidering three different kinds of spin-active interfaces: (i) those that induce spin-dependent

scattering phases, (ii) those that flip the spin of incident electrons, and (iii) interfaces that

both induce spin-dependent phases and flip the spins of incident electrons. We found that

in cases (i) and (iii) odd-frequency triplet pairing was induced in the TI while for case

(ii) no odd-frequency pairing was induced to leading order. Then, comparing our results

to those for normal metals and ferromagnetic materials, we found that the nontrivial spin

structure of the TI lead to qualitatively different behavior of the pairing amplitudes.

In Chapter 6 we studied the many-body instabilities of topological Kondo insulators.

Using a tight-binding model we identified regions of parameter space in which the system

exhibited spin density wave, and charge density wave order. Additionally, we identified

a value of the critical coupling for these transitions, highlighting the difference between

these results and those obtained using continuum models for Dirac materials.
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APPENDIX A

Supercell Technique

The system of equations given by Eqs 6.7 and 6.8 can be solved for finite systems by

simple matrix diagonalization. However, the matrix that must be diagonalized is 8N×8N ,

where N is the number of lattice sites and 8 = 2(spins) × 2(orbitals) × 2(electron-hole).

We can see that for 6400 sites this would involve diagonalizing a 51200 × 51200 matrix

which is not terribly practical. Using the supercell technique we can decrease the size of

the matrix that needs to be diagonalized significantly. In the framework of the supercell

technique we recognize that, due to the periodicity of the system, the solutions, uri,α,n,σ

and vri,α,n,σ, are Bloch waves. To account for this we write

uri,α,n,σ = ei∗ri·kuk,ri,α,n,σ

vri,α,n,σ = ei∗ri·kvk,ri,α,n,σ

(A.1)
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where k is the crystal momentum. After this transformation Eqs 6.7 and 6.8 become:

ϵk,n,↑uk,i,α,n,↑ =
∑

j,β

Hiα↑,jβ↑;kuk,j,β,n,↑ +∆ivk,i,f,n,↓

ϵk,n,↑vk,i,α,n,↓ = −
∑

j,β

H∗
iα↓,jβ↓;kvk,j,β,n,↓ +∆∗

iuk,i,f,n,↑

ϵk,n,↓uk,i,α,n,↓ =
∑

j,β

Hiα↓,jβ↓;kuk,j,β,n,↓ +∆ivk,i,f,n,↑

ϵk,n,↓vk,i,α,n,↑ = −
∑

j,β

H∗
iα↑,jβ↑;kvk,j,β,n,↑ +∆∗

iuk,i,f,n,↓

(A.2)

and

⟨ni,α,↑⟩ =
1

Mxy

∑

n,k

| uk,i,α,n,↑ |2 f(ϵk,n,↑)

+
1

Mxy

∑

n,k

| vk,i,α,n,↓ |2 (1− f(ϵk,n,↓))

⟨ni,α,↓⟩ =
1

Mxy

∑

n,k

| uk,i,α,n,↓ |2 f(ϵk,n,↓)

+
1

Mxy

∑

n,k

| vk,i,α,n,↑ |2 (1− f(ϵk,n,↑))

∆i =
U

Mxy

∑

n,k

v∗k,i,f,n,↓uk,i,f,n,↑ (1− f(ϵk,n,↑))

− U

Mxy

∑

n,k

v∗k,i,f,n,↑uk,i,f,n,↓f(ϵk,n,↓)

(A.3)

where k = 2π
Mxya

(
nx
Nx

, ny

Ny

)
where nx = 1, 2, ...,Mx and ny = 1, 2, ...,My, Mx and My are the

number of unitcells in the x and y direction respectively, Mxy = MxMy, Nx and Ny are

the number of lattice sites per unitcell in the x and y direction respectively, and we define

Hiασ,jβσ′;k ≡
∑

Rj

eik·(rj+Rj−ri)Hriασ,(rj+Rj)βσ′ .
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Now, a system composed of 6400 sites can be studied by diagonalizing a 10 × 10 real

space system using an 8× 8 supercell. This means we only need to diagonalize a 800×800

matrix instead of 51200 × 51200. Moreover, this diagonalization is performed for each

k independently and thus the procedure may be easily parallelized to further improve

performance.
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