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ABSTRACT PAGE

Measurements in the late 1980s at CERN revealed that quark spins account for a small
fraction of the proton’s spin. This so-called spin crisis spurred a number of new exper-
iments to identify the proton’s silent spin contributors, namely, the spin of the gluons,
which hold the quarks together, and the orbital angular momentum of both quarks and
gluons. One such experiment was eg1-dvcs at the Thomas Jefferson National Acceler-
ator Facility in Newport News, Va., which ran in 2009 and collected approximately 19
billion electron triggers for hydrogen. I will present new measurements of the single and
double-spin asymmetries ALU , AUL and ALL for π+ , π− and π0 , measured as a func-
tion of Bjorken xB, squared momentum transfer Q2, hadron energy fraction z, and hadron
transverse momentum Ph⊥. These asymmetries, which are convolutions of transverse-
momentum-dependent parton distributions and fragmentation functions, correlate with
the transverse momentum, and therefore with the orbital motion, of the struck quark.
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CHAPTER 1

Introduction

Deep Inelastic scattering (DIS) has been used as a tool over the past thirty years to

study the origins of nucleon spin. DIS occurs when a lepton scatters from an individual

quark inside a nucleon. Studying the spin observables of the reaction provide access to

nucleon spin.

The leading theory that explained the internal structure of the nucleon in the 1960s

was the Quark Parton model (QPM). It predicted that the nucleon was made of point-like

particles called “partons” Ref. [27]. This was confirmed by experiments at the Stanford

Linear Accelerator facility that measured Bjorken scaling. The proton in particular was

thought to be made up of two up (u) and one down (d) quark. The gluon was the mediat-

ing particle for the strong force that held the quarks together in the proton. The spins of

the up and down quarks are +1
2 and −1

2 respectively. If the origin of the proton spin is

the spin contribution of its constituents, then summing the spins of the individual partons

(quarks and gluons) should theoretically results in the then widely known fact that the

proton spin is 1
2 . Angular momentum conservation requires that the spin of the nucleon

1



2

be written as
1
2

=
∆Σ
2

+∆G+Lz (1.1)

in which ∆Σ denotes the net quark helicity, ∆G denotes the net gluon helicity and Lz is the

orbital angular momentum of the quarks and gluons.

In the late 1980s the EMC Collaboration at CERN measured ∆Σ and concluded that

it contributes to only a small fraction of the spin of the proton Ref. [28]. This spurred a

“spin crisis” in search of the other contributers of proton spin. Experiments measured both

the spin structure function gp
1 as defined in the QPM as well as, ∆G. The spin contribution

from a third, strange quark (s) was also included in gp
1 .

gp
1 =

1
2

(
4
9
(∆u+∆ū)+

1
9
(∆d +∆d̄)+

1
9
(∆s+∆s̄)

)
(1.2)

where ∆u(∆ū), ∆d(∆d̄) and ∆s(∆s̄) are the polarized u(ū), d(d̄), and s(s̄) quark (anti-

quark) distributions (number of quarks with their helicity aligned minus those with their

helicity anti-aligned with the nucleon spin), respectively Ref. [2]. More accurate mea-

surements of gp
1 and ∆G as recent as 2011 still do not add to the total proton spin.

In the naive QPM, the spin observables arising from the transverse motion of the

quark are zero. To completely, understand nucleon spin structure via Lz, the transverse

dimension can no longer be ignored. Semi-Inclusive DIS (SIDIS) holds the promise for

being sensitive to the third possible contributer of proton spin, namely, the orbital motion

of quarks.

Consider the reaction,

e+ p→ e′+π +X (1.3)

The electron scatters off a quark in the proton. The scattering products, undergo a
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study of higher twist effects. It is also where one can test if the quark-hadron duality works for
the spin structure functions.

3. Results from Jefferson Lab
With a high current, high polarization electron beam of energy up to 6 GeV and state-of-the-art
polarized targets, Jefferson Lab has completed a number of experiments which extended the
database on spin structure functions significantly, both in kinematic range (low Q2 and high x)
and in precision. The neutron results are from Hall A using polarized 3He as an effective
polarized neutron target and two high resolution spectrometers. The polarized luminosity
reached 1036 s−1cm−2 and in-beam polarization improved from 35% (1998) to over 65% (2008).
The proton and deuteron results are from Hall B with the CLAS detector and Hall C with
the HMS spectrometer and using polarized NH3 and ND3 targets with in-beam polarization of
about 80% and 40% respectively.

An example of data on the proton g1 structure function together with the world data is shown
in Fig. 3. The Jefferson Lab measurements are mostly focussing on:

(i) The high-x region and the nucleon resonance region;
(ii) The moments of spin structure functions, especially at low to moderate Q2;
(iii) The higher twist effects related to parton correlations;
(iv) The contributions to the nucleon spin puzzle.

These results will be discussed in detail in the next sections.
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Figure 3. World results on gp
1 . The solid line is the conventional DIS frontier (W = 2 GeV,

Q2 = 1 GeV2).

3.1. Spin structure in the valence quark (high-x) region
Jefferson Lab Hall A experiment E99-117 [32] measured the neutron asymmetry An

1 with
high precision from a polarized electron beam scattering off a 3He target polarized either

New Insights into the Structure of Matter: The First Decade of Science at Jefferson Lab IOP Publishing
Journal of Physics: Conference Series 299 (2011) 012005 doi:10.1088/1742-6596/299/1/012005
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FIG. 1.1: World data on gp
1 [2].

hadronization process to form a new hadron or meson that carries the struck quark. The

transverse motion of the quark is transferred to the transverse momentum, Ph⊥ of the π

meson. We study three flavors of the π meson (or pion) - positive (ud̄), negative (dū) and

neutral (uū−dd̄)/
√

2.

An analogy can be drawn with the spin structure function gp
1(xB,Q2) where Q2 is the

virtuality of the photon in the inclusive reaction, xB = Q2

2Mν is the momentum fraction, M is

the proton mass and ν is the lepton energy transfer. Similarly, SIDIS equivalent structure

functions are extracted in terms of (xB,Q2,z,Ph⊥,φh) Ref. [26]. The fractional energy

of the outgoing pion is z = Eπ
ν , φh is the angle between the lepton and hadron planes as

discussed in Chapter 2. The missing mass in the reaction is denoted by X .

The SIDIS unintegrated structure functions are multi-dimensional and take into ac-

count the transverse motion of quarks thus providing more information than the standard

collinear polarized structure functions like gp
1 . These new structure functions can be fur-



4Figure 1. Polarized parton distributions in the proton by Leader, Stamenov and Sidorov [28].

Figure 2. ∆g/g measurements [29].

• The strange quark polarization over the measured range (and within systematic
uncertainties) is consistent with zero. This seems to be in contradiction with the results extracted
from global analysis of inclusive data. It is important to independently verify this result.

The results of the high energy experiments left us with some open questions, such as • Is the
contribution of Lq significant? • How large is the gluon contribution ∆G? • What is the flavor
dependence of the spin structure?

The Jefferson Lab spin program in the last decade has helped answer some of the questions.
More importantly, Jefferson Lab experiments have explored the high-x and low- to intermediate-
Q2 regions with high precision. The high-x region is where the valence quarks dominate and
pQCD and quark models have predictions. The low-Q2 region is where predictions from chiral
perturbation theory, the leading effective theory of strong interaction at long distance, can
be tested. Measurements in the intermediate-Q2 region explore the transition between the
descriptions of the strong force from the perturbative to nonperturbative regime of QCD. In
particular, one can learn about the quark-gluon and quark-quark correlations through systematic

New Insights into the Structure of Matter: The First Decade of Science at Jefferson Lab IOP Publishing
Journal of Physics: Conference Series 299 (2011) 012005 doi:10.1088/1742-6596/299/1/012005
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FIG. 1.2: World data on ∆g/g [2].

ther factorized into fragmentation functions (FFs) and transverse momentum distributions

(TMDs). TMDs describe the orbital motion of quarks before scattering and FFs describe

the quark fragmenting into a hadron or meson. We measure single and double spin asym-

metries in SIDIS which access TMDs.

The description of TMD theory and phenomenology are detailed in Chapter 2. The

details of the eg1-dvcs experiment to measure asymmetries ALU , AUL and ALL are ex-

plained in Chapter 3. The analysis procedure is described in Chapters 4 and 5. I present

the final results and conclusions in Chapter 6.



CHAPTER 2

Interpretation and Theory

2.1 Semi Inclusive Asymmetries

We measure the electron-proton scattering process of the form,

e(l)+N(P)→ e(l′)+π(Ph)+X(P′) (2.1)

with the 4-momenta for each particle given in parentheses. The kinematic diagram for the

reaction is shown in Figure 2.1. The conventional kinematic variables, as defined in the

introduction, are used throughout this section. The electron l = (E,~l) exchanges a virtual

photon q = (ν = E−E ′,~q) with the stationary nucleon and recoils with a 4-momentum

l′ = (E ′,~l′). The reaction produces a hadron with 4-momentum Ph = (Eh,~Ph). The plane

formed by the incoming lepton and virtual photon is called the lepton plane. The lepton

plane also contains the scattered lepton. The plane formed by the virtual photon and the

newly formed hadron is called the hadron plane. The angle between these two planes

is given by φh. The component of the hadron momentum transverse to ~q is denoted by

5
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Ph⊥. The component of the nucleon spin transverse to ~q is called ~S⊥ and φS is the angle

between ~S⊥ and the lepton plane. The remainder of the reaction products are given by X .

It is often useful to express the spin dependance of the process using asymmetries,

which are constructed by looking at differences in polarized cross sections normalized by

their sums. In this thesis, we specifically look at three single and double spin asymmetries

obtained with a longitudinally polarized nucleon and a longitudinally polarized lepton.

J
H
E
P
0
2
(
2
0
0
7
)
0
9
3

y

z

x

hadron plane

lepton plane

l
l S

P
h

P
h

!h

!S

Figure 1: Definition of azimuthal angles for semi-inclusive deep inelastic scattering in the target
rest frame [28]. Ph⊥ and S⊥ are the transverse parts of Ph and S with respect to the photon
momentum.

have nonzero components g11
⊥ = g22

⊥ = −1 and ε12
⊥ = −ε21

⊥ = 1 in the coordinate system of

Fig. 1, our convention for the totally antisymmetric tensor being ε0123 = 1. We decompose

the covariant spin vector S of the target as

Sµ = S‖
Pµ − qµM2/(P · q)

M
√

1 + γ2
+ Sµ

⊥ , S‖ =
S · q
P · q

M
√

1 + γ2
, Sµ

⊥ = gµν
⊥ Sν (2.6)

and define its azimuthal angle φS in analogy to φh in eq. (2.3), with Ph replaced by S.

Notice that the sign convention for the longitudinal spin component is such that the target

spin is parallel to the virtual photon momentum for S‖ = −1. The helicity of the lepton

beam is denoted by λe. We consider the case where the detected hadron h has spin zero

or where its polarization is not measured.

Assuming single photon exchange, the lepton-hadron cross section can be expressed in

a model-independent way by a set of structure functions, see e.g. refs. [29, 30, 27]. We use

here a modified version of the notation in ref. [27], see appendix A, and write1

dσ

dx dy dψ dz dφh dP 2
h⊥

=

α2

xyQ2

y2

2 (1 − ε)

(

1 +
γ2

2x

)

{

FUU,T + εFUU,L +
√

2 ε(1 + ε) cos φh F cos φh

UU

+ ε cos(2φh)F cos 2φh

UU + λe

√

2 ε(1 − ε) sin φh F sinφh

LU

+ S‖

[

√

2 ε(1 + ε) sin φh F sin φh

UL + ε sin(2φh)F sin 2φh

UL

]

1The polarizations SL and ST in [27] have been renamed to S‖ and |S⊥| here. This is to avoid a clash

of notation with section 3, where subscripts L and T refer to a different z-axis than in Fig. 1.

– 3 –

FIG. 2.1: Semi-inclusive deep inelastic scattering kinematics. The electron l = (E,~l) exchanges
a virtual photon q with the stationary nucleon and recoils with a 4-momentum l′ = (E ′,~l′). The
reaction produces a hadron with 4-momentum Ph = (Eh,~Ph). The plane formed by the incoming
lepton and virtual photon is called the lepton plane. The plane formed by the virtual photon and
the newly formed hadron is called the hadron plane. The angle between these two planes is given
by φh. The transverse component of the hadron momentum is denoted by Ph⊥. The component of
the nucleon spin transverse to the virtual photon is called S⊥ and φS is the angle between S⊥ and
the virtual photon.

The target single spin asymmetry (SSA) is obtained when an unpolarized lepton is

incident on a longitudinally polarized target. It is written in terms of cross sections as

follows,

AUL =
dσ0→−dσ0←

dσ0→+dσ0← (2.2)
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Similarly, the beam single spin asymmetry is obtained when a longitudinally polarized

lepton is incident on an unpolarized target nucleon. It is written as,

ALU =
dσ→0−dσ←0

dσ→0 +dσ←0 (2.3)

The double spin asymmetry (DSA) explores the case where both the lepton and target

nucleon are longitudinally polarized. It is given by,

ALL =
dσ→→−dσ←→−dσ→←+dσ←←

dσ→→+dσ←→+dσ→←+dσ←←
(2.4)

The first subscript represents beam polarization and the second denotes target polar-

ization. The letter U (or 0) indicates an unpolarized lepton or nucleon and L denotes a

longitudinally polarized lepton or nucleon. The arrows → and ← denote cross sections

with right-handed and left-handed helicity, respectively, for the lepton, or spin along or

opposite the beam direction for the nucleon. To understand the physics hidden in these

asymmetries we look at their theoretical foundations in the following sections.

2.2 Semi Inclusive Cross sections

The expression for the semi-inclusive cross section in terms of structure functions

FUL, FLL, etc. is derived in Ref. [26]. The differential cross section written in terms of
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seven dimensions is given by,

d7σ
dK7 =

α2

xByQ2
y2

2(1− ε)

(
1+

γ
2x

)
FUU,T + εFUU,L +

√
2ε(1+ ε)cosφhFcosφh

UU

+ ε cos(2φh)F
cos2φh

UU +λe
√

2ε(1− ε)sinφhFsinφh
LU

+ S‖
[√

2ε(1+ ε)sinφhFsinφh
UL + ε sin(2φh)F

sin2φh
UL

]

+ S‖λe

[√
1− ε2FLL +

√
2ε(1− ε)cosφhFcosφh

LL

]

+ |S⊥|
[
sin(φh−φS)

(
Fsin(φh+φS)

UT,T + εFsin(φh−φS)
UT,L

)]

+ ε sin(φh +φS)F
sinφS

UT + ε sin(3φh−φS)F
sin(3φh−φS)

UT

+
√

2ε(1+ ε)sinφSFsinφS
UT +

√
2ε(1+ ε)sin(2φh−φS)F

sin(2φh−φS)
UT

+ |S⊥|λe

[√
1− ε2 cos(φh−φS)F

cos(φh−φS)
LT +

√
2ε(1− ε)cosφSFcosφS

LT

]

+
√

2ε(1− ε)cos(2φh−φS)F
cos(2φh−φS)
LT (2.5)

in which,
d7σ
dK7 ≡

d7σ
dxB dy dψ dz dφh dP2

h⊥
, (2.6)

y = P·q
P·l , α is the fine structure constant and ψ is the azimuthal angle of the target spin

around the direction of the incoming electron. This expression is valid in the lab reference

frame which is the frame in which the direction of the lepton beam is in the direction of

the z axis (which is different from Figure 2.1). The projections of the target polarization

vector parallel and perpendicular to the virtual photon direction are given by S‖ and S⊥ 1.

The quantity ε is the ratio of the longitudinal to transverse photon flux,

ε =
1− y− 1

4γ2y2

1− y+ 1
2y2 + 1

4γ2y2
(2.7)

1The target polarization vectors are also often referred to as SL and ST .
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and γ = 2MxB/Q. The helicity structure functions have a depolarization associated with

them because of the coordinate change from the photon to lepton frame of reference.

More details explaining the relationship between ψ , φS and the spin of the target nucleon

are explained in Appendix A.

The formulation of the cross section arises from a contraction of the lepton (Lµν )

and hadron (Wµν ) tensors Ref. [3] such that,

dσ
dxB dy dψ dz dφh dP2

h⊥
=

α2y
8zQ2 Lµν2MWµν (2.8)

The lepton tensor is written in terms of the 4-momenta of the incident and recoil electrons

as

Lµν = l′ν lµ + lν l′µ − (l · l′)gνµ + iPlενµαβ qα lβ . (2.9)

using the convention ε0123 = 1. The lepton beam polarization Pl = +1 corresponds to

purely right handed and Pl =−1 corresponds to purely left handed beam helicity 2 .

The hadron tensor is written as,

2MWµν =
1

2π3 ∑
X

∫ d3PX

2P0
X

δ 4(PX +Ph−P−q)〈P|Jµ(0) |hX〉〈hX |Jν(0) |P〉 (2.10)

where Jµ is the electromagnetic current divided by the elementary charge and a sum is

implied over the polarizations of all hadrons in the final state. The sum over all hadron

momenta is given by ∑X . The discussion is limited to the leading and first sub-leading

term in the 1
Q expansion of the hadron tensor at tree level. The corresponding expression

is given by,

2Pl should not be confused with PL which is the longitudinal component of the target polarization relative
to the lepton beam direction.
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Figure 2: Examples of graphs contributing to semi-inclusive DIS at low transverse momentum of
the produced hadron.

The leptoproduction cross section can be expressed as the contraction of a hadronic

and a leptonic tensor,

dσ

dx dy dψ dz dφh dP 2
h⊥

=
α2y

8zQ4
2MW µν Lµν , (3.6)

where the leptonic tensor is given by

Lµν = 2
(

lµ l ′ν + l ′µ lν − l · l ′gµν

)

+ 2iλe εµνρσ lρl′σ. (3.7)

The hadronic tensor is defined as

2MW µν =
1

(2π)3

∑

X

∫

d3P X

2P 0
X

δ(4)
(

q +P −PX −Ph

)

〈P |Jµ(0)|h,X〉〈h,X|Jν (0)|P 〉, (3.8)

where Jµ(ξ) is the electromagnetic current divided by the elementary charge and a sum is

implied over the polarizations of all hadrons in the final state.

The calculations in this paper are based on the factorization of the cross section into

a hard photon-quark scattering process and nonperturbative functions describing the dis-

tribution of quarks in the target or the fragmentation of a quark into the observed hadron.

We limit ourselves to the leading and first subleading term in the 1/Q expansion of the
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FIG. 2.2: Examples of diagrams contributing to tree level SIDIS scattering Ref. [3]. The correla-
tors for the quark distribution and fragmentation functions are Φ and ∆ respectively. The dotted
line is called the final state cut. The 4-momenta for the virtual photon, quark before scattering and
quark after scattering are q, p and k respectively. At the node, we have q + p = k. Diagram (b)
and (c) include one transversely polarized gluon.

Wµν =
z
M ∑

a
e2

a

∫
d2pT d2kT δ 2(pT +qT −kT )Tr Φa(xB, pT )γµ∆a(z,kT )γν (2.11)

− 1√
2Q

[
γα

�n+γνΦ̃a
Aα(xB, pT )γµ∆a(z,kT )+ γα

�n−γµ ∆̃Aα(z,kT )γνΦa(xB, pT )+h. c.
]

for which corrections are of order 1
Q2 , the sum runs over the quark and antiquark flavors a

with fractional charge, ea. The correlation functions Φ and ∆ represent quark distribution

and quark fragmentation, respectively. The addition of one gluon leg to the diagram

results in what are called analogs Φ̃a and ∆̃. Manipulations for these calculations are

easier done in terms of light cone coordinates (LCC) n±,nT . Details of these are found

in Appendix B. The definition of subscript T for qT , pT and kT comes from the LCC

formalism. The first, second and third term in the trace of the hadron tensor expression

correspond to diagrams (a), (b) and (c) in Figure 2.2. The analogs of Figure 2.2 (b) and

(c) with the gluon on the other side of the final state cut correspond to the Hermitian
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conjugate (h.c.) terms in the hadronic tensor.

The expression for each of the correlators Φa, ∆, Φ̃a and ∆̃ is worked out in detail

in Ref. [3]. Inserting the different correlators in the expression of the hadronic tensor,

one can calculate the leptoproduction cross section for SIDIS and project out the different

structure functions appearing in Equation 2.5. To have a compact notation for the results,

we introduce the unit vector ĥ =
~Ph⊥
|~Ph⊥|

and the condensed expression for the convolution

integral C is,

C [w f D] = x∑
a

e2
a

∫
d2pT d2kT δ (2)(pT −kT −Ph⊥/z)w(pT ,kT ) f a(x,pT )2)Da(x,kT )2).

(2.12)

The function f a comes from the quark distribution correlator Φ and is called a Transverse

Momentum Distribution (TMD) function. The function Da comes from quark fragmen-

tation correlator ∆ and is called a Fragmentation Function (FF). This holds under the

assumption of factorization which means that in semi-inclusive DIS the distribution of

the quark in the proton ( f a) before scattering is decoupled from the fragmentation struc-

ture (Da) of the quark after scattering. The function w(pT ,kT ) gives the expression the

appropriate weighting and the summation runs over all quarks and anti-quarks.

2.3 Transverse Momentum Dependent distributions

2.3.1 Longitudinally polarized TMDs

The structure functions of interest in this thesis are written in terms of TMDs and

FFs as follows:
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FIG. 2.3: Probabilistic interpretation of the leading-order transverse momentum distributions for
all combinations of quark and nucleon polarization. The green arrows indicate nucleon polariza-
tion and the red arrows indicate quark polarization.

Fsinφh
LU =

2M
Q

C

[
− ĥ ·kT

Mh

(
xBeH⊥1 +

Mh

M
f1

G̃⊥

z

)
+

ĥ ·pT
M

(
xBg⊥D1 +

Mh

M
h⊥1

Ẽ
z

)]
,

(2.13)

Fsinφh
UL =

2M
Q

C

[
− ĥ ·kT

Mh

(
xBhLH⊥1 +

Mh

M
g1L

G̃⊥

z

)
+

ĥ ·pT
M

(
xB f⊥L D1−

Mh

M
h⊥1L

H̃
z

)]
,

(2.14)

Fsin2φh
UL = C

[
−2

(ĥ ·kT)(ĥ ·pT)−kT ·pT
MMh

h⊥1LH⊥1

]
, and (2.15)
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FLL = C [g1LD1] , (2.16)

where M is the target nucleon mass and Mh is the mass of the outgoing hadron. Lower-

case letters are used for TMDs and upper-case letters are used for FFs.

The unpolarized FF, D1, and the Collins FF, H⊥1 , appear in the moments for FUL and

FLU . The other FFs seen are G̃⊥, Ẽ, and H̃. The TMDs associated with Fsinφh
LU are e, f1,

g⊥, and h⊥1 . For the case of the helicity structure function relating to the polarised target,

the TMDs listed are hL, g1L, f⊥L , and h⊥1L. The double polarized case of FLL also pro-

vides access to the semi-inclusive TMD - g1L - which is analogous to polarized structure

function, “g1” from inclusive scattering.

The TMD interpretation is shown in Figure 2.3. For example, the TMD h⊥1L describes

the spin structure of a transversely polarized quark in a longitudinally polarized hadron

and appears in the sin2φh modulation of the helicity structure function FUL, which in turn

appears in the numerator of the asymmetry AUL. The superscripts on the structure func-

tions indicate the terms in Equation 2.5 corresponding to sinφh and sin2φh modulations

associated with them. Using the asymmetry equations discussed in Section 2.1 we extract

structure functions and their φh modulations for the specified spin configurations.

2.3.2 Twist

Equation 2.5 lists all the terms that appear in leading-order perturbative QCD, to-

gether with terms that include a non-perturbative extra power of 1/Q. Three of the four

structure functions in Equations 2.13 - 2.16 have this extra factor. Naı̈vely, the power

of 1/Q scaling the structure function can be termed as the twist of that structure func-

tion. Using this rudimentary definition we can conclude that the terms in Equation 2.5 are
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calculated for twist-2 (leading) and twist-3 (sub-leading).

The more rigorous approach to understanding twist is discussed in Ref. [29] and out-

lined here. The concept of twist arises from the terms in the Operator Product Expansion

(OPE). Equation 2.10 is derived beginning from

4πWµν =
∫

d4ξ eiq·ξ 〈P,S| [Jµ(ξ ),Jν(0)] |P,S〉 . (2.17)

Contributions to this integral are dominated by ξ 2 ≈ 0 (or Q2 → ∞), and it can be ex-

panded in the OPE around ξ 2 = 0. The Fourier transform variable, ξ comes from writing

the hadron tensor in terms of electromagnetic currents Jµ and Jν .

[Jµ(ξ ),Jν(0)] ∝ ∑
|θ |

K[θ ](ξ 2)ξ µ1 . . .ξ µnθ θµ1...µµnθ
(0) (2.18)

where θµ1...µµnθ
are local operators and K[θ ](ξ 2) are functions ordered in degree of singu-

larity at ξ 2 = 0. The dimension of each local operator is given by dθ for a total of nθ

local operators. The OPE can be rewritten with suppressed indices, in terms of structure

functions analogous to the helicity structure functions in Section 2.2 as

4πW =
∫

d4ξ eiq·ξ ∑
|θ |

K[θ ](ξ 2)ξ µ1 . . .ξ µnθ 〈P|θµ1...µµnθ
(0) |P〉 (2.19)

where the matrix elements have the form

〈P|θµ1...µµnθ
(0) |P〉= Pµ1 . . .Pµnθ

Mdθ−nθ−2 fθ + . . . (2.20)

The power of the mass scale which appears in the equation is determined by dimen-

sional analysis and corresponds to Q2 in the SIDIS master equation (Equation 2.5). Twist,
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therefore is defined as tθ ≡ dθ −nθ . If we take the Fourier transform over ξ , we have

4πW ≈∑
θ

(
M√
Q2

)tθ−2(
1
xB

)nθ

fθ . (2.21)

The lowest twist operators in Equation 2.20 have tθ = 2, and the importance of an

operator as the scale (M or Q2) goes to ∞ is determined by the twist. In this formalism,

the higher twists are suppressed by a power of 1/Q which makes them disappear at large

Q2.

2.3.3 Connection to Asymmetries

Single and double spin asymmetries provide an excellent tool to gain access to in-

dividual helicity structure functions in Equation 2.5. The target single spin asymmetry is

defined as,

AUL =
σUL

σUU
(2.22)

where σUL is the cross-section portion from Equation 2.5 that relates to the polarized

target,

dσUL =
α2

xByQ2
y2

2(1− ε)

(
1+

γ
2x

)
S‖
[√

2ε(1+ ε)sinφhFsinφh
UL + ε sin(2φh)F

sin2φh
UL

]

(2.23)

and

dσUU =
α2

xByQ2
y2

2(1− ε)

(
1+

γ
2x

)[
FUU + ε cos(2φh)F

cos2φh
UU

]
. (2.24)

The target spin asymmetry is written in the form of moments of sine functions in the

above expressions,

AUL = Asinφh
UL sinφh +Asin2φh

UL sin2φh (2.25)
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The moment, Asin2φh
UL contains the twist 2 TMD h⊥1L convoluted with the FF H⊥1 , also

known as the Collins fragmentation function shown in Equation 2.15. The sinφh moment,

Asinφh
UL contains the twist 3 TMD, hL convoluted with the Collins fragmentation function.

Similarly, the beam spin asymmetry and double spin asymmetry are defined as,

ALU =
σLU

σUU
(2.26)

and

ALL =
σLL

σUU
(2.27)

where

dσLU =
α2

xByQ2
y2

2(1− ε)

(
1+

γ
2xB

)√
2ε(1+ ε)sinφhFsinφh

LU (2.28)

and

dσLL =
α2

xByQ2
y2

2(1− ε)

(
1+

γ
2xB

)
S‖λe

[√
1+ ε2FLL +

√
2ε(1+ ε)cosφhFcosφh

LL

]
.

(2.29)

The moment of the beam spin asymmetry is written as the coefficient of the sine function,

ALU = Asinφh
LU sinφh (2.30)

and moments of the double spin asymmetry are written terms of a constant term AC
LL and

the coefficient of the cosine term Acosφh
LL ,

ALL = AC
LL +Acosφh

LL cosφh (2.31)

For the beam spin asymmetry, the moment Asinφh
LU contains the twist 3 TMD e con-
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voluted with the Collins fragmentation function, H⊥1 (Eqn 2.13). The moments of the

double spin asymmetry contain the twist 2 TMD g1L convoluted with the unpolarized FF,

D1 (Eqn 2.16).

All of these moments are dependent on Q2, xB, z and, Ph⊥ and they contain within

them the physics of TMDs.

2.4 Previous Measurements
if there is a strong enhancement when the struck quark
flavor is present in the hadron.
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FIG. 2. Target-spin analyzing powers for π+: Asin φ
UL

(squares) and Asin 2φ
UL (circles) as a function of Bjorken x. Er-

ror bars show the statistical uncertainty and the band rep-
resents the systematic uncertainties for Asin φ

UL . As shown in
Table II, 〈Q2〉 varies with x.

In Table II the Asin φ
UL and Asin 2φ

UL analyzing powers are
given for π+ and π− at the measured 〈x〉 and 〈Q2〉 val-
ues. In addition, in Fig. 2, the Asinφ

UL and Asin 2φ
UL val-

ues obtained for π+ are shown as a function of x, after
averaging over P⊥. At higher energies, the analyzing
power for the sinφ moment that is sub-leading order in
1/Q is expected to be suppressed by the factor of P⊥/Q
[3,4] with respect to the leading-order sin 2φ moment. In
the HERMES kinematics, which covers a range of rela-
tively low Q2 and moderate P⊥, the ratio of Asin 2φ

UL to
Asin φ

UL analyzing powers is predicted to be small in the
valence region [15]. This is in agreement with a simple
estimate of that ratio in the real photon limit [16]. The
present data are consistent with these theoretical expec-
tations, neglecting the contribution to the sinφ moment
from transversity itself arising from the small component
of the target spin transverse to the virtual photon direc-
tion. Also, the apparent increase of Asinφ

UL with increasing
x suggests that the sea contribution does not dominate
the effect, in agreement with existing interpretations of
single-spin asymmetries as being associated with valence
quark contributions [17,18].

In Fig. 3, Asinφ
UL averaged over x is plotted for π+ and

π− as a function of transverse momentum. The mean 〈Q〉
is about 1.55 GeV for all bins. There is an indication that
Asin φ

UL for π+ increases as P⊥ increases up to ∼0.8 GeV.
This behavior can be related to the dominant role of the
intrinsic quark transverse momentum when P⊥ remains

below a typical hadronic mass (∼ 1 GeV). On this basis,
the use of Gaussian transverse momentum parameteriza-
tions for distribution and fragmentation functions results
in a behavior of Asin φ

UL that is proportional to P⊥, at least
for the moderate range of P⊥ [3,4,19].
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FIG. 3. Target-spin analyzing powers in the sinφ moment
as a function of transverse momentum, for π+ (squares) and
π− (circles). Error bars show the statistical uncertainties and
the band represents the systematic uncertainties.

The main contributions to the systematic uncertainties
are those from the target and beam polarizations, from
smearing due to detector resolution and from a false spin
asymmetry induced by the spectrometer acceptance. Un-
certainties in the acceptance corrections based on Monte
Carlo calculations dominate the systematic uncertainties
at small x and decrease with increasing x. At the average
values of y of about 0.5, radiative effects are expected to
be small and independent of the pion charge; these ef-
fects on the unpolarized cross section were evaluated and
were indeed found to be negligible [20].

In summary, single-spin azimuthal asymmetries of pi-
ons produced in deep-inelastic scattering of polarized
positrons from a longitudinally polarized hydrogen tar-
get have been measured. The analyzing power involv-
ing the sinφ moment of the cross section is found to
be significant for π+-production with unpolarized (spin-
averaged) positrons on a longitudinally polarized hydro-
gen target, while for π− it is found to be consistent
with zero. In addition, the analyzing powers involving
the sin 2φ moments of both π+ and π− are consistent
with zero. The sinφ target-related analyzing power for
π+, averaged over the full acceptance, is found to be
0.022 ± 0.005 ± 0.003, and there are indications that
this analyzing power increases with increasing x, and
also with P⊥ up to ∼0.8 GeV. The appearance of this
single-spin asymmetry can be interpreted as an effect

4

if there is a strong enhancement when the struck quark
flavor is present in the hadron.
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valence region [15]. This is in agreement with a simple
estimate of that ratio in the real photon limit [16]. The
present data are consistent with these theoretical expec-
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from transversity itself arising from the small component
of the target spin transverse to the virtual photon direc-
tion. Also, the apparent increase of Asinφ

UL with increasing
x suggests that the sea contribution does not dominate
the effect, in agreement with existing interpretations of
single-spin asymmetries as being associated with valence
quark contributions [17,18].
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This behavior can be related to the dominant role of the
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below a typical hadronic mass (∼ 1 GeV). On this basis,
the use of Gaussian transverse momentum parameteriza-
tions for distribution and fragmentation functions results
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The main contributions to the systematic uncertainties
are those from the target and beam polarizations, from
smearing due to detector resolution and from a false spin
asymmetry induced by the spectrometer acceptance. Un-
certainties in the acceptance corrections based on Monte
Carlo calculations dominate the systematic uncertainties
at small x and decrease with increasing x. At the average
values of y of about 0.5, radiative effects are expected to
be small and independent of the pion charge; these ef-
fects on the unpolarized cross section were evaluated and
were indeed found to be negligible [20].

In summary, single-spin azimuthal asymmetries of pi-
ons produced in deep-inelastic scattering of polarized
positrons from a longitudinally polarized hydrogen tar-
get have been measured. The analyzing power involv-
ing the sinφ moment of the cross section is found to
be significant for π+-production with unpolarized (spin-
averaged) positrons on a longitudinally polarized hydro-
gen target, while for π− it is found to be consistent
with zero. In addition, the analyzing powers involving
the sin 2φ moments of both π+ and π− are consistent
with zero. The sinφ target-related analyzing power for
π+, averaged over the full acceptance, is found to be
0.022 ± 0.005 ± 0.003, and there are indications that
this analyzing power increases with increasing x, and
also with P⊥ up to ∼0.8 GeV. The appearance of this
single-spin asymmetry can be interpreted as an effect

4

FIG. 2.4: The sine-φh moments of longitudinal single spin target asymmetries for π+ as measured
in Ref. [4] as a function of xB (left) and Ph⊥ (right). The Asin2φh

UL component was found to be
consistent with zero.

The first observation of a single-spin asymmetry in semi-inclusive DIS pion electro-

production was made by the HERMES Collaboration in 1999 as seen in Figure 2.4 Ref.

[4]. This spurred a number of additional measurements by HERMES of single and double

spin asymmetries for charged and neutral pions as well as kaons Ref. [30] Ref. [31]. They

performed these measurements with polarized hydrogen and deuterium targets Ref. [31].
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The newest measurement by HERMES of Asinφh
UL for longitudinally polarized hydrogen

were published in 2005 as seen in Figure 2.5 Ref. [5]. 5

A possible uncertainty in the interpretation of the ex-
tracted asymmetries in terms of Eq. (2) is the contri-
bution to the analyzed pion samples from the decay of
exclusively produced vector mesons (VM). Due to the
limited acceptance of the Hermes spectrometer, a large
fraction of these vector mesons cannot be identified. Al-
though the contribution of their decay pions to the ob-
served pion yield is small – less than 15% for the highest
z bin [8], based on a Pythia6 Monte Carlo simulation
tuned for Hermes kinematics reproducing the exclusive
VM cross section on a 10% level [34] – their contribu-
tion to 〈 sin(φ−φS)〉q

UT for a transversely polarized target
could be significant [35]. For 〈 sinφ〉q

UL this contributes
only through the transverse component and is thus sub-
tracted through Eq. (6). The VM contribution to the
〈 sinφ〉q

UL moments from the longitudinal spin compo-
nent of the target can be treated as a dilution as no sinφ
dependence on the longitudinal target polarization of ei-
ther the VM production or its decay distribution is ex-
pected [36]. For an estimate of such effects moments were
extracted that have the diluting contribution from this
exclusive channel subtracted. This was done by divid-
ing the 〈 sinφ〉q

UL moments of Eq. (6) by (1−NVM/Ntot)
where NVM and Ntot are the numbers of pions from VM
decays and all detected pions, respectively.

The main contribution to the systematic uncertainty
in the extracted moments arises from the measurement
of the target polarization. Other contributions include
smearing due to detector resolution and radiative effects.
The combined systematic uncertainty is found to be less
than 0.003.

The moments for charged pions are shown as functions
of x and z in Fig. 2 and summarized in Table I. In addi-
tion to the extracted longitudinal photon-axis moments
〈 sinφ〉q

UL the lepton-axis moments for longitudinally and
transversely polarized targets are plotted in Fig. 2. The
latter include the prefactor − sin θγ∗ with which they ap-
pear in the 〈 sinφ〉l

UL measurement. The resulting longi-
tudinal photon-axis moments are significantly positive for
the π+ and consistent with zero for the π−. Hence in the
case of the π+ this subleading-twist contribution domi-
nates the measured lepton-axis asymmetries on a target
that is polarized longitudinally with respect to the beam
direction. Therefore it becomes clear that those asymme-
tries cannot be interpreted in terms of only the Collins
fragmentation function or the Sivers function. In particu-
lar, the contribution from the Sivers function to the mea-
sured longitudinal lepton-axis asymmetries is small com-
pared to the subleading-twist contribution as it appears
only for the transverse component of the target spin. Un-
fortunately, due to the presence of several contributions
(Eq. 2), it is not possible to make any statements about
the size of any subleading-twist function separately. Nev-
ertheless, it is clear that subleading-twist effects cannot
be neglected a priori. This will be important when inter-
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FIG. 2: The various azimuthal moments appearing in the
measurement of the sinφ modulations of single-spin asymme-
tries on a longitudinally polarized hydrogen target for charged
pions as functions of x and z. The open symbols are the mea-
sured lepton-axis moments. The ones from a transversely po-
larized target are multiplied by − sin θγ∗ according to their
appearance in the longitudinal lepton-axis moments. The
closed symbol is the subleading-twist contribution to the mea-
sured lepton-axis asymmetries on a longitudinally polarized
target. The triangles are slightly shifted horizontally for dis-
tinction. An overall systematic error of 0.003 is not included
in the figure.

preting the measured lepton-axis asymmetries on a trans-
versely polarized target which for experimental reasons
receive not only contributions from the transverse target
spin component (e.g., the Collins and Sivers effects) but
also from the longitudinal component (subleading-twist)
as in Eq. (1).3

In summary, single-spin asymmetries on hydrogen po-
larized longitudinally along the photon direction have
been extracted for the first time. The contribution to
the lepton-axis asymmetries from the transverse spin
component in the measurement on a target polarized
longitudinally with respect to the beam has been sub-
tracted using the data from a transversely polarized hy-
drogen target. The averaged asymmetries in the range
0.023 < x < 0.4 (〈x〉 = 0.082) and 0.2 < z < 0.7
(〈z〉 = 0.40) are 0.030 ± 0.004 stat ± 0.002 sys for π+

and −0.009 ± 0.006 stat ± 0.001 sys for π−. For π+

3 It should be noted that a similar analysis for the azimuthal mo-
ments on a transversely polarized target yields corrections to the
measured lepton-axis moments [8] that are negligible compared
to their statistical uncertainty.

FIG. 2.5: The various azimuthal moments appearing in the measurement of the sinφh modulations
of single-spin asymmetries as measured by Ref. [5] on a longitudinally polarized hydrogen target
for charged pions as functions of xB (left) and z (right). The open symbols are the measured lepton-
axis moments. The ones from a transversely polarized target are multiplied by sinφγ according to
their appearance in the longitudinal lepton-axis moments. The closed symbol is the subleading-
twist contribution to the measured lepton-axis asymmetries on a longitudinally polarized target.
The triangles are slightly shifted horizontally for distinction. An overall systematic error of 0.003
is not included here.

The most recent measurement was performed by the CLAS Collaboration and was

published in 2010 Ref. [6]. In addition to refining the HERMES measurements it also

showed for the first time a non-zero sin2φh azimuthal moment (Figure 2.6). The improve-

ment also came from extracting azimuthal moments in multi-dimensional kinematic bins.

The CLAS Collaboration also recently published data for the beam spin asymmetry for
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5

tracted from HERMES [13] and Belle [37] data, are plot-
ted as filled bands in Fig. 4. The kinematic dependence
of the SSA for π+ from the CLAS data is roughly consis-
tent with these predictions. The interpretation of the π−

data, which tend to have SSAs with a sign opposite to ex-
pectations, may require accounting for additional contri-
butions (e.g. interference effects from exclusive ρ0p and
π−∆++ channels). This will require a detailed study with
higher statistics of both double and single spin asymme-
tries from pions coming from ρ-decays.
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FIG. 4: The measured x-dependence of the longitudinal tar-
get SSA Asin 2φ

UL (triangles). The squares show the existing

measurement of Asin 2φ
UL from HERMES. The lower band shows

the systematic uncertainty. The upper band shows the exist-
ing theory predictions with uncertainties due to the Collins
function [28, 50].

The sin 2φ moment of the π+ SSA at large x is domi-
nated by u-quarks; therefore with additional input from
Belle measurements [37] on the ratio of unfavored to fa-
vored Collins fragmentation functions, it can provide a
first glimpse of the twist-2 TMD function h⊥1L.

In summary, kinematic dependencies of single and dou-
ble spin asymmetries have been measured in a wide kine-
matic range in x and PT with CLAS and a longitudi-
nally polarized proton target. Measurements of the PT -
dependence of the double spin asymmetry, performed for
the first time, indicate the possibility of different average
transverse momentum for quarks aligned or anti-aligned
with the nucleon spin. A non-zero sin 2φ single-target
spin asymmetry is measured for the first time, indicat-
ing that spin-orbit correlations of transversely polarized
quarks in the longitudinally polarized nucleon may be
significant.

New, higher statistics measurements of SSAs in SIDIS
at CLAS [51] will allow us to examine the Q2, x, and PT

dependences of azimuthal moments in multi-dimensional
bins and investigate the twist nature of different observ-
ables.
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the neutral pion Ref. [25].

The results for the proton double spin asymmetry were released by the COMPASS

Collaboration for the low xB region Ref. [7]. Their data were obtained on the polarized

proton in solid NH3 and a positively charged muon beam. The results for the charged

pions is shown in Figure 2.7.

The data available for semi-inclusive target asymmetries is dominated by charged

pion results. The data for the dependence of the double spin asymmetry on Ph⊥ is available

in reasonable statistical precision from COMPASS for regions of small xB but has low

statistics for xB > 0.2. The measurement of a Asin2φh
UL term for the target spin asymmetry

measured for the first time in 2010, has significant room for improvement.

High statistics data are needed to study asymmetries in multiple projections of Ph⊥

and xB to test factorization. The limited data available thus far do not allow this without
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Figure 1: Comparison of double-spin asymmetries of COMPASS as a function of x with results of HER-
MES [5].

The first moment provides a test of the Bjorken sum rule, a fundamental result of QCD derived
using current algebra ∫ 1

0
gNS

1 (x)dx =
1
6

∣∣∣∣
gA

gV

∣∣∣∣CNS . (2.3)

The Q2 dependence of the non-singlet structure function gNS
1 (x) is decoupled from the singlet

quark and the gluon spin densities. Consequently a fit of the Q2 evolution of source requires only
a small number of parameters to describe the shape of ∆q3(x) at some reference Q2. In the present
analysis, Q2

0 = 3 (GeV/c)2 is taken as reference Q2 in the fit and the following parameterisation
used for ∆q3:

∆q3(x) = η3
xα3(1− x)β3

∫ 1
0 xα3(1− x)β3dx

. (2.4)

Results of the fit are shown in Fig. 2 (right). Value of |gA/gV | was obtained using Eq. 2.3:

|gA/gV | = 1.28±0.07(stat.)±0.10(syst.) . (2.5)

The dominant systematic error is due to uncertainties on the beam and target polarisation.

3. Polarized PDFs from fit to the asymmetries

At LO in QCD under the assumption of independent quark fragmentation, the double spin
asymmetries for a hadron h produced in the current fragmentation region can be decomposed into
a sum of products of quark helicity distributions ∆q(x,Q2) times quark fragmentation functions
Dh

q(z,Q
2), where z is the fraction of the virtual photon energy taken by the hadron h:

Ah
1(x,Q

2,z) =
∑q e2

q∆q(x,Q2)Dh
q(z,Q

2)

∑q e2
qq(x,Q2)Dh

q(z,Q2)
. (3.1)

3

FIG. 2.7: Comparison of double spin asymmetry measured by COMPASS Ref. [7] in comparison
to HERMES data from 2005 for inclusive electron (left), charged pions (middle) and charged
kaons (right).

running into statistical limits. This is true especially for the case of the neutral pion.
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2.5 Models used within the TMD Phenomenology

Several phenomenological models have been developed over the last three decades

to understand the spin structure of the proton. A selected list of models that predict

the single and double spin asymmetries measured in the ‘eg1-dvcs’ measurement are

sketched in this section. The quantities measured in the experiment can be divided into

two categories, the leading twist observables ALL and the sin2φh moment of AUL, and

the sub-leading twist observable, the contribution to the sinφh moment of AUL. The sinφh

moment of ALU has both leading and sub-leading twist components. The moments of AUL

provide access to the distribution of polarized quarks in the proton and ALU provide the

same for the unpolarized quarks.

A large number of predictions exist for the leading twist observables Ref. [9, 32–37].

However, predictions for the sub-leading twist are scarce Ref. [38, 39].

2.5.1 Leading Order Parton Model

The parton model (Ref. [40]) sees the nucleon as fast-moving, non-interacting parts,

which we now identify as quarks and gluons. This gives us collinear parton distribu-

tion functions (PDF). The TMD formalism extends the collinear simplification to include

quark transverse momentum [8]. Predictions for the target single spin asymmetries are

made in Ref. [8] for < z >= 0.61 using this TMD formalism. The ratio of the Collins

fragmentation function to the unpolarized fragmentation function is assumed to be,

< H⊥1 >

< D1 >
= 20±4% (2.32)
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The model predicts a range for the target single spin asymmetry for all three pions as seen

in Figure 2.8.
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Figure 3: Predictions for azimuthal asymmetries A
W (φ)
UL (x) vs. x for different beam energies and the corresponding

kinematical cuts at CLAS. The thick lines correspond to W (φ) = sin φ, the thin lines correspond to W (φ) = sin 2φ.
Hereby solid lines refer to π+, long-dashed lines to π0, and short-dashed lines to π−.

flavour fragmentation. Thus, if two curves cross each other in some point, the third one necessarily
goes through this point as well. The exact positions of this point and of the zero of Asin φ

UL (x) depend
on the beam energy and move to smaller x with the energy growth. The experimental check of
this prediction, especially at COMPASS energies, would give an argument in favour of the handbag
mechanism of the asymmetry with different signs of twist-2 and twist-3 contributions.

Our predictions are based on the assumption that factorization holds at the scales 1GeV2 ≤
Q2 ≤ 9GeV2 covered in CLAS experiment [10]. It will be exciting to learn from the comparison of
these predictions to future CLAS data, to which extent factorization holds. In particular, this will
give valuable indications on the correct interpretation of the data on the ALU asymmetry and the
extraction of the twist-3 distribution function ea(x) given in the previous section.

6 Conclusions

We have presented the extraction of first information of the chirally odd proton twist-3 distribution
function ea(x) from the azimuthal asymmetry ALU in π+ electro-production from semi-inclusive
DIS of polarized electrons off unpolarized protons, which has been recently measured by CLAS.
The flavour combination (eu + 1

4ed̄)(x) extracted in the x-region 0.15 ≤ x ≤ 0.4 refers to a scale
of 1.5GeV2 and is sizeable – roughly half the magnitude of the unpolarized distribution function
at that scale. But it is not large enough to explain the large number for the first moment of
(eu +ed)(x), related to the pion nucleon sigma term, by contributions from valence x-regions alone.

The extraction relies on the assumption of factorization, which might be questioned at the
Q2 of the CLAS experiment. To test this assumption, we have predicted azimuthal asymmetries
AUL in pion electro-production from DIS of unpolarized electrons off polarized protons for CLAS
kinematics, which are under current study. The predictions are based on a parameter-free approach,
which has been shown to describe well the corresponding data from the HERMES experiment. A
successful comparison of these predictions to future CLAS data would support the assumption of
applicability of factorization at the moderate scale.

For a definite clarification of the question, whether the CLAS data has been interpreted here
correctly, we have to wait for data from future high luminosity (needed to resolve the twist-3
effect) experiments performed at scales where factorization is less questioned. Maybe COMPASS
experiment at CERN could be one of them. Our predictions for COMPASS will be published
elsewhere.

7

FIG. 2.8: Predictions for azimuthal asymmetries AUL vs. xB for different beam energies and the
corresponding kinematical cuts at CLAS. The thick lines correspond to W (φ) = sinφ , the thin
lines correspond to W (φ) = sin2φ . Here the solid lines refer to π+ range, long-dashed lines to π0

range, and short-dashed lines to π− range [8].

2.5.2 Quark and Diquark Spectator Models

This model assumes that when the virtual photon interacts with a quark in the target

proton the rest of the quarks are only spectators. The spectators are treated as a diquark

with spin 0 or 1, as well as isospin 0 or 1. This model is used to make predictions for the

double spin asymmetry which written terms of the virtual photon absorption asymmetries

(A1 and A2) is

ALL = D(A1 +ηA2) (2.33)

where the depolarization factor is given by D = 1−E ′ε/E
(1+εR) and η = ε

√
Q2

(E−E ′ε) . R(x,Q2) =

σL/σT is the ratio of longitudinal and transverse virtual photon-absorption cross sections
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and ε−1 = 1+2tan2(θ/2)
[
1+ 4M2x2

Q2

]
. Conversely, A1 can also be written as,

A1 =
g1(xB,Q2)− γ2g2(xB,Q2)

F1(xB,Q2)
(2.34)

Analogous to the case for polarized inclusive structure functions, g1 and g2 can be thought

of as functions related to the polarized quark helicity distributions for the proton. The

unpolarized quark helicity distributions are related to F1. For the case when (γ << 1),

we assume A1 ≈ g1/F1. Spectator model prediction for semi-inclusive asymmetries are

shown in Ref. [32].

2.5.3 Other Models

Several other models that are frequently used include bag models [33], the light cone

constituent quark model [41] and the chiral quark soliton model [34]. The majority of the

bag models follow the prescription of the MIT bag model in which equations for massless

Dirac fields are solved for three valence quarks constrained by a “bag” which is the hadron

[42]. The TMD formalism is calculated in the bag model, and plots for h1L and the other

distributions can be found in Ref. [33].

Using the light cone constituent quark model, TMDs are studied in the light cone

description of the nucleon where the Fock expansion is truncated to only consider the

valence quarks Ref. [43]. Predictions for the target single spin asymmetry in the light

cone model are presented in Figure 2.9. The predictions in this paper are presented for

two different approaches. One (displayed using a dashed line) uses the light cone model

in combination with the quark - diquark spectator model. The second approach uses a

Gaussian parametrization for the distribution and fragmentation functions. For Jefferson
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lab energies, this model predicts a negative value of Asin2φh
UL for the positive pion.

250 J. Zhu, B.-Q. Ma / Physics Letters B 696 (2011) 246–251

Fig. 5. The single spin asymmetry Asin2φh
U L as a function of x at different kinematics with Q 2 = 3.0 GeV2 for the proton target. Dashed curves correspond to approach 1, while

solid curves correspond to approach 2.

Fig. 6. The single spin asymmetry Asin2φh
U L as a function of x at different kinematics with Q 2 = 3.0 GeV2 for the neutron target. Dashed curves correspond to approach 1,

while solid curves correspond to approach 2.

FIG. 2.9: The single spin asymmetry Asin2φ
UL as a function of xB at different kinematics with Q2 =

3.0 GeV2 for the proton target. Dashed curves correspond to approach 1, while solid curves
correspond to approach 2 in Ref. [9].

The wealth of model predictions give us a target as to what we might measure. In

understanding proton spin structure, the moments of single and double spin asymmetries

have proven important. They probe the quark distribution in the proton as well as the

fragmentation of the quark into a pion. Previous measurements show non-zero values of

these moments. The ‘eg1-dvcs’ measurement will provide new and unique information

of SSAs and DSAs. The higher statistics will enable extraction of moments in multiple

kinematic dimensions which has been difficult in the past. The measurements will provide

new information for the neutral pion especially in the region xB > 0.1 GeV.



CHAPTER 3

Experiment

Our goal is to study single and double spin asymmetries in the semi-inclusive re-

action p(e,e′π)X . A stationary polarized proton is struck with a high energy, polarized

electron. The Continuous Electron Beam Accelerator Facility (CEBAF) provides the elec-

tron, and the polarized proton is obtained from frozen ammonia. The outgoing particles

in the reaction are detected using the CEBAF Large Acceptance Spectrometer (CLAS)

and the inner calorimeter (IC). This chapter sketches the major components used in data

collection.

3.1 The CEBAF Electron Accelerator

The CEBAF accelerator provides a continuous electron beam with a maximum en-

ergy of 6 GeV and a current of up to 300 µA shared between three user end stations at

Jefferson Lab. It uses superconducting radio frequency (RF) technology in a five pass

recirculating linear accelerator Ref. [10].

25
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Figure 2.3: Diagram of the CEBAF Beam Injector Unit. See the text for details. From Ref. [59].

Figure 2.4: A cryounit, consisting of 2 resonant RF cavities. A cryomodule is a series of 4 cryounits

(see text for details). From Ref. [53].

the North Linac of the accelerator (Figure 2.1) [56]. Electrons are bent through a chicane mag-

net prior to injection, producing synchrotron light. The intensity of synchrotron radiation is directly

proportional to the beam current. Thus, a Synchrotron Light Monitor (SLM) measures the relative

beam current at this stage [57].

2.2.2 0.6 GeV Linac

Each linear accelerator, or linac, is capable of increasing the electron energies by∼600 MeV, boost-

ing the energy by ∼1200 MeV in each complete pass around the accelerator. Each linac contains

a series of 160 resonant superconducting niobium RF cavities, a pair of which are shown in Figure

2.4. Eight cavities in a series comprise a “cryomodule”, containing vacuum pipes/pumps, and mag-

netic dipoles/quadrupoles for beam steering/focusing.

Cryomodules are cooled by 2.2 K LHe from the central helium refrigerator, with 4.5 K LHe sup-

FIG. 3.1: A cryomodule consisting of several resonant superconducting RF cavities. These mod-
ules are used in the injector assembly and in the linear accelerators (linacs) Ref. [10].

The source of polarized electrons is the GaAs photocathode at the injector facility

at Jefferson Lab Ref. [44]. Under very high vacuum, circularly polarized laser light is

used to produce polarized electrons from the photocathode at 100 keV. The helicity of the

laser light can be changed by the introduction of a half wave plate (HWP) Ref. [45]. This

changes the photon helicity which then changes the electron helicity.

The electron beam produced at the cathode then passes through several supercon-

ducting RF cavities and an adjustable three slit aperture system to control its intensity and

chopping. To make a short pulse of electrons that can be accelerated, the beam is chopped

into pieces and then the electrons are bunched together to form short pulses. Slow elec-

trons are accelerated more than the fast ones. The bunch is squeezed after a distance and

the electron bunches are further accelerated to 50 MeV by the time they exit the injector

system. This assembly has the capacity to tailor the intensity of the electron beam sent

to each of the three end stations. The injector feeds into the north linac. The electron

beam then curves around to the south linac via bending magnets Ref. [46]. Each linac

contains sets of cryomodules that accelerate the polarized electrons. Each cryomodule

has 10 cavity pairs that accelerate the electron beam. One cavity pair is shown in Figure
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3.1. Each five cell cavity is 0.5 m long.

The path followed by the electron beam is shown in Figure 3.2. The beam accelerates

through the south linac and then is directed back around again to the north linac via more

bending magnets. An entire loop through the accelerator is called a pass and one pass

increases the beam energy by approximately 1200 MeV. The recirculation arcs at each

end of the linac enable up to five passes, producing a maximum beam energy close to to

6 GeV. After any number of passes, the beam can be separated at the beam switchyard

and sent to the end stations marked A, B and C. The centrally located liquid helium

refrigerator is used to cool the cryomodules in the injector and linacs to about 2.08 K Ref.

[10].
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Figure 2.1: Schematic of CEBAF, the Continuous Electron Beam Accelerator Facility at Jefferson

Lab. See the text for details regarding the components.

2.2 The CEBAF Electron Accelerator

The CEBAF electron accelerator is capable of generating beam energies of up to 5.8 GeV (with a

spread ∆E/E ! 2.5× 10−5) 2 at currents of up to 300 µA delivered in 1497 MHz RF modulated

pulses, split between three research halls. 3 Electrons can be (up to 75%) polarized in alternating

bunches of up to 3 pC of charge [53]. 4

Figure 2.1 shows an overall diagram of the CEBAF accelerator. Polarized electrons at 45 MeV

are generated in a beam injector unit, then fed into a pair of 600 MeV linear accelerators employing

RF cryomodules, cooled by a central LHe refrigerator. Recirculation arcs magnetically steer the

2Plans are in place to upgrade the maximum beam energy to ∼ 12 GeV by c.2012.
3This means an effective pulse rate of 499 MHz is delivered to each Hall.
4Beam polarization has reached up to 85% in recent years; the 75% limit corresponds to the time of the EG1b experiment.

FIG. 3.2: Schematic diagram of the CEBAF accelerator. Polarized electrons produced in the
injector are transferred to the north linear accelerator (linac). They circle through the recirculation
arcs via bending magnets and enter the south linear accelerator, and then go through another set a
bending magnets. This loop can be repeated up to five times. The electrons can be extracted for
use after each pass and are transferred to each of the three end stations through a beam separator
Ref. [10].

3.2 Hall B Beamline devices

The electron upon entering Hall B passes through the Møller Polarimeter, Beam

Position Monitors (BPM) and Harp Scanners before entering CLAS. Before passing out of

Hall B the beam hits the Faraday Cup and then the beam dump. The beamline schematic

is shown in Figure 3.3.

The Møller polarimeter is located upstream from the target as shown in blue in Figure

3.3. It consists of two iron foils which can be polarized parallel or anti-parallel to the

spin of the incoming beam. The polarized beam incident on the foils results in electron-
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Figure 2.7: Hall-B schematic, showing the location of CLAS and the approximate locations of the
beam line monitoring devices. One BPM and harp are located further up the beam line and are not

shown.

Figure 2.8: Photograph of the Møller polarimeter in Hall-B, showing upstream (left) and downstream

(right) views. The electron beam travels through the thin central pipe. From Ref. [61].

FIG. 3.3: Hall B schematic showing beamline devices in relation to CLAS Ref. [11]. The beamline
shown in red, enters Hall B and can pass through the Møller Polarimeter (blue), Beam Position
Monitors (BPM) (red), Harp Scanner (green), the experimental target, and Faraday cup (yellow),
before passing out of Hall B and on into the beam dump.

electron scattering. The scattered electrons are guided to two scintillator fiber detectors

by quadrupole magnets that are located on either side of the beam line Ref. [1]. The

quadrupole magnets focus electrons onto the detector. Polarimeter measurements cannot

be made in conjunction with experimental data taking.

Beam Position Monitors (BPMs) measure the beam position in the x-y plane as well

as the intensity before it enters CLAS. Three BPMs made of three RF cavities each, are

located upstream from the target as marked in red in Figure 3.3. The feedback provided

by them helps keep the beam centered on the target Ref. [1].

Harp scans measure the beam profile and diameter Ref. [1]. There are three harp

scanners in Hall B upstream of the CLAS target, marked in green in Figure 3.3. The
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FIG. 3.4: Beam position read back during the Spring 2009 run for the eg1-dvcs experiment. The
plot shows x component of the beam position as a function of time from the three BPMs coded
2C21A (red), 2C24B (blue) and 2H01(yellow). The nominal value required is x = 1.00 mm.

scanner moves a thin iron wire through the beam to measure its profile. This results in

a scattering shower which is detected using Cherenkov detectors (Section 3.5.4). The

scattering rate vs wire position is graphed for x and y. Fitting this spectrum provides

information about the beam intensity, beam position and beam profile. An example of the

spectrum and its fit are shown Figure 3.5

Møller measurements and harp scans were performed when there was a change in

the beam configuration, as well as, periodically throughout the course of the experiment.

This ensured the quality of the beam incident on the target.

The Faraday cup (FC) is located downstream from CLAS as marked in yellow in

Figure 3.3. It is a lead cylinder weighing 4000 kg which stops the scattered electron

beam. It is connected to a capacitor that is charged by the beam and discharged when

approximately 1010 C of charge is collected. The total charge collected is recorded in the

data acquisition system (DAQ) and is called the ungated FC reading. The Faraday cup

also factors in the dead time of the DAQ and records a second value of the integrated

charge known as the gated FC value. The latter accurately reflects the charge collected

during data taking. The ungated and gated values can be separated by beam helicity as

well Ref. [1].
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FIG. 3.5: Harp scan for run number 59097 taken during the Spring 2009 run for the eg1-dvcs
experiment. The scattered particles (PMT counts) in the detector are shown as a function of the x
and y plane projections. The beam diameter here is about 0.5 mm.

3.3 Polarized Target

3.3.1 Theory Overview

The eg1-dvcs target is polarized by way of Dynamic Nuclear Polarization (DNP) as

described in [47]. DNP can be explained using equal spin temperature theory or the solid

state description (Ref. [12]). Ammonia does not follow either description exactly but has

aspects of both. The simpler solid state approach is delineated here and more information

about the former description is found in Ref. [12].

The first step is irradiating solid ammonia (14NH3) using a high-intensity low-energy

electron beam to produce localized paramagnetic centers. This results in the material

being doped with a low concentration of unpaired electrons. It is then placed in a low

temperature and high magnetic field environment.

Under these conditions, the electron spins can be flipped using microwaves that are

at the Electron Paramagnetic Resonance (EPR) frequency of the electron in the magnetic
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field. The EPR frequency is the frequency that corresponds to the energy required to flip

the orientation of the electron spin from anti-parallel to parallel to the magnetic field, ~B.

The EPR frequency does not simultaneously flip the proton spin along with the electron.

To achieve this, the electron spins are flipped using a frequency that is lower than the EPR

frequency by an amount equal to the Nuclear Magnetic Resonance (NMR) frequency of

the proton. The frequency used is given by,

νµ = νEPR−νNMR (3.1)

where νµ is the microwave frequency applied, and νEPR and νNMR are the EPR and NMR

frequencies respectively. The green line in Figure 3.6 represents the transition e↓p↓ →

e↑p↑. The electron relaxes to the lower energy state in about 10−3 seconds; e↑p↑→ e↓p↑.

The yellow line shown in Figure 3.6 represents this relaxation of electron spins.

The electron can now be used to polarize a different proton. Over time, the popula-

tion of p↑ increases making the sample positively polarized. The same setup is used to

get a negatively polarized sample by using microwaves that have a frequency

νµ = νEPR +νNMR. (3.2)

This is a simple description of the system. The more involved view takes into account the

interactions between free electrons. Typical polarization for an ammonia sample range

between 80% to 90%.
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FIG. 3.6: Energy levels for the proton and electron using the simple solid state approach. The
green line represents the transition excited by the microwaves and the yellow line represents the
relaxation of electron spins Ref. [12]. The sample is placed in a magnetic field ~B.

3.3.2 Polarized Target Components

The eg1-dvcs polarized target consists of five major components - the superconduct-

ing magnet, the refrigerator, the target insert, the microwave system to induce polarization

and the NMR system to measure polarization in real time. A schematic of the major com-

ponents are shown in Figure 3.7.

The superconducting magnet produces a 5 T magnetic field using a pair of Helmholtz

coils. The coils are made from a niobium-titanium alloy and becomes superconducting

below the critical temperature of≈ 9 K. It produces a uniform field that is coaxial with the
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FIG. 3.7: Schematic diagram of the polarized target and associated apparatus Ref. [13]. Seen
on the left are Helmholtz magnet coils and the space to insert the target stick. The refrigerator,
connected at an angle, is also shown along with the liquid helium reservoir and pump assembly.

beamline and varies less than 10−4 T/mm over a cylindrical volume of 20 mm diameter

and length Ref. [13]. The field does not interact with the beam and is effective in shielding

the drift chambers from low energy Møller electrons.

The helium in the actual target chamber is supplied by the 4He refrigerator. It is

inserted into CLAS at a 25◦ angle due to spatial constraints. Helium is pumped into

the target chamber via the refrigerator from the helium reservoir which also supplies the

magnet. The flow of helium into and out of the refrigerator is monitored constantly by

using level probes. This ensures that the target material is kept cold at ≈ 1 K.

A schematic of the target stick is shown in Figure 3.8. There were four available tar-

get cups made from Kapton and a stepping motor was used to change between them. The

two top cups contained crushed beads of irradiated ammonia (NH3) which was prepared
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at University of Virginia and irradiated at the National Institute of Standards and Tech-

nology (NIST). The third cup contained a disk of amorphous carbon that was measured

to be 0.398± 0.001 cm thick. The fourth cup was left empty. At the very bottom of the

target stick was the optics or cross hair target that was used to align the beam with the

target cup prior to data taking. Data from the carbon and empty target cup were used for

background and special studies as described in Chapter 5.

{Polarized NH3

Carbon disk

Empty Cup

Cross Hair

FIG. 3.8: The target stick used during the experiment. The first two cups contained ammonia and
the third had a carbon disk. The last one was left empty for background studies. The cross-hairs
at the bottom were used to align the beam on the target.

The target stick is inserted into the assembly from the top of the target chamber

and immersed in a bath of liquid helium. The enclosure that houses the target stick is

shaped like a banjo which has two openings, one for the beam to enter the banjo and the

other for the scattered particles to exit. The banjo-like enclosure is sealed using circular
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Aluminum windows. A photograph of the target stick in the banjo enclosure is shown in

Figure 3.9. The photo was taken with a mirror held at the bottom of the target stick. The

mirror shows an empty Kapton cup higher up on the target stick. The banjo is the metal

enclosure surrounding the target stick.

FIG. 3.9: Photograph of the target stick in the banjo enclosure. The photo was taken with a mirror
held on the bottom of the target stick. The mirror shows an empty Kapton cup higher up on the
target stick. The banjo is the metal enclosure surrounding the target stick.

The irradiated ammonia in the first two cups was polarized using microwaves which

were generated by an Extended Interaction Oscillator (EIO), located on top of the refrig-

erator. The EIO consists of a Klystron in which electrons are emitted from a cathode

filament and accelerated through a resonant cavity. As the electrons pass through the

resonant cavity, they emit coherent microwave radiation of a fixed frequency which can
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be mechanically adjusted by changing the size of the cavity Ref. [48]. The approximate

frequency value for the eg1-dvcs experiment was 140 GHz which corresponds to the pro-

ton Larmor frequency in the 5 T magnetic field. The positive and negative nuclear spin

states are separated by a frequency difference of approximately 500 MHz which enables

changing the sign of target polarization without reversing the magnetic field. Microwaves

are supplied to the target material by a system of waveguides and incident on the target in

the beamline by a gold plated rectangular horn. The combination of the magnetic field,

low temperature and microwaves polarizes the proton in the ammonia target.

The target polarization is measured in real-time using continuous-wave nuclear mag-

netic resonance (NMR). The outer portion of the top two Kapton cups is coated with con-

ducting material and forms a part of a resonant RLC circuit (as seen in top two target cups

in Figure 3.8). A varying RF is swept through the circuit. The voltage across the circuit is

a function of the frequency and is continuously monitored. The area under the resonance

curve is proportional to the polarization of the ammonia beads in that cup.

3.3.3 NMR Calibration

The polarization of this target was determined using an NMR set-up which measures

the magnetic susceptibility of ammonia. The output of the NMR system is a curve that

represents the transmitted or absorbed (depending on positive or negative polarization)

power from the target as a function of the NMR frequency. The area under this curve

is proportional to the polarization of the target. The constant of proportionality (CP),

however, is not well known and, in addition, varies over the course of an experiment

Ref. [12]. In order to find the polarization, a method for determining CP, known as the

calibration constant, is neccessary. By allowing the target to come to thermal equilibrium
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Figure 2: Left-baseline scan, Middle-off-resonance signal minus baseline fitted with polynomial,
Right-signal minus baseline and polynomial, fitted with a Gaussian.

many scans, with each scan averaging on the order of 1000 sweeps through the above mentioned
frequency band. This procedure was done to minimize any noise from the q-circuit. The areas of
a TE measurement are averaged, and that value used in determining the multiplicative constant
C. The calibration constants for all the TEs taken throughout eg1-dvcs run periods A and B are
shown below (Figure 3).

Figure 3: Calibration constants for all 17 TE measurements taken throughout part A and B of
eg1-dvcs. The anomalous points encased in squares were not used in the polarization analysis.

Once the calibration constants were calculated, the area’s of the NMR signals during active
polarization were determined through a process of fitting the background subtracted NMR peak

3

FIG. 3.10: Signal from the NMR setup as function of scanning frequency ω (Hz) Ref. [13].
The left plot shows the baseline voltage scan at thermal equilibrium. The middle plot shows the
baseline subtracted data. The right plot shows the background subtracted value of the Thermal
Equilibrium (TE) voltage.

(TE) in the magnetic field used for polarizing, the target acquires a polarization that is

determined by statistical mechanics. The proton polarization at thermal equilibrium is

given by,

PT E = tanh(
µB
kBT

) (3.3)

where T is the temperature of the material at thermal equilibrium. To improve the signal

quality at thermal equilibrium, baseline signals are taken by changing the magnetic field

by an amount large enough to remove the polarization signal from the scanning range.

This baseline is then subtracted from the actual scans Ref. [49].

PT E = CPAT E (3.4)

The constant CP is extracted using the known values of area under the thermal equilib-

rium curve, target temperature and magnetic field. It is then applied to determine target
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FIG. 3.11: Target polarization values after NMR calibration as a function of run number. The
polarization of each target falls with beam dose as is seen for both target cups. The red points
denote runs with a wide variation in target polarization within a small time period.

polarization in the scanning frequency range (ω).

Pactive = CP

∫ ω2

ω1

Sactivedω (3.5)

where Sactive is the signal for the actively polarized target and ω is the frequency of the

sweep. The 17 TE measurements from the eg1-dvcs experiment were analyzed and the

typical background-subtracted signal for 14NH3 at thermal equilibrium is shown in Figure

3.10.

The values of target polarization after TE calibration are shown Figure 3.11. The

polarization of each target falls with beam dose as is seen for both target cups. The red

points denote runs with a wide variation in target polarization within a small time period.
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3.4 Inner Calorimeter

FIG. 3.12: A photograph of the Inner Calorimeter (IC) on a laboratory table top with surrounding
electronics. The IC has an octagonal geometry and fits in between the polarized target and CLAS.
The black opening in the center is to let the beam pass through.

The standard CLAS configuration allows the detection of photons and hence neutral

pions down to 10◦ in polar angle when the target is placed at the CLAS center Ref. [18].

This acceptance decreases in azimuthal angle due to the presence of the torus coils as

explained in Section 3.5. To increase the detection of π0s in the range of 5◦ - 16◦, the

inner calorimeter (IC) is inserted between the polarized target and CLAS as shown in

Figure 3.13.

The detector consists of 424 lead tungstate crystals. The tapered crystals are 16 mm

in length and are attached to avalanche photodiodes (APDs) on the back end. The APDs

are connected to preamplifiers which in turn are connected to analog to digital converters
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Polarized 
Target

Inner
Calorimeter

CLAS  Region 1 DC

FIG. 3.13: Schematic of the IC in reference to CLAS and the polarized target. The red line
simulates the path of a charged particle originating in the target, passing through the IC and into
the first region of the drift chambers in CLAS.
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FIG. 3.14: The neutral pion mass as measured in the IC (black) and EC (green) after they were
calibrated for gain (ADC) and timing (TDC). The stability of the neutral pion mass peak over the
run period indicates an acceptable calibration quality. The resolution for the π0 is significantly
better in the IC (red) than the EC (blue) as seen in the 3σ boundary

(ADCs) and time to digital converters (TDCs) linked to the data acquisition system Ref.

[50].

The IC is calibrated for gain in the ADCs and timing information from TDCs. The

event start time is obtained from the scintillator counter as described in Section 3.5.2 and

is used for IC time calibration. Calibration of the gain is done using the neutral pion as a

reference particle. The stability of the calibration is monitored by looking at the mean of

neutral pion pass reconstructed in the IC as shown in Figure 3.14

3.5 CEBAF Large Acceptance Spectrometer

The CEBAF Large acceptance spectrometer (CLAS) is designed to detect multiple

particles in coincidence, over a wide angular range. For the eg1-dvcs experiment, the

presence of the Inner Calorimeter blocks charged particles below ≈ 15◦ and the target
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FIG. 3.15: CLAS schematic showing the main detector components. Green marks the electromag-
netic calorimeter. The next layers in are the scintillator counters in red and Cherenkov counter
(CC) in pink which distinguishes electrons from hadrons. The torus magnet (yellow) creates a
field that allows for momentum determination using the drift chambers (blue).
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magnet blocks particles with angles greater than ≈ 50◦. Our reaction of interest is semi-

inclusive DIS which means we need to detect an electron and a pion in the final state. The

angular coverage and resolution of CLAS is key to making a high statistics measurement

of such an event.

CLAS is divided into six main sectors by the torus magnet. Each sector forms a vir-

tually independent magnetic spectrometer with a common trigger, target and data acquisi-

tion system. Each of the sectors have several layers of detection as shown in Figure 3.15.

The data acquisition system collected on average 2000 electron-proton collisions per sec-

ond during the experiment. A brief overview of the detector components is sketched here

Ref. [1].

3.5.1 Torus Magnet

the high-voltage potential adjusted to approximate
the electric-field configuration of an infinite grid.
This three-voltage scheme minimizes the effects of
nearby grounded surfaces such as the endplate.

Each sense wire is instrumented with a single-
channel differential pre-amplifier typically moun-
ted in groups of 48 on a printed circuit board which
is attached to the chamber endplate. The outputs
of each group of 16 pre-amps are carried via a 17-
pair, twisted-pair cable to a crate-mounted post-
amplifier and discriminator board (ADB) that
produces digital output pulses. The ADB output
pulses form the input to a multi-hit, common-stop
time-to-digital converter (TDC) board.

During system commissioning, the values for the
discriminator thresholds in the ADBs were set to
keep the electronic-noise contribution to the hit-
wire occupancy below the 2% level. The high-
voltage settings were determined from a plateau
run, resulting in individual ‘‘layer efficiencies’’—
the probability that a good hit is recorded in a wire
layer through which a charged particle has
passed—of greater than 98%.

The tracking resolution is the deviation of the
reconstructed momenta and angles of the charged-
particle tracks from their true values at the
interaction vertex. Tracking uncertainties arise
from multiple scattering in the material along the
particle trajectory, from geometric misalignments
of the separate chambers, from lack of knowledge
of the true value of the traversed magnetic field

strength, and from the single-wire resolution. The
single-wire resolution depends upon where within
a cell the track has passed. Within a given layer,
this is estimated by fitting a track to all hits except
those in that layer. The fit residual is the difference
between the fitted distance-of-closest-approach
(DOCA) of the track and the DOCA value
calculated from the drift time in the excluded
layer.

Fig. 8 shows the rms width of the track-hit
residual distribution plotted vs. DOCA for Region
2. The single-wire resolution worsens near the wire
and also at the outer edge of the cell. This arises due
to the Poisson distribution of ion-pair production
along the path of the primary ion near the sense
wire, along with time-walk effects and the diver-
gence of the electric-field lines near the field wire.
The average single-wire resolution in the midportion
of the cell for each region is about 200–250 mm: The
whole-cell average is about 310, 315, and 380 mm for
R1, R2, and R3, respectively. For a summary of the
overall track momentum and angular resolutions
achieved with these spatial resolutions, see the
section on detector performance.

3.3. Cherenkov counters

The Cherenkov Counter (CC) [11] serves the
dual function of triggering on electrons and

Attachment

 Points

Region 3

  

Region 2

Fig. 7. An R2 chamber (lower left) and an R3 chamber (upper
right) shown in their installed positions on the torus cryostat.
The R1 chambers are not shown. For the R3 chamber the three
attachment points are indicated.
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Fig. 8. Track-hit residual rms width as a function of the fitted
DOCA for Region 2 chambers.
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FIG. 3.16: Schematic (left) and actual view (right) of the CLAS torus magnet Ref. [1]. The
photograph shows the initial installation of the CLAS Torus magnet. The six fold symmetry of
the magnet forms the skeleton of CLAS and the dashed arrow on the schematic indicates beam
direction. Each sector contains a set of drift chambers (DC), a Cherenkov counter (CC), time of
flight scintillators (TOF) and an electromagnetic calorimeter (EC).

The torus magnet consists of six superconducting coils that provide a magnetic field

with a large component transverse to beam direction. The six sectors formed by the
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torus, each contain a set of drift chambers (DC), a Cherenkov counter (CC), time of flight

scintillators (TOF) and an electromagnetic calorimeter (EC).

The maximum allowed current in the torus magnet is 2250 A which provides a field

of up to 2.5 T (Ref. [1]). The torus configuration provides a field free region along the

beam line which prevents it from interfering with the field of the polarized target magnet.

For this experiment we used a torus current of 2250 A. A positive torus current is known

as the “inbending” configuration because scattered electrons are bent into the beam line.

We recorded a small fraction of the total data with a reverse toroidal field, also known as

the “outbending” configuration, which corresponded to a torus current of -2250 A. This

was useful for detection of negative pions which we otherwise lose due to the presence of

the IC. It is also essential in order to measure pair-symmetric background as detailed in

Chapter 5.

3.5.2 Scintillator Counters

FIG. 3.17: The orientation of scintillator strips for one sector with respect to the beam direction.
Each strip is 5 cm thick and connected to two PMTs.
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Thursday, August 26, 2010

FIG. 3.18: The dependance of β on particle momenta after the paddles in the SC have been
calibrated. The process starts with obtaining β = 1 for electrons (and photons) and then correcting
the timing for heavier particles Ref. [14]. The broad band under β = 1 shows the pions and the
smaller band under that one identifies the proton.

The scintillator counter (SC) system surrounds the drift chambers in CLAS and is

primarily responsible for particle identification. The time of flight of a particle is deter-

mined by taking the difference between the event start time from the RF in the accelerator

and the time recorded in the SC, tSC. This tSC is used to normalize the time for the EC and

CC. It is also used for time-based tracking in the DC which measures the flight path. The

combination of the flight path and time of flight determines the velocity of the particle.

The SC is optimized to separate pions and kaons up to an energy of 2 GeV.
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The detector consists of 48 paddles per sector with a photo multiplier tubes (PMT)

on either end. This amounts to a total of 288 scintillator strips that provide polar angle

coverage up to 142◦. The scintillator panel for one sector is shown in Figure 3.17. The

timing resolution of the SC is 120 ps at small angles (less than 90◦).

The signal from each PMT is calibrated to account for a pulse-height-dependent

timing shift introduced by leading edge discriminators. Signals from the PMT of the SC

have a sharply rising leading edge with a long, gently sloping tail. Small pulses trigger

the discriminator later in time than larger pulses. A time-walk correction is applied based

on the pulse height to correct for this discrepancy. Figure 3.17 shows β vs. momentum

after 48 paddles in each of the six sectors were calibrated using the procedure outlined in

Ref. [51].

3.5.3 Drift Chambers
119

Figure 2.31: Photograph of one sector of an outer layer drift chamber section prior to installation in

the CLAS detector. From the JLab JPIX picture exchange.

energetic particles pass through the cell. This induced charge drifts toward the sense wire and

produces a current, thus providing information that a particle has passed through the cell. This in-

formation provides initial hit-based tracking information about the particle trajectory, reconstructing

the actual particle momenta within an accuracy of 3-5%.

Wires are strung perpendicular to the magnetic field in one of the two superlayers of each region,

and at a 6◦ angle around the cell radius in the other superlayer, to provide φ-direction information.

In total, about 130,000 wires are strung through the cells of the drift chambers. Cell material was

minimized, so that only ∼1% of a radiation length would (on average) be encountered by a particle,

to lower the incidence of multiple scattering events. There are 1296, 2262, and 2304 individual

hexagonal detection cells in each sector of the Region 1, 2, and 3 drift chambers, respectively. The

sizes of the individual cells range from 15 mm in Region 1 to 45 mm in Region 3 [74].

Charge induced by an ionized particle drifts toward the sensor cell at a relatively slow velocity of

around 4 cm/µs. More accurate path information can be provided once the total time-of-flight of the

particle is determined by the scintillation counters (Section 2.5.4). Then, a reference time can be

used to indicate when the particle passes through each cell, and this can be compared to the TDC

time of the signal generated in the sense wire. If the relation between drift time and distance within

FIG. 3.19: Drift chamber cell configuration with a typical track indicated (left) and photograph of
a completed drift chamber sector (right)Ref. [1].

The CLAS drift chamber system can be divided radially into three regions within

each sector. Each region contains a separate physical chamber with two “superlayers”.
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Each superlayer has six layers of sense or anode wires, one axial to the torus magnetic

field, and the other tilted at a 6◦ stereo angle. The superlayer for Region 1 has four wire

layers because of spatial constraints Ref. [1]. A high voltage system maintains the sense

wires at a positive potential. Each sense wire is surrounded by six field (or cathode) wires

maintained at a negative potential with a value 50% lower than the positive value. An

ionizing gas mixture of Argon and CO2 in the ratio of 88% to 12% is used to detect

charged particles as they travel through the drift chambers Ref. [1]. The gas mixture is

maintained at a constant pressure with Argon providing an ionization gain of ≈ 104.

When a charged particle moves through the chamber, it ionizes the gas atoms and

releases electrons that drift toward the sense (anode) wires. The sense wires are con-

nected to preamplifiers which are connected in groups to circuit boards on the chamber

end plates. The chamber plates are connected to the data acquisition system via a crate-

mounted post-amplifier and discriminator board and time-to-digital converter board. The

DC system is used for tracking charged particles and determining their momentum. It has

to re-calibrated based on the run conditions for the experiment including but not limited

to changes in beam energy, torus current and physical movement of the drift chambers.

The geometry of each chamber is characterized by a set of 6 offsets; 3 translational

and 3 rotational. These offsets give the displacement or rotation of a chamber from its

ideal position in the engineering drawings. A DC alignment procedure is performed to

find these offsets which are responsible for distortions in the particle momenta assuming

the ideal position Ref. [15]. The optimal offsets are found through a minimization tech-

nique on the spatial residual between the FITDOCA (Distance Of Closet Approach to

the wire of the fitted track) and the CALDOCA (Distance Of Closet Approach calculated

from the distance vs. time function). These offsets are then applied in the tracking code.

These offsets are applied to the data set and the mean residual for each CLAS sector
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Figure 2: Residual vs Layer no. after the alignment in region 3

5

FIG. 3.20: Residual distribution (cm) as a function of wire layers after DC alignment for each
CLAS sector Ref. [15]. The white area is a dead wire layer.
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FIG. 3.21: Calibration quality for the drift chamber vs run number. DC sigma is a measure of the
spatial resolution of the chamber. The gap between runs comes from the Summer 2009 accelerator
down time between parts A and B of this experiment. Each run number is approximately three
hours of data taking. The stability of the DC signal indicates an acceptable calibration quality.

is shown in Figure 3.20. The mean of the residual distribution is centered at 0 which

indicates an acceptable calibration quality.

The time of flight (tSC) for a particle moving through CLAS is determined using the

scintillator counters (SC) (Section 3.5.2). This time is used to predict when the charged

particle passes through each cell in the DC. The time signal in the hit sense wire is then

compared to the reference time from the SC. Both times are converted to a distance mea-

sure: the calculated reference distance from the SC (DIST) and the measured value from

the DC, the distance of closest approach (DOCA).

Charge induced by an ionizing particle drifts toward the sense wire at a relatively

slow velocity of around 4 cm/µs. If the relation between drift time and distance to the

sense wire is known, the distance of closest approach (DOCA) to the sensor wire in each

case can be calculated, thus greatly improving the accuracy of the path through time-based
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tracking Ref. [11]. The DOCA function is fit using χ2 minimization of a polynomial

function to the observed drift times, given by

χ2 =
|x(t)− xpath|2

σ2
path

(3.6)

where the DOCA function is,

x(t) = v0t +η
(

t
tmax

)p

+κ
(

t
tmax

)q

. (3.7)

The drift velocity at t = 0 is given by v0 and the maximum drift time is give by tmax. The

fit has four coefficients η , κ , p and q. The DOCA value is obtained separately for each

superlayer in each CLAS sector.

This difference gives the residual path difference (cm),

RESI = abs(DIST −DOCA) (3.8)

The magnitudes of the residuals provide the spatial resolution for the DC. The residu-

als for all sectors after alignment are shown in Figure 3.20 and the quality of the resolution

as a function of the run time of the experiment is shown in Figure 3.21

3.5.4 Cherenkov Counters

The Cherenkov Counter (CC) is primarily used to differentiate between electrons

and negative pions with momenta below 2.5 GeV after they have passed through the drift

chambers.

If a charged particle traversing a medium with refractive index n exceeds the speed
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separating electrons from pions. The design of the
Cherenkov detector aims at maximizing the solid-
angle coverage in each of the six sectors out to an
angle y ¼ 45" with the least possible amount of
material (to prevent degradation of the energy
resolution). This is achieved by placing the light-
collecting cones and photomultiplier tubes (PMTs)
in the regions of f that are already obscured by
the magnet coils, and covering as much of the
available space as possible with mirrors (see
Fig. 9). Since charged-particle trajectories lie
approximately in planes of constant f; the
placement of the PMTs in the shadows of the
magnet coils does not affect the angular coverage.
The light-collection optics was designed to focus
the light only in the f direction, which preserves
information on the electron polar angle ye: The full
y range of each of the six sectors was divided into
18 regions, as may be seen in Fig. 3, and each y
segment was divided into two modules about the
symmetry plane bisecting each sector. This results
in a total of 12 identical (except for an inversion
symmetry) subsectors around the f direction for
each y interval, and a total of 216 light-collection
modules.

The PMTs employed for the Cherenkov detec-
tors are 5-in. Phillips model XP4500B’s. The
PMTs are equipped with high-permeability mag-
netic shields, since they are located in the fringe
field region of the torus, with the highest
transverse fields reaching 70 G at large scattering
angles. The optical elements of each module
include one elliptical and one hyperbolic mirror

to provide the primary focusing, a cylindrical
mirror used to compensate for imperfections
in the focusing, and a light-collection (Winston)
cone.

The Cherenkov radiator gas used in the detector
is perfluorobutane (C4F10) which has an index of
refraction of 1.00153. This results in a high photon
yield and a pion momentum threshold of
2:5 GeV=c: This gas also has excellent transmis-
sion properties for light at short wavelengths. Each
sector of the detector holds approximately six
cubic meters of gas. The recirculating gas system
maintains constant pressure in the gas volume, and
removes impurities from the gas.

The single-photoelectron response of the photo-
multiplier is used to equalize the gain of the PMTs,
and to calibrate the response of the detector in
terms of the number of photoelectrons. An
inbending electron, traversing the active volume
of the detector, results in typically 4–5 photoelec-
trons.

3.4. Time-of-flight counters

The TOF counters [12] cover the polar angular
range between 8" and 142" and the entire active
range in azimuthal angle f: The scintillators are
located radially outside the tracking system and
the Cherenkov counters but in front of the
calorimeters. Their alignment and relative posi-
tioning with respect to other detector subsystems is
most clearly seen in Fig. 3. The scintillator
thickness of 5:08 cm is uniform throughout,
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Fig. 9. Schematic diagram of one Cherenkov segment, symmetric about the sector center. Also shown is an example of an electron
trajectory with the collection of Cherenkov light to the PMT. The PMTs, magnetic shields, and light-collecting Winston cones, lie in
the region of the detector obscured by the CLAS magnet coils, and thus do not affect the electron acceptance.
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FIG. 3.22: Optical module of the CLAS Cherenkov detector showing light reflected off the set of
mirrors, as collected by a PMT. The Cherenkov light is reflected off the hyperbolic and cylindrical
mirrors placed in a configuration to direct light to the collection cone. The PMTs are placed in the
acceptance dark regions of the coils of the torus magnet Ref. [1].

of light in that medium, it emits electromagnetic radiation known as Cherenkov radiation.

The electron has a much lower Cherenkov threshold (≈ 0.9 GeV) compared to pions

(≈ 2.5 GeV). The CC is filled with perflurobutate gas (C4F10) at 1 atm. The gas of this

pressure has an index of refraction n = 1.00153 Ref. [1].

The CC has 18 symmetrical mirrors that are used to reflect light into a corresponding

photomultiplier tube (PMT) in every CLAS sector. The particle trajectories in CLAS

are transverse to the toroidal magnetic field lines in constant φ planes. A combination

of elliptical and hyperbolic mirrors are used to deflect the emitted Cherenkov radiation

in the φ direction into the light collecting PMTs. The optical arrangement is shown in

Figure 3.22. The polar angle range covered by the CC is up to 45◦. The pions start to

emit Cherenkov radiation at momenta greater than≈ 2.5 GeV making π/e separation less

efficient in this momentum region.

The CC was calibrated for the eg1-dvcs experiment for timing and gain. The time

from the SC (See Section 3.5.2) can be used to get a predicted time for a charged parti-

cle moving through the Cherenkov Counter. The time recorded by the CC itself is then
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compared to the predicted time to determine the timing resolution of the CC. Figure 3.23

shows the mean and standard deviation of tCC− tSC.

The gain calibration was performed by fitting the single photoelectron peak in the

analog to digital converters (ADC) for all sectors. The stable gain calibration was then

applied to the run period. A fit for the one photoelectron peak is shown in Figure 3.24

3.5.5 Electromagnetic Calorimeters

The electromagnetic calorimeter is capable of detecting charged and neutral particles

and is designed to distinguish between hadrons and electrons.

It forms the outermost layer of the CLAS detector for each of the six sectors and is

made of alternating sheets of lead and plastic scintillator material. The scintillator layer,

in the form of thin strips is spatially placed in three different orientations separated from

its closest layer by 120◦ as shown in Figure 3.25. Each scintillator layer is made of 36

strips that are 10 mm thick. The lead sheet is cut in a triangular shape and is 2 mm thick.

An electron loses its energy in the EC by an electromagnetic shower in which elec-

trons radiate photons, photons produce e+e− pairs in the field of the heavy lead nuclei,

and the scintillators produce light for each of the multiplying for each of the electrons in

the shower. The total light collected is proportional to the initial electron energy.

Other hadrons such as pions, lose energy in the EC via ionization which produces

much less output in the scintillators. The difference in the mechanism of energy deposited

helps distinguish between electrons and pions. Neutral pions are detected in the EC by re-

constructing the invariant mass of two photons. The lead encourages the electromagnetic

shower and the scintillator samples the energy loss.

The energy deposited is the EC by an electron or photon is a product of the parti-
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cles total energy and the sampling fraction of the EC (≈ 0.27) Ref. [1]. The ADC and

TDC boards for the EC are calibrated for energy and timing, respectively. The timing

information here is relative to the SC and the difference (tEC− tSC) over the course of the

run period is shown in Figure 3.26. Some of the outliers in the standard deviations come

from low-statistics runs. The stability of the gain calibration is seen in Figure 4.22 for

each CLAS sector. Each sector is mostly stable except for the drop about every 50 runs.

The version we got by fine tuning the EC gain calibration is deemed acceptable for the

purposes of calculating asymmetries.

3.5.6 Trigger and Data Acquisition

To record events of interest, a two-level hierarchical system was designed for CLAS

which minimizes its dead time. The Level 1 trigger processes all designated raw signals

chosen by an experiment to define an event. The processing period of the Level 1 trigger

is 90.5 ns. All detector information for the passed event candidate is digitized and read

out and passed to the Level 2 trigger.

The Level 2 trigger finds ‘likely’ tracks in each sector, correlates them with the Level

1 trigger, and rejects hits without a likely track in the DC. If a ‘likely’ track is found then

the event is recorded. If no track candidates are found, the Level 2 trigger issues a ‘fast-

clear’ signal and more triggers are accepted. The detector cannot accept triggers until the

events passing the Level 2 trigger are digitized and read out or it receives a ‘fast-clear’

signal. The processing of the Level 2 trigger contributes to the dead time of the detection

system. The ‘fast-clear’ signal step was not used in the case of the eg1-dvcs experiment.

The CLAS data acquisition system can collect approximately 2000 ep collisions

per second. The signals for an event from all detectors are digitized and transferred to
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the CLAS online acquisition computer. Various data blocks from the subcomponents of

CLAS are put together using the Event Builder (EB) in the form of tables (or banks). The

Event Recorder (ER) picks up the reconstructed event for permanent storage which is a

two-step process. The event is first written to a local RAID disk. A fiber link from the

raid disk transfers the event for permanent storage to magnetic tape Ref. [1].
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FIG. 3.23: Cherenkov timing differences ∆t = tCC−tSC and widths σ as a function of PMT number
after calibration using one run. PMT 22 (Sector 1) was dead throughout the experiment. This is
reflected in the point with biggest error bars in mean and standard deviation. The data for large
PMT numbers fluctuate wildly because of poor statistics near the edge of CLAS acceptance Ref.
[16].
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FIG. 3.24: Cherenkov counter light intensity spectrum for a single photoelectron. The gain cali-
bration is done by fitting the single photoelectron peak. The fit in red is shown for one channel in
Sector 2 in the CC. An ADC channel value of ≈ 200 corresponds to the single photoelectron peak
Ref. [17].

133

Figure 2.45: Diagram of one sector of the CLAS electromagnetic calorimeter, showing the stacks

of scintillator strips aligned along 3 different orientations, alternating with lead sheets. Fiber light

guides send light from the scintillator planes to the PMTs. From Ref. [79].

spatial resolution along 3 orientations, labeled as U, V, and W (see Figure 2.45). Each orientation

thus has 36 ÷ 3 = 13 Pb/scintillator layers. Light from the first 5 scintillators along a given orienta-

tion (ECin) leads through light guides to one PMT, while light from the remaining 8 scintillators along

a given orientation (ECout) leads to a second PMT. This arrangement is capped with steel/foam

plates. A diagram of this configuration is shown in Figure 2.46. Each “column” of 13 strips has its

own pair of PMTs, for a total of 13 × 3 × 36 = 216 PMTs in each sector [79].

Incident charged particles in the EC (above a minimum energy threshold of ∼0.5 GeV) pro-

duce either ionization reactions (in the case of incident hadrons) or showers of e+e− pairs and

Bremsstrahlung photons (in the case of incident electrons or positrons). 29 Ionizing tracks are the

easier case to localize; the hit location along the intersection of the U, V, and W orientations gives

the location of the particle. Showering events, which produce several signals over the scintillators in

each layer, require more sophisticated reconstruction. First, adjacent strips along each orientation

meeting a certain energy threshold are grouped, and peaks, in the form of a centroid and RMS of

29Neutrons and photons can also be detected in the EC, but this is of little relevance to inclusive analysis, and is not dealt
with in this thesis.

FIG. 3.25: One sector in the CLAS electromagnetic calorimeter Ref. [18]. The three layers of
scintillator are placed in three different orientations rotated from the one above by 120◦. This is
done to allow triangulation of the shower position in the detector Ref. [1].
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FIG. 3.26: The time difference between the EC and SC versus run number fit using a Gaussian.
Data for the means (blue) and standard deviations (red) are shown for the duration of the experi-
ment. The stability of the values indicates an acceptable calibration quality.
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3.6 Run Summary

Run Range Name Dates Target vz (cm) ITORUS (A) EBEAM (GeV)
58799 - 59161 A Feb - Mar 09 NH3 -58.3 2250 5.887
59162 - 59300 A Feb - Mar 09 NH3 -58.3 2250 4.730
59400 - 59995 B Apr - Jun 09 NH3 -67.3 2250 5.954
59996 - 60005 B Apr - Jun 09 NH3 -67.3 -2250 5.954
60005 - 60200 B Apr - Jun 09 NH3 -67.3 2250 5.954
60250 - 60564 C Aug - Sep 09 ND3 -67.3 2250 5.752
60565 - 60650 C Aug - Sep 09 ND3 -67.3 -2250 5.752

TABLE 3.1: Run summary of the eg1-dvcs experiment. The experiment ran in three blocks from
February to September 2009. The beam energy in the latter part of A was lowered due to mechan-
ical problems with the accelerator. Data with reversed field for the torus magnet were collected for
background studies. The center of the target was shifted in reference to CLAS, in B and C which
gave higher acceptance for the charged pions.

A summary of the eg1-dvcs data set is given in Table 3.1. The experiment ran in

three blocks from February to September 2009. The beam energy in the latter part of

A was lowered due so that all three halls could be given maximum polarization given

possible Wien angle settings. For the rest of the run period the beam energy was close to

6 GeV. The distance between the target center and the front face of the IC was increased

by about 10 cm for parts B and C. This gave a larger acceptance for the charged pions.

The nominal value for each beam energy is obtained from the MCC based on the number

of passes in the accelerator. To better determine the delivered electron energy, accurate

energy measurements made during the same time period by Hall-A were scaled by the

relative number of passes of the beam through the accelerator to get the Hall-B energy.

These are tabulated in Table 3.1. More details of the Hall-A extrapolation are found in

Ref. [52].
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A total charge of 30 mC (A = 6.9 mC, B = 15.4 mC, C = 7.7 mC) was collected

during the course of the run. Approximately 15% of these data were collected on the

carbon target and approximately 3% on the empty target. A small fraction of data were

also collected with reversed torus field for background studies. The beam polarization

was measured periodically throughout the course of the run. Table 3.2 details the run

numbers and measurements made.

Run Date Time Pb+ PErr
b + Pb− PErr

b −
58739 02/08/09 17:00 88.70 1.48 -80.49 2.26
58825 02/11/09 18:00 90.41 1.48 -82.76 1.48
58977 02/18/09 15:00 90.82 1.48 -87.04 1.48
59036 02/23/09 19:00 89.64 1.00 -84.14 1.00
59077 02/27/09 18:00 90.60 1.45 -79.09 1.49
59127 03/06/09 14:00 75.19 1.49 -68.00 1.49
59164 03/12/09 21:00 90.60 1.32 -84.25 1.42
59443 04/30/09 13:00 87.53 1.54 -81.43 1.52
59537 05/06/09 21:00 81.43 1.47 -82.14 1.47
59565 05/08/09 16:00 86.13 1.48 -84.71 1.51
59705 05/15/09 13:00 89.93 1.34 -80.11 1.45
59780 05/20/09 15:00 91.97 1.44 -86.25 1.88
59792 05/21/09 21:00 81.55 1.44 -82.25 1.38
59894 05/28/09 11:00 85.72 1.50 -80.59 1.50
59909 05/29/09 9:00 84.57 1.49 -82.68 1.48
59965 06/01/09 16:00 82.87 1.49 -87.54 1.49
60006 06/04/09 18:00 88.53 1.28 -74.38 1.50
60111 06/11/09 20:00 85.15 1.48 -83.99 1.48
60121 06/12/09 18:00 85.85 1.48 -85.28 1.49

TABLE 3.2: Summary of Møller measurements for the eg1-dvcs experiment. The Møller po-
larimeter measures the beam polarization (Pb) for both helicities using elastic scattering on polar-
ized Permendur foil Ref. [1]. Differences in the polarization between the two helicites on the order
of a 1-2% are consistent with previous CLAS experiments. However we had some differences as
large as 9% for Møller runs that did not run long enough.
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The data were collected in increments of “runs”. Each data run was approximately

40 million electron triggers which took anywhere between two to four hours to collect,

depending on beam quality. One run contained, on average, 85 data files. Each file

format was identical in structure and was numbered based on the run and file number.

The track reconstruction package (user-ana) was used to convert raw data into physics

quantities. The physics output files were further compressed using preliminary cuts in

event selection. The details of the event selection cuts and the structure of the data file

and the physics variables in them are detailed in Ref. [53].



CHAPTER 4

Data Analysis I

To extract the physics of semi-inclusive scattering from the data obtained we con-

ducted several studies. These studies are broadly divided into three parts. The first portion

deals with analyses performed prior to selecting the physics events, the second with the

actual mechanics of event selection, and the last with corrections applied to physics quan-

tities.

4.1 Corrections before Event Selection

4.1.1 Raster Correction

To minimize the effects of target depolarization because of electron beam dose, the

beam is scanned, or rastered, over the target area in a circular pattern. The beam spirals

inward and outward alternately due to magnetic fields produced by two sets of perpendic-

ular Helmholtz coils. Failure to raster the beam will result in loss of target polarization.

Hence, the raster system is an important part of the experiment but does create the prob-
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lem of varying the entry point of the beam on the target. The raster correction is used

to account for this variation. The geometry of the correction, procedure and code are

available in Ref. [54]. A brief description is given below.

The raster magnet current is measured and digitized using ADCs. The signals are

synchronized with each event and recorded in the event stream. When calibrated with a

gain factor and an offset they yield x and y beam positions at the target for each event i

given by

xi = (xADC− xo f f )xgain (4.1)

and

yi = (yADC− yo f f )ygain. (4.2)

204

Figure 4.7: Raster correction geometry, viewed from the front of the target. The black dotted line

represents the (uncorrected) particle trajectory; while the solid black line (s) is the reference line of
the triggered sector. The projection of the raster coordinates (green) on the trajectory is defined as

x′ (blue).

Figure 4.8: Raster correction geometry, viewed from the side. The corrected z-vertex position
vz(corr) is calculated from the uncorrected position vz0 by backtracking through the end of x′ (drawn

in Figure 4.7). Here, the black ray is the uncorrected particle path, the red ray is the “backtracked”

ray, and the blue path is the final, raster corrected path through the true vertex.

FIG. 4.1: Side view of raster correction geometry. The vertex position in the CLAS z direction is
corrected for tracking which assumes the electron traveled along the center of the beam line. The
black ray is the uncorrected particle path which forms an angle θ with the beam direction. The
red ray is the traced-back ray, and the blue path is the final, raster corrected path through the true
vertex Ref. [11]. The vertex position given by CLAS tracking software is vz0 and the corrected
vertex is vzc.

The standard tracking package in CLAS reconstructs particles back to a plane paral-
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lel to the torus field lines and perpendicular to the sector containing the track and passing

through the beam line. If the actual beam is displaced from the center by a distance x′,

then the average vertex position z will be displaced as seen in Figure 4.1. The displace-

ment is incorrect by an amount that varies as the cosine of the azimuthal angle φ . To

correct the vertex, we first define the sector angle,

φ S = (S−1)×π/3 (4.3)

where S is the CLAS sector number (1 - 6). The azimuthal scattering angle for each event

i is

φi = arctan(py/px) (4.4)

where px and py are the momenta of the particle in the event i. The projection of the raster

coordinates on to the sector ray s is given by,

s = xi cosφ s
i + yi sinφ s

i (4.5)

The displacement, x′ is obtained by scaling the sector ray direction along the xi direction

of the track. The cross-section view of the target is shown in Figure 4.2. Applying

trigonometry to the angle φ −φ s, we get

x′i = [xi cosφ s
i + yi sinφ s

i ]/cos(φi−φ s). (4.6)

The corrected vertex position is thus given by,

zi = z0
i + x′i/ tan(θi) (4.7)
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Figure 4.7: Raster correction geometry, viewed from the front of the target. The black dotted line

represents the (uncorrected) particle trajectory; while the solid black line (s) is the reference line of
the triggered sector. The projection of the raster coordinates (green) on the trajectory is defined as

x′ (blue).

Figure 4.8: Raster correction geometry, viewed from the side. The corrected z-vertex position
vz(corr) is calculated from the uncorrected position vz0 by backtracking through the end of x′ (drawn

in Figure 4.7). Here, the black ray is the uncorrected particle path, the red ray is the “backtracked”

ray, and the blue path is the final, raster corrected path through the true vertex.

FIG. 4.2: Cross-section view of the raster correction geometry Ref. [11].The black dotted line
represents the (uncorrected) particle trajectory; while the solid black line (s) is the reference line
of the triggered sector. The projection of the raster coordinates (green) on the trajectory is defined
as x′ (blue).

where θi is the angle made by the track with the beam direction as seen in Figure 4.1.

The correction is applied by minimizing zi compared with the nominal target center,

znom
i for each each event i. The χ2 minimization is given by

χ2 =
N

∑
i=1

(zi− znom
i )2 (4.8)

where the uncorrected value zi is modified by a track azimuthal angle θ dependence on

the uncorrected xi and yi vertex coordinates.

The fit parameters used in the minimization are xgain , ygain , xoff, yoff and znom
i . The

gain factors (xgain , ygain) are found to be very stable for each beam energy, and scale

as 1/EBeam. The offset terms (xoff and yoff) show considerable variation with time. The
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FIG. 4.3: Raster pattern for Run 59000 with a selected section on the target area (top row). The
second row shows the vertex position vz before applying the raster correction for the selected target
area above it. The third shows the vertex position vz after applying the raster correction.

range of about 800 ADC counts corresponds to a range of beam positions of about 2 mm.

The values for znom
i are stable to within 0.3 mm for each part of the experiment, averaging

-58.95, -67.97, and -68.18 cm for parts A, B, and C, respectively. The blue line in Figure

4.1 shows final path.

Applying this correction improves the vertex distribution in the 6 CLAS sectors.

This is demonstrated in Figure 4.3 which shows the distribution of the vertex position as

a function of azimuthal angle, before and after applying the raster correction in different

regions of the target cross-section.
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Figure 2: E0 distribution from ep elastic angles for each sector for a typcial NH3 run. Solid
histograms are with new fit to a line, which histograms are from RECSIS swimming back to a
plane.

call to beam info can be made once per event, while target info should be called for every track.
It should work with either ntuple-10 or ntuple-22 format paw ntuples or root trees. Details on
how to use the target info function are included in comments in the source code.

References

[1] P. Bosted, S. Kuhn, and Y. Prok, CLAS-NOTE-03-008.

6

FIG. 4.4: Beam energy calculated from ep elastic scattering for each sector using an NH3 run. The
dashed lines use the momenta and angles from the reconstruction algorithm from RECSIS and the
solid lines are the spectra after applying the track reconstruction corrections.

4.1.2 Tracking Correction

The path of the particles moving through the drift chambers is reconstructed by a

tracking reconstruction package (RECSIS). The track in each sector of the drift chamber

is reconstructed to Region 1 of the DC taking into account the 5 T target magnet field as

well as the CLAS torus magnet. The target magnet field is approximately 5 T up to a radial

distance of 24 cm from the magnetic center which is where the polarized target material

is located. RECSIS does not take into account any magnetic field between the first layer

of the DC and the target. The tracking correction gives a more accurate description of the

angles and momentum of a track.
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In our case, the track is traced back to the beam (x,y) coordinates, obtained from the

raster correction detailed in the previous section. More accurate track angles also improve

the vertex resolution. The track-fitting procedure and code are available in Ref. [55].

The improved angular resolution is apparent especially when looking at the empty

target spectrum as shown in the Dilution Factor Study (see Section 5.1). Another test

of seeing the effect of the tracking correction is reconstructing the beam energy of the

electron using an exclusive reaction. Consider the case for elastic scattering,

ep→ ep. (4.9)

Both the scattered electron and proton are detected in CLAS. The energy of the incoming

electron is then calculated using

Ebeam = Mp


 1

tan
(

θe
θp

) −1


 (4.10)

where the scattering angle of the electron (θe) and proton (θp) are detected in CLAS

(Ref. [55]). The beam energy (Ebeam) resolution for ep elastic scattering before and after

applying the correction is shown in Figure 4.4.

4.1.3 Fiducial cuts for the Inner Calorimeter

The Inner Calorimeter (IC) provides high efficiency detection of photons at small

angles. It also blocks particles that would typically be detected in CLAS at small angles.

Particles hitting the edge of the IC or its shielding can experience significant energy loss

and multiple scattering. The edges of the IC apparatus were determined empirically,

leading to fiducial cuts that ensure that particles detected in CLAS did not hit the IC on
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their way. The methodology and code of the study are found in Ref. [19].

Figure 1: Distribution of x, y at the IC front face for electrons, positrons, positive pions, and
photons, for part A run 59000. The inner red lines define the standard fiducial cut, while the
outer red lines define the “tight” cut. So save space, points beyond a radius of 24 cm are not
plotted.

5

FIG. 4.5: Distribution of x (cm), y (cm) at the IC front face for electrons, positrons, positive pions,
and photons, for part A run 59000 Ref. [19]. The inner red lines define the standard fiducial cut,
while the outer red lines define the stricter cut. To save space, points beyond a radius of 24 cm are
not plotted.

The hits in the fiducial region for the electron, positron, positive pion and photon are

shown in Figure 4.5. The inner red lines define the standard fiducial cut, while the outer

red lines define the stricter cut. I use the stricter cut to remove electrons, charged pions

and photons in CLAS that fall in the region potentially blocked by the IC or its shielding.

4.2 Event Selection

The corrections from the previous section are applied to the events that produce a

trigger in the data acquisition system. These events are then further analyzed to identify
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the scattered electron and pion in coincidence. A combination of the electromagnetic

calorimeter, drift chambers and Cherenkov counters in CLAS are used to select an elec-

tron in CLAS. The scintillators and drift chambers are used in charged pion selection. For

the case of the neutral pion, the electromagnetic calorimeter in CLAS and the IC are used.

4.2.1 Electron

The primary criteria for electron selection are listed in Table 4.1.

Selection Limits
Charge q =−1
Visible Energy in EC EEC > 0.24× (p−0.12)
Photoelectron signal in the Cherenkov counter nphe > 2.0
Mirror matching in the Cherenkov counter χ2 < 0.10
Electron Momentum 0.8 < p < pBeam GeV
Vertex selection |vz− vznom|< 4.0 cm

TABLE 4.1: Summary of electron identification criteria. The cuts in the EC and CC remove
negative pion contamination in the sample. Electrons with momentum less than 0.8 GeV are
removed from sample to minimize events with large radiative corrections. The vertex cut ensures
that the electron in the event actually came from the target region.

Low momentum pions lose energy in the EC via ionization and electrons do so by

electromagnetic showers. The energy deposited by each in the calorimeter is a function

of their momentum. Putting a momentum dependent cut on the visible energy deposited

in the EC removes most of the negatively charged pions. To prevent further negative

pion contamination for candidates with momenta above 2.5 GeV further cuts on the other

detection systems are applied.

The cut on the photoelectron signal in the CC serves this purpose. The ultra-relativistic

electron passing through the Cherenkov counter produces a larger signal (number of pho-

toelectrons) than the heavier pions (mπ ≈ 140 MeV). The variable CC χ2 is obtained from
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the mirror matching procedure for the CC detailed in Ref. [56] and is standard procedure

for improving electron discrimination from background. The particle track in the the DC

is matched with the expected phototube that will fire in the CC, which improves electron

discrimination. Electrons with momentum less than 0.8 GeV are removed from sample to

minimize events with large radiative corrections. The vertex cut ensures that the electron

in the event actually came from the target region. Each of these cuts are seen in Figures

4.6 and 4.7. Figure 4.8 shows the effect of adding each successive cut on the electron

event sample. We start with all negatively charged particles detected in CLAS. We than

cut out negative pions in the EC using the momentum-dependent cut. This is followed

by cuts on the Cherenkov counter for both the signal and mirror matching. These cuts

reduce the initial sample by ≈ 15%. The last two cuts remove low momentum electrons

and electrons coming from regions other than the target area, leaving us with ≈ 67% of

the initial sample.

4.2.2 Charged Pions

Selection Limits
Charge q =±1
Visible Energy in EC EEC < 0.20p
Photoelectron signal in the Cherenkov counter nphe < 2.0
Timing ∆t = tpredicted− texpected < 0.7 ns
Vertex selection |vz− vznom|< 4.0 cm

TABLE 4.2: Summary of charged pion selection cuts. The cuts in the EC and CC remove electron
contamination in the sample. The timing cuts is based on the time of flight of the charge particle
through the detector. This cuts removes heavier particles that would take longer than the pion, e.g.
proton, kaon, etc. The vertex cut ensures that the data are collected from the target region.

The principal detector used to identify charged pions is the time of flight system.

The event start time (teventstart) is obtained from the radio frequency (RF) time of the
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accelerator. The time it takes for a charged particle to reach the scintillators is compared

to the time a pion, with momentum determined by the drift chambers, would take to

traverse the same distance (tTOF ). This can also be transformed into β = v/c written as,

βmeasured =
1
c

distance
tTOF − teventstart

(4.11)

or the measured time for the particle to reach the scintillators,

tmeasured = tTOF − teventstart . (4.12)

The predicted velocity of a pion is given by,

βtheory =
p√

p2 +M2
π

(4.13)

and the predicted time it takes to reach the SC is

ttheory =
distance
cβtheory

. (4.14)

The distribution of ∆β = βtheory−βmeasured , or ∆t = ttheory− tmeasured , as a function

of particle momentum provides a clean signal for charged pions as is seen in Figure 4.10.

Anti-electron cuts are also applied on the CC and EC to remove electron contamination

in the negative pion sample. The photoelectron signal in the CC is required to be less than

2. The momentum-dependent cut on the EC removes electrons as well. The vertex cut is

applied to ensure that the pion comes from the target region. The list of cuts is shown in

Table 4.2 and the each individual cut is shown in Figures 4.11, 4.10 and 4.9. The effect

of each successive cut on the charged pion is shown in Figure 4.12. The the cut on ∆t



73

removes the most number of events especially for the positive pion candidates. This is

seen in the individual spectrum which shows bands for the kaons and protons. After all

cuts we are left with ≈ 17% of the initial positive candidates sample and ≈ 36% of initial

negative pion candidates. We collect more than twice the number of positive pions as

negative pions in our detector.

4.2.3 Neutral Pions

Neutral pions are reconstructed from the invariant mass of two detected photons (γ)

detected in the electromagnetic calorimeter or the inner calorimeter. The photon selection

for the EC and IC are listed in Tables 4.3 and ?? respectively. Low momentum photons

for each case are removed. A cut on β is implemented for the neutral pion detected in the

EC. This cut is designed to remove any signal from neutrons. The ∆t cut in the IC is a cut

on the time difference between the event start time and the photon hit in the IC. This is

designed to remove signals uncorrelated with the event start time. The result of applying

each successive cut is shown in Figure 4.14.

Selection Limits
Charge q = 0
Particle velocity β > 0.80
Particle momentum p > 0.2 GeV

TABLE 4.3: Summary of photon selection cuts in the Electromagnetic Calorimeter.

Selection Limits
Timing ∆tγ = tIC− teventstart < 5 ns
Particle momentum p > 0.3 GeV

TABLE 4.4: Summary of photon selection cuts in the Inner Calorimeter.
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The three possible topologies to calculate the invariant π0 mass are two γs in the IC,

two γs in the EC and, one γ in the EC and one γ in the IC. A symmetric cut is then made

on the invariant mass of two photons 0.1 < M2
γγ < 0.17 GeV2 to select the neutral pions

found only in the EC or only in the IC. For the third topology, we made an asymmetric

cut around the pion mass - 0.1 < M2
γγ < 0.16 GeV2 to avoid more of the background on

the right. The mass cuts are seen in Figure 4.13. The yellow region is selected as a good

neutral pion candidate and the black region is eliminated from physics analysis. The IC

is made of lead tungstate bars that have a detector higher resolution than the combination

of lead and scintillator sheets in the EC. This is reflected in the resolution of the invariant

mass peak in the IC vs the EC. As seen in Figure 3.14 the width of the IC peak is about

half the size of the EC peak.

4.2.4 Quality Checks

We have studied the events selected as a function of time to ensure stability of our

data sample, and to decide on the good runs to use for analysis. We calculate the rate

of inclusive electrons by dividing the number of electrons detected by the gated charge

collected in the Faraday cup.

After monitoring inclusive electron rates over the course of the run period, only data

files that have rates within 90% of the maximum for that run are included in the data

sample. This study is conducted for each CLAS sector. Seen in Figures 4.15, 4.16 and

4.17 are the data files that passed the good file selection criteria. The jump in the rate

around Run 59150 comes from a change in the beam energy to 4.7 GeV and the slight

jump around Run 60000 comes from reversing the polarity of the torus magnet current.

Both of these portions of data are excluded in the final asymmetry analysis. We also
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monitor the semi-inclusive rates for three pion cases. No further criteria were used to

remove files past this point because of low rates.

The electron helicity flips pseudorandomly at the rate of 30 Hz. To calculate accurate

values for asymmetries it is important that we have the same amount of beam charge

corresponding to the two helicity states. We monitor this over the course of the run period

as well. The beam charge asymmetry is given by,

qasym(%) =
q+−q−

q+ +q−
×100% (4.15)

where q+(−) represents the charge for the positive (negative) helicity electron. As seen in

Figure 4.21, the highest beam charge asymmetries we encounter were less than 1.5% and

typically less 0.5%, which are deemed reasonable and no data files are removed for this

reason.

The average photoelectrons measured by the Cherenkov counter were monitored as

well. Between parts A and B the Sector 5 piece of the CC developed a slow gas leak.

Consequently, the average photoelectron count for part B seen in Figure 4.20, is lower.

This is also reflected in the over all electron rate. Sector 5 was included in generating

asymmetries because any acceptance issues cancel.

The energy deposited in the EC for good electrons was monitored file by file to en-

sure that the cuts made for electrons did not need to be modified because of gain changes

in the detector. For an electron energy and momentum can be considered the same (i.e.

E/p = 1). Figure 4.22 shows the average E/p for each run in the experiment. Instead

of this quantity being unity, it is about 0.27 since the calorimeter is calibrated to yield

visible energy rather than the total. The average value of the energy drops as a function

of run number in spite of gain calibration. The standard deviation is approximately 0.04.
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This is safely away from the pion rejection criterion and so we ignore the variation in the

average value.

The other reason data files are removed is because of abnormally high rates. The

abnormally high rates were found to be correlated with beam missing the target material

and hitting the Kapton cup holding the target. This typically occurred when the beam

was over-rastered. An example of the over-rastered beam is shown in Figure 4.23. A

list of files where this occurred was compiled and these data were removed from physics

analysis. More details of this study are found in Ref. [57].
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FIG. 4.6: Histogram of the number of photoelectrons detected in the CC for candidate electrons
(lower plot) and the track/CC phototube matching χ2 (upper plot). The blue shows the data before
cuts and the black shows data eliminated by the electron cuts.
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FIG. 4.8: Electron candidates as a function of momentum after applying the selection criteria
from Table 4.1. We start with all negatively charged particles detected in CLAS. We than cut out
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as a good pion candidate and the black region is removed prior to physics analysis. The ∆t cut
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selected as a good pion candidate and the black region is removed prior to physics analysis. The
vertex selection ensures the data are coming from the target region.
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FIG. 4.12: Charged pion candidates as a function of their momentum. The effect of applying the
selection criteria from Table 4.2 seen here for run 60100. The upper plot shows the progression of
cuts for the positive pion and the lower plot is for the negative pion. The cut on timing removes
the most number of positive pion candidates.
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FIG. 4.13: Invariant two-photon mass distributions for three different photon topologies. The three
possible topologies to calculate the invariant π0 mass are two γs in the IC, two γs in the EC and,
one γ in the EC and one γ in the IC. The yellow region is selected as a good neutral pion candidate
and the black region is eliminated from physics analysis.
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FIG. 4.15: Electron rate on the ammonia target as a function of run number for the data files used
in the analysis for Sector 1 (top) and Sector 2 (bottom). Each run number has approximately eighty
data files. Plotted in color is the distribution of rates in each of the files in the experiment. Data
files with low rates in each sector are removed. The jump in the rate around Run 59150 comes
from a change in the beam energy to 4.7 GeV and the slight jump around Run 60000 comes from
reversing the polarity of the torus magnet current. The white space between Runs 59250 and
59400 is the accelerator summer down.
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FIG. 4.16: Same as Figure 4.15 except showing Sector 3 (upper) and Sector 4 (lower).
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FIG. 4.17: Same as Figure 4.15 except showing Sector 5 (upper) and Sector 6 (lower).
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FIG. 4.18: Photoelectrons measured in the CC as a function of run number for the data files used
in the analysis for Sector 1 (top) and Sector 2 (bottom). Each run number has approximately
eighty data files. Data files with low rates in each sector are removed. The jump in the rate around
Run 59150 comes from a change in the beam energy to 4.7 GeV and the slight jump around Run
60000 comes from reversing the polarity of the torus magnet current. The white space between
Runs 59250 and 59400 is the accelerator summer down between parts A and B.
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FIG. 4.19: Same as Figure 4.18 except showing Sector 3 (upper) and Sector 4 (lower).
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FIG. 4.20: Same as Figure 4.18 except showing Sector 5 (upper) and Sector 6 (lower).
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FIG. 4.21: The beam charge asymmetry as a function of run number. The color scale denotes the
file number.
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FIG. 4.22: Energy deposited in the EC scaled by a function of electron momentum as a function
of run number. Each sector is mostly stable except for the drop about every 50 runs. This plot
shows the version we got by fine tuning the EC gain calibration. We deemed this acceptable for
the purposes of calculating asymmetries.
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FIG. 4.23: Raster distribution for ADC y vs ADC x. The red crescent shows the beam hitting the
Kapton cell on the top left corner. The bottom of the plot corresponds to the top of the target.
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4.3 Corrections after Event Selection

4.3.1 Beam and target polarization

The beam (Pb) and target (Pt) polarization are measured during the course of the ex-

periment using two separate systems 1. The NMR system detailed in Section 3.3 measures

Pt . The Møller polarimeter described in Section 3.2 measures Pb. Table 3.2 summarizes

measurements over the course of the experiment.

Both the beam and target polarization measurements contain inherent systematic un-

certainties. The Møller polarimeter measures the beam polarization for both helicities

using elastic scattering on a polarized Permendur foil Ref. [1]. Differences in the po-

larization between the two helicites on the order of a 1-2% are consistent with previous

CLAS experiments, however we had some differences as large as 9% as shown in Table

3.2. The NMR coils are a part of the target cell, hence the target polarization measure-

ment is sensitive to the average of the material in the 1.5 cm diameter cup. The NMR

measurements provide no information as to the how the polarization varies through the

volume of the target.

Considering these issues, we conduct a separate study from the data to get the prod-

uct of beam and target polarization. In this case, PbPt is extracted from exclusive elastic

e-p scattering by comparing the experimental value of A‖ to the theoretical value Ref.

[58].

A‖ =
2τr
[mp

E + r
(
τ mp

E +(1+ τ) tan2(θ/2)
)]

1+ τ r2

ε

. (4.16)

1The transverse component of the target polarization in the lepton frame is Pt . In several references cited
in this work Ph⊥ and Pt are used interchangeably, neither of which are the target polarization measured in
the experiment.
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Here τ = Q2

4m2
p
, mp is the proton mass, E is the beam energy, θ is the electron scattering

angle, ε = 1
1+2(1+τ tan2(θ/2)) , and r = GM

GE
. The form factors are parametrized using world

data Ref. [59]. The product of beam and target polarization is this given by,

PbPt =
Aexp
‖

A‖
. (4.17)

The procedure is repeated for each beam energy and for every relevant bin in Q2. The
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FIG. 4.24: Average PbPt deduced from e-p elastic scattering. The progression of polarization
product as a function of Q2 (GeV)2. “Part A2” refers to the inbending data from part B of the
experiment.

details of the procedure including event selection are detailed in Ref. [60]. The results

are summarized in Table 4.5 which are used to scale the physics asymmetries. The results

of PbPt for ep elastic scattering are very stable as a function of Q2 are shown in Figure

4.24. The analysis was done separately for runs with positive target polarization and for
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negative target polarization.

EB (GeV) PbP+
t PbP−t Pave

b (%) P+
t P−t

5.887 0.63 ± 0.03 -0.61 ± 0.03 86.822 ± 0.006 0.72 ± 0.03 -0.69 ± 0.03
4.730 0.64 ± 0.02 -0.61 ± 0.03 87.400 ± 0.006 0.73 ± 0.03 -0.70 ± 0.04
5.954 0.65 ± 0.02 -0.57 ± 0.02 83.600 ± 0.006 0.79 ± 0.02 -0.68 ± 0.02

TABLE 4.5: Summary of PbPt extractions for the NH3 target using exclusive e-p scattering. The
average beam polarization value is obtained from weighting the Møller measurements from Ta-
ble 3.2 with e-p elastic events. The analysis was done separately for runs with positive target
polarization and for negative target polarization.

4.3.2 Pair Symmetric Background

The SIDIS event sample contains a certain fraction in which the presumed scattered

electron comes from another physics process, most likely neutral pion Dalitz decay Ref.

[61]

π0→ e−e+γ. (4.18)

The misidentified electron events must be subtracted from our data. The Bethe-Heitler

(ep→ e−e+p) process also creates an electron which is a candidate for a misidentified

semi-inclusive electron Ref. [61]. The neutral pion decay (π0 → γγ → (e−e+)(e−e+))

into two photons could also lead to an electron at the event vertex. In all the mentioned

reactions a positron is produced in addition to the electron with the same kinematical

distribution. This is used to estimate the misidentified semi-inclusive electrons in our

data sample. Events for the reaction,

ep→ e+πX (4.19)
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are recorded using the same selection criteria for the positron as for the electron (except

for the charge). We use the run range with opposite torus polarity for this study. To

first order, the acceptance for the positrons and electrons is the same. The event rate for

the positron should be a good estimate for the event rate of the misidentified electrons

coming from reactions other than semi-inclusive scattering. A pair-symmetric dilution is

calculated using the ratio of semi-inclusive positron to semi-inclusive electron rate.

fPS = 1− p(e,e′+π)X
p(e,e′−π)X

(4.20)

The dilution is calculated in bins of xB, Q2, z, Ph⊥ and φh for all three pions as described

in Chapter 6 . The value of fPS ranged between 0.989 to 1.000 with a statistical error on

the order of one part in a 1000.



CHAPTER 5

Data Analysis II

5.1 Dilution Factor

The dilution factor f is defined as the fraction of semi-inclusive scattering events

originating from polarizable nucleons. The target spin azimuthal asymmetries we mea-

sure are written as

A =
Araw

f
. (5.1)

The value of f depends on the reaction kinematics (Q2, xB, z, Ph⊥, φh). The polarized

ammonia target is detailed in Section 3.3. Here Figure 5.1 shows a schematic representa-

tion of the target contents as viewed from a right angle to the beam line. The components

of the target shown in the schematic are the elements of the target within the vertex cut

imposed for event selection. The nominal values for the target center are listed in Table

5.1. The dilution factor for the ammonia target is,

f =
nproton

nNH3 +nHe +nK +nAl
(5.2)

99
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where n denotes the SIDIS event rate and the subscript indicates the target material (He =

Helium, NH3 = Ammonia, Al = Aluminum, K = Kapton).

Run Range Target center nominal (cm) Target center corrected (cm)
58799 - 59250 58.3 58.95
59400 - 60250 68.2 67.97

TABLE 5.1: Nominal and corrected values for center of the NH3 target in CLAS coordinates. The
raster correction study is described in 4.1.1.

The event rate for each material i is proportional to the product of the areal density

ρ and semi-inclusive DIS cross section σ , i.e.

ni ∝ ρiσi. (5.3)

Applying Equation 5.3 to 5.2, we get

f =
ρprotonσproton

ρNH3σNH3 +ρHeσHe +ρKσK +ρAlσAl
(5.4)

where the constant of proportionality in Eqn 5.3 is directly dependent on the acceptance.

Since all these materials are in the same target configuration, we can safely assume that

the constant of proportionality is the same for both numerator and denominator. We split

up the problem of determining the dilution factor into two parts. One involves accurately

measuring the areal densities of the materials in the ammonia target. The other involves

determining the semi-inclusive DIS cross sections for each pion flavor.
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Figure 2.13: Beads of ammonia in a target cup. The purple discoloration is due to radiation damage.

the width of the target window. Helmholtz coils produce the required oscillating fields at the correct

frequencies to produce the desired pattern. Raster magnet ADC amplitudes are recorded in coinci-

dence with each scattering event, so that the raster pattern can be reconstructed (see, for example,

Section 3.3.4).

2.4.2 Dynamic Nuclear Polarization: Overview

The method of Dynamic Nuclear Polarization (DNP) is used to polarize the ammonia target material.

A complete, detailed treatise of this method is beyond the scope of this thesis; only a basic summary

(specific to this experiment) and appropriate references are included here.

For spin-12 nuclei, which only have two possible spin orientations in an external field (+ 1
2 and

− 1
2 ), the polarization along the magnetic field (z) axis is given in terms of the spins J as simply

P = 〈Jz〉/J = n+ − n− (2.5)

where n± represents the fraction of nuclei with each spin. Assuming internal equilibrium, the spins

can then be characterized by the Boltzmann law with a characteristic temperature TS:

n−

n+
= exp(−Em/kTS) (2.6)

CLAS z (cm)

57.50

58.2556.75

58.5956.41

Al Banjo Windows (gray) L ~ 2.18 cm
Helium filled (gray shading)

Kapton cup windows (brown) Lcup = 1. 50 cm

CLAS z (cm)

58.2556.75

CLAS z (cm)

57.50 58.5956.41

Kapton Target Window

Al Banjo Window

Figure 1: Target schematic for eg1-dvcs showing the used targets. Ammonia was the primary
experimental target used. Carbon and Empty targets were used to calculate dilution factors and
consistency checks.

As is seen from equations 2 and 3, the radiated cross section itself depends on lHe, which is one
of the quantities that we are trying to extract. Similar expressions can be written for the case of
the Carbon and Ammonia targets.

2 Method

We now have access to rates (n) using the Equation (1) and from our experimental data. We
also calculate theoretical rates from the radiated cross section model. The radiated cross sections
were obtained from inclusive data as explained in [2] and the areal density for each material was
measured in the lab or obtained from literature.

Property Helium Carbon Aluminum Kapton Ammonia
Volume Density ρ ( gm

cm3 ) 0.125 2.193 2.700 1.430 0.917
Radiation length X0 ( gm

cm2 ) 94.26 42.66 24.03 40.54 40.80
Length (cm) L, L− lA, L− lC 0.398 0.000147 0.000066 lA

Molar Mass ( gm
mol ) 4 12 27 382 17

Mol of nucleons/cm2 0.2725 0.7632 0.03969 0.009437 1.3755 lA
1.5

Table 1: Numbers used to calculate areal densities ρ̃i. The total length of the target cup was 1.5
cm which is used in the last row.

Dimensional analysis and some algebra gives both areal density as well as the total target

2

FIG. 5.1: Schematic side view of the target material in CLAS. Shown here are ammonia, empty
and carbon (top to bottom) targets used in 58799 - 59250 with a central nominal value of znom =
58.3 cm. The beam passes through the grey Aluminum windows, liquid Helium in the target and
a Kapton target cell window before interacting with actual polarized target material.

5.1.1 Areal Densities

The areal density for each material in Equation 5.4 is shown in Table 5.2. The two

unknowns in the table are the “length” of the helium and the length of the actual ammonia

target. Ammonia is in the form of crushed beads which makes it a challenge to measure

its effective length. Electron scattering data were taken with the carbon and empty targets

both with and without helium in the target cell. A combination of these data were used to

determine the unknown lengths.
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Material Volume Density (g/cm3) Length (cm)
Helium 0.145 LHe
Carbon 2.193 0.398
Aluminum 2.700 0.0166
Kapton 1.430 0.0066
Ammonia 0.866 LNH3

TABLE 5.2: Summary of volume densities and lengths of materials in the target.

Determining the Length of Helium

If we know the length of the target between the two aluminum banjo windows, Lban jo

then we can infer the length of the helium for each target. The aluminum banjo windows

are shown in Figure 5.1 using gray lines. A photograph showing part of the banjo is

shown in Figure 3.9.

The nominal value of this length at room temperature is Lban jo = 2.18 cm . The target

assembly itself is cooled to a temperature below 4 K which clearly can change Lban jo. We

deduce Lban jo using a combination of inclusive scattering data from the carbon target

and the same carbon target with the helium drained out. The primary reason for using

inclusive scattering is the ready availability of models that provide inclusive cross sections

using world data. The inclusive electron rate for the carbon target configuration is written

as a combination of the areal density times the cross section for each material that the

electron encounters. Hence, σ for this section denotes the inclusive cross section. The

count rate for the carbon target can be written as,

nC ∝ ρAlσAl +ρHeσHe +ρKσK +ρCσC (5.5)

or

nC ∝ ρV
AlLAlσAl +ρV

HeLHeσHe +ρV
K LKaptonσK +ρV

C LCσK, (5.6)
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where the subscripts indicate the material in the target and ρV is the volume density

such that ρ = ρV L. A similar expression is written for data taken for the carbon target

configuration with helium drained out.

nnoHe
C ∝ ρAlσAl +ρKσK +ρCσC (5.7)

nnoHe
C ∝ ρV

AlLAlσAl +ρV
K LKaptonσK +ρV

C LCσK
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FIG. 5.2: The calculated χ2 for multiple values of Ltest used to deduce Lban jo by comparing rate
ratios to inclusive models Ref. [20] Ref. [21]. The minimum χ2 in this case gives the length
between the banjo windows to be Lban jo = 2.01±0.01 cm. This value is smaller in than the room
temperature value which suggests that the Aluminum windows bow inward.

For the carbon target, LHe = Lban jo−LAl−LK−LC. The rate ratio

rdata = nnoHe
C /nC (5.8)
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from data was determined using a reasonable test value of Ltest = 2.18 cm. This ratio was

compared to the rate ratio

rmodel = nnoHe
C /nC (5.9)

predicted by the model for inclusive nucleon cross sections using the same nominal value

of Ltest Ref. [20] Ref. [21]. The inclusive cross sections for the different nuclei were

obtained using the code and table from Ref. [62]. The value of Ltest was then varied over

a reasonable range to obtain the best χ2 value defined as,

χ2 =
1

N−1

N

∑
i

(
ri

data− ri
model

∆ri

)2

(5.10)

where N is the number of kinematic bins used and ∆ri is the error on ri
data for each

kinematic bin i. The model prediction in the same kinematic bin is ri
model . The effect on

χ2 for varying values of Ltest is seen in Figure 5.2.

Figure 5.3 shows the results for Lban jo for several different combinations of runs

over the course of the experiment. The outliers in the study were for the combination of

the empty target run compared with the empty target with no helium, run. Ideally this

should give the best measurement because we have the least material in the beam line,

but its most different from the measured value of 2.18 cm. The best match came from

the combination of carbon compared to carbon with no helium runs. The average over

the range of runs for parts A and B was Lban jo = 2.17 cm with a standard deviation of

σL = 0.24. A summary of the results is listed in Table 5.3.

We concluded that it was more reliable to use the data from an empty run with no

helium and t the two peaks for the Aluminum windows. The difference between the

two peaks would give us Lban jo. The procedure described above was then used as a
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FIG. 5.3: Determinations of Lban jo by χ2 minimization for several combinations of runs over the
course of the experiment. The extreme outliers in the experiment come from using the combination
of an empty target run in combination with an empty target run with no helium.

consistency check for Lban jo. From Figure 5.4 the length was deduced to be Lban jo =

2.1± 0.1 cm. This value was then used to determine the length of the helium for the

ammonia target configuration.

Determining the Length of Ammonia

A procedure similar to the one described in the previous section was used to deter-

mine the effective length of the ammonia target (LNH3). Rate ratios for inclusive scat-

tering are formed using a combination of one carbon and one ammonia run. The value

of Lban jo = 2.1±0.1 cm obtained from the previous discussion was assumed here, and a
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where units are in cm and raidans, and rf =
√

((xf − x0)2 + (yf − y0)2) I studied the effect of
the 22. cos(θ0)(tan(thz)− tan(θf )) correction term (which I think is absent in the RECSIS recon-
struction), and found it to be relatively small. This is because the reolsution in z0 is determined
primarly by the tracking resolution in θf , combined with the uncertainties in x0 and y0 from ras-
tering. Using an MT target run with no He (run 60023), where the 2-cm-apart “banjo” windows
are clearly visible, I found a z-vertex resolution of about 5 mm for P > 2 inbending electrons, as
shown in Fig. 1. The resolution is worse for outbending particles because θf is not determined as
well, and is worse at low momentum due to the effects of multiple scattering.

Figure 1: Distributuion of vertex z for run 60023 for electrons with P > 2 GeV. The two peaks
correspond to the “banjo” windows with a nominal separation of 2.18 cm, because this is an MT
target with no helium.

3 Target field rotation or translational shift

In the small-angle approximation, if the target magnet axis relative to CLAS is rotated by angles
cm
x and cm

y , then there will be transverse filed components Bx = cm
x Bz(0) and By = cm

y Bz(0)
acting over an effective length d as discussed above. Using the Lorentz equation, this will cause
a deflections δcx = czA/P and δcy = czB/P , where the unknown parameters A and B are
approximatley 0.36cm

y and 0.36cm
x , respectively.

I found that the best way to determine A and B was to look at the distribution of opening
angles between electrons and positrons. Since the invariant mass of two (nearly) massless particles
is given by Me+e− = sqrt[4Pe+Pe− sin2(θe+e−/2)] there will be a large peak near zero for photons
(which have M = 0) that convert to electron-postiron pairs in the electromagnetic field of a
nucleus. [Taking into account the electron mass, the distribution in θe+e− actually peaks at
me/(Pe+Pe−), which is negligibly small compared to the eg1-dvcs experimental resolution]. In
actual practice, I used skimed ntuples with just electron/positron pairs, and vaired A and B until
I obained the largest number of events with Me+e− < 0.01 GeV. My best fit results for parts A

4

FIG. 5.4: Distribution of vertex z for Run 60023 for electrons with momentum greater then 2 GeV
for the empty target. The two peaks correspond to the banjo windows with a nominal separation
of 2.18 cm.

nominal value of Ltest
NH3

= 0.9 cm was used in rate ratio of the carbon and ammonia targets.

The inclusive rate for the carbon target is

nC ∝ ρAlσAl(LC̃)+ρHeσHe(LC̃)+ρKσK(LC̃)+ρCσC(LC̃) (5.11)

where LC̃ = LC +LAl +LK +LHe is the total radiation length of all material in the carbon

target setting. The inclusive rate for the ammonia target is,

nA ∝ ρAlσAl(LA)+ρHeσHe(LA)+ρKσK(LA)+
3

17
ρAσH(LA)+

14
17

ρAσN(LA). (5.12)
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Run Range Target Cup Lban jo (cm) LNH3 (cm) LNH3 Error (cm)
Part A (58799 - 59300) Top 2.17 ± 0.24 0.853 ±0.0024
Part A (58799 - 59300) Bottom 2.17 ± 0.24 0.851 ±0.0014
Part B (59300 - 60185) Top 2.17 ± 0.24 0.860 ±0.001
Part B (59300 - 60185) Bottom 2.17 ± 0.24 0.910 ±0.001

TABLE 5.3: Average banjo lengths, Lban jo and target lengths LNH3 for parts A and B of the exper-
iment. Values are calculated separately for top and bottom ammonia targets.

where LA = LNH3 + LAl + LK + LHe is the total radiation length of all material in the

ammonia target setting. For each case the constant of proportionality is directly dependent

on the acceptance and cancels in the ratio. The σ in this case denotes the inclusive cross

section which is modeled from world data and its radiated value is dependent on the

radiation lengths of the material LC̃ and LA. The length of the helium in each case is

determined as LHe = Lban jo−Leverything else.

We calculate the inclusive rate ratio,

rdata = nA/nC̃ (5.13)

using Ltest
NH3

= 0.98 cm and compare it to rmodel using the inclusive cross sections obtained

from Ref. [62]. We then vary the value of ltest
NH3

to get a minimum χ2 value for the

comparison. Figure 5.5 shows the optimal values for LNH3 over the proton run period.

The χ2 values for each run pair are listed in Ref. [63]. A summary of the error-weighted

average values for LNH3 are seen in Table 5.3.

5.1.2 SIDIS nucleon cross sections

Now that we can calculate the areal densities, we need to find a way to estimate the

SIDIS cross sections for different materials in Equation 5.4. To address this we construct
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FIG. 5.5: The extracted ammonia length for each target (TOP and BOT) for the Run range 58800
- 59300 (A) and 59400 - 60200 (B).

an ad-hoc model and use our data to constrain its four fit parameters. The symbol σ in

this section refers to cross sections in semi-inclusive DIS.

We started with a simple leading order pQCD model to calculate cross section ra-

tios Ref. [64]. The initial assumption is that SIDIS with a pion in the final state can

be described as the sum over quark flavors of the product of the quark distribution func-

tion q(x,Q2) and either a favored or unfavored fragmentation function (D+(z, pT ) and

D−(z, pT )). The ratio of fragmentation functions is written as r f = D−/D+. The semi-
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inclusive cross section ep→ eπ+X is written as

σπ+

p ∝ (4u+ds)+(4us +d)r f . (5.14)

The superscripts on the σ correspond to pion flavor, and u = uv + us and d = dv + ds are

quark distributions. The subscript v refers to the valence quarks in the nucleon and s refers

to the anti-quark distribution in the proton. No contributions from the strange quark are

included in this discussion. We extend this to write a full set of cross sections for all three

pion flavor for scattering from a proton or neutron,

σπ−
p ∝ (4u+ds)r f +(4us +d) (5.15)

σπ0

p ∝ (4u+ds)(1+ r f )+(4us +d)(1+ r f )

σπ+

n ∝ (4d +us)+(4ds +u)r f

σπ−
n ∝ (4d +us)r f +(4ds +u)

σπ0

n ∝ (4d +us)(1+ r f )+(4ds +u)(1+ r f )

The parton distribution functions from GRV 98 Ref. [65] are used to get u, d, us and ds

over our kinematic range of xB and Q2. We approximate the fragmentation function ratio

by 1/(1 + z)2 Ref. [66]. This gives us the expressions for scattering from a proton and

neutron. Using these, we build the cross sections for each of our target materials. For

example, Aluminum has 13 protons and 14 neutrons, we write the cross section as,

σπ+

Al =
13σπ+

p +14σπ+
n

27
(5.16)

Following this principle, we write similar expressions for the different materials for each
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pion flavor:

σπ+

He,C,N =
σπ+

p +σπ+
n

2
(5.17)

σπ−
He,C,N =

σπ−
p +σπ−

n

2

σπ−
Al =

13σπ−
p +14σπ−

n

27

We account for nuclear effects in the different materials by introducing an attenuation

factor (AT ) depending on z and ν = Q2/2MxB Ref. [66]. Each attenuation factor is scaled

to carbon assuming

AHe
T (Q2,xB,z) =

a
νF

√
4/12 (5.18)

AC
T (Q2,xB,z) =

a
νF

√
12/12

AN
T (Q2,xB,z) =

a
νF

√
14/12

AAl
T (Q2,xB,z) =

a
νF

√
27/12.

The scaling for the attenuation factor, a is the same for each material and is the first

fit parameter that is constrained using data. The denominator, νF contains the z and ν

dependence and is given by,

νF =
[ ν

2.5

]νp
(1+(z−0.55)) (5.19)

in which νp is taken as a fit parameter. The HERMES Collaboration produced fits to the

ratio of fragmentation functions as a function of z. The dependence of νF on z is based
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on their fits Ref. [23]. The Ph⊥ dependance is added into the attenuation by,

AHe
T (Q2,xB,z,Ph⊥) = 1+AHe

T (Q2,x,z)

{[
Ph⊥

pzshi f t
T

]pT p

−1

}
(5.20)

AC
T (Q2,xB,z,Ph⊥) = 1+AC

T (Q2,x,z)

{[
Ph⊥

pzshi f t
T

]pT p

−1

}

AN
T (Q2,xB,z,Ph⊥) = 1+AN

T (Q2,x,z)

{[
Ph⊥

pzshi f t
T

]pT p

−1

}

AAl
T (Q2,xB,z,Ph⊥) = 1+AAl

T (Q2,x,z)

{[
Ph⊥

pzshi f t
T

]pT p

−1

}

where pzshi f t
T = pT z + 1

2(z−0.4). The function of the z, Ph⊥, and ν dependence here was

based on the detailed hadron attenuation studies shown in Ref. [67]. The final two fit

parameters used to constrain the model are pT p and pT z.

Combining the attenuation and individual cross section terms, we get

σπ+

He =
σπ+

p +σπ+
n

2
AHe

T (Q2,xB,z,Ph⊥) (5.21)

σπ+

C =
σπ+

p +σπ+
n

2
AC

T (Q2,xB,z,Ph⊥)

σπ+

N =
σπ+

p +σπ+
n

2
AN

T (Q2,xB,z,Ph⊥)

σπ+

Al =
13σπ+

p +14σπ+
n

27
AAl

T (Q2,xB,z,Ph⊥)

Similar expressions can be written for the other pion flavors. There is no explicit φh

dependence in the model. Semi-inclusive rate ratios of ammonia to carbon

nSIDIS
NH3

nSIDIS
C

(5.22)
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are used to get fit parameters. The best fit parameters are then used to calculate the

semi-inclusive DIS cross sections which in turn are substituted in Equation 5.4 to get the

dilution factor.

Testing the Model

To get an accurate determination of dilution, the data for carbon and ammonia were

divided based on run period, beam energy and torus polarity. The run ranges used are

(58799 - 59161) referred to as part A, and (59400 - 60200) referred to as part B, for in-

bending torus polarity. Figure 5.6 shows the regions of the run used for this analysis.

Sector 5 was removed for this study due to the leaking CC system as was the data with

lower beam energy and negative torus polarity. Strict fiducial cuts on the IC were im-

plemented for particles detected in CLAS. The stability of both carbon and ammonia is

critical and is shown in Figure 5.6.

The ratio of semi-inclusive rates for each pion are calculated and the model is used

to fit these ratios. The results of these are seen in Figure 5.7, Figure 5.8 and Figure 5.9

for the positive, negative and neutral pion respectively. The plots are constructed for the

finest binning in (Q2,xB,z,Ph⊥) seen on the horizontal axis. Each data point on this axis

corresponds to a different kinematic bin. The black line shows the model fit with the

lowest χ2. The second plot on each figure shows the resultant dilution factor. In order to

display all points in 4 variables on the same graph; we loop over each bin in xB, Q2, z and

Ph⊥ in turn. The outer loop to display the data points in xB which then includes variation

for (Q2, z, Ph⊥) bins. The jump for each plot denotes a change in the range of xB. For

example, for the case of the positive pion the xB bin change is seen at points 135 and 200.

This is followed by divisions in Q2 which includes variation for (z, Ph⊥). Finally, the three
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FIG. 5.6: Inclusive event rate as a function of run number for the NH3 TOP (blue), NH3 TOP (red)
and carbon target (black). The horizontal lines indicate a change in run configuration. Around
Run 59160 is a change in beam energy and around Run 59995 is a change in torus polarity.

divisions in z have variations in the value of Ph⊥.

Overall, the trend is for the dilution to rise with momentum fraction and fall with

momentum transfer.

The χ2/do f values for each pion flavor are listed in Table ??. The Ph⊥, z and Q2

dependence of the resultant dilution factor integrated over all other kinematics are shown

in Figure 5.10, Figure 5.11 and Figure 5.12 respectively. More details of this study are

found in Ref. [68]. We concluded that the results of the model are stable for the kinematic

range that we explored.
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FIG. 5.7: SIDIS rate ratio of ammonia to carbon for the positive pion (top) and the corresponding
model prediction for dilution (bottom). The run range in this case is 59400 - 60200 and each data
point on the horizontal axis corresponds to one kinematic bin in (Q2,xB,z,Ph⊥).
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FIG. 5.8: Same as Figure 5.7 for the negative pion.
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FIG. 5.9: Same as Figure 5.7 for the neutral pion.

Run Period Pion Flavor χ2/do f
A π+ 1.12
A π− 1.80
A π0 1.35
B π+ 1.07
B π− 1.02
B π0 1.19

TABLE 5.4: The χ2/do f values for fitting the semi-inclusive rate ratio of ammonia to carbon
using the ad-hoc SIDIS model. The data were divided by eg1dvcs run periods A (58800 - 59161)
and B (59400 - 60200).
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FIG. 5.10: The dependence of ratio of (NH3/C) on Ph⊥ in different xB bins for positive (top row),
negative (middle row) and neutral (bottom row) pions. The data are integrated over all other
kinematics and are shown here for Runs 59400 - 60250. The open circles show the SIDIS model
result.
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FIG. 5.11: Same as Figure 5.10 except as a function of Q2.
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FIG. 5.12: Same as Figure 5.10 except as a function of z.
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5.2 Systematic Errors

The raw experimental asymmetries have several corrections applied to them, each

with an associated uncertainty which is not included in the statistical error bar of the

measurement. We account for these systematic errors by calculating the asymmetry by

changing each correction in turn by its uncertainty, keeping all others corrections at their

standard value. Since the corrections and their errors are uncorrelated, we add individual

changes in the asymmetry in quadrature to give the final systematic error. The main

sources of these errors are listed below.

1. Beam Polarization (Pb): The beam polarization is measured by the Möller polarimeter

as described in Section 4.3. The average statistical uncertainty for the measurements is

2.08%. The systematic relative uncertainty from the polarimeter has a maximum value

of 3% Ref. [1]. This is converted to absolute uncertainty based on each beam energy

option and added in quadrature with the statistical uncertainty. The total absolute error

for each beam energy is shown in Table 5.5.

2. Beam and Target Polarization (PbPt): As described in Section 4.3, the product of beam

and target polarization is extracted using data from elastic scattering. The statistical

error on PbPt for each beam energy is considered a systematic effect because it affects

all asymmetries systematically. The error for each beam energy is shown in Table 5.5.

3. Dilution Factor ( f ): The major source of systematic error in determining the dilution

factor is the SIDIS model. The target model parameters are varied by one standard

deviation and the effects on the dilution are calculated. The error on the dilution factor
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varies with kinematics (Q2, xB, z, Ph⊥) and for each pion case is calculated using

fsyserror =
(

∂ f
∂ p1

∂ f
∂ p2

∂ f
∂ p3

∂ f
∂ p4

)




σ2
11 σ2

12 σ2
13 σ2

14

σ2
21 σ2

22 σ2
23 σ2

24

σ2
31 σ2

32 σ2
33 σ2

34

σ2
41 σ2

42 σ2
43 σ2

44







∂ f
∂ p1

∂ f
∂ p2

∂ f
∂ p3

∂ f
∂ p4




. (5.23)

The partial derivatives are with respect to each of the four fit parameters (p1, . . . , p4).

The error matrix contains the error squared for each parameter along the diagonal

and the correlation between parameters in the the off-diagonal elements. The relative

error on the dilution varied between 2% and 10% depending on the pion type and and

kinematics. The errors for each pion case are listed in tables in Ref. [69].

4. Pair Symmetric background (e+/e−): The systematic error for the e+/e− background

correction is negligible as the correction itself is on the order of a 1%.

5. Radiative Correction: We have no radiative tail from elastic scattering so the radiative

corrections are already quite small. The largest effect comes from the miscalculation of

~q because of the initial or final electron radiating a photon. We estimate this assuming

the photons are emitted along the direction of motion of the electron which implies

that ν is overestimated and θq is underestimated. Radiative effects from exclusive

processes appear to be important, but a quantitative estimate of this does not exist as

yet. No rigorous radiative corrections exist at this point. We assumed a 5% systematic

error for internal and external radiative effects.

6. R = σL/σT : The double spin asymmetry (ALL) is converted to the ratio of polarized to

unpolarized structure functions via a depolarization factor. The depolarization factor,
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has in it the structure function R, which represents the ratio of longitudinal to trans-

verse photon absorption cross-sections. The latest values for R for SIDIS, shown in

Figure 5.13, have sizable error bars associated with them for the SIDIS range in z. The

estimates for the error on R are shown in Table 5.5.

Item Correction Applicable for Uncertainty A Uncertainty B
1 Pb AUL, ALU 3.33 (abs) 3.26 (abs)
2 PbPt AUL, ALL 0.026 (abs) 0.020 (abs)
3 Dilution Model Parameters AUL, ALL 2 - 10 % (rel) 2 - 10 % (rel)
4 π−, e+/e− AUL, ALU , ALL >1 %(rel) >1 %(rel)
5 Radiative Effects AUL, ALU , ALL 5 %(rel) 5 %(rel)
6 R = σL/σT g1/F1 0.1 (abs) 0.1 (abs)

TABLE 5.5: Sources of systematic uncertainties and their estimated values for eg1dvcs run periods
A (58800 - 59161) and B (59400 - 60200).

Table 5.5 lists the sources of systematic error that are studied.

The systematic errors associated with each item in Table 5.5 is assumed to be uncor-

related with the others. The total systematic error for the physics asymmetry is calculated

in multiple bins of (xB, Ph⊥) for ALL; and (xB, Ph⊥, φh) for AUL and ALU .
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FIG. 1. The ratio R=σL/σT ) in SIDIS as a function of Q2 (left panel) and z (right panel) as
measured at Cornell [6–8]. Different symbols reflect the data from the proton, deuteron, π+, and
π− data, respectively. The solid curves reflect the parameterization of R for DIS. Projected data
for the E12-06-104 experiment have been added as black solid circles, for the bottom panel at x =
0.2 and Q2 = 2 GeV2 (with the R parameterization also reflecting these values). Similar data as a
function of z will be obtained at x = 0.4 and Q2 = 4 GeV2.

Hence, to shed more light on the role of R in SIDIS seems appropriate. Knowledge on
R is fundamental in its own right to better understand to what extent the electro-produced
pions at 12-GeV beam energies are the direct fragmentation products of the struck partons,
and has great practical implications on the analysis of SIDIS experiments.

II. THEORY AND MOTIVATION

Inclusive Scattering The inclusive cross section can be expressed in terms of σT and
σL , the cross sections for the absorption of transverse and longitudinal photons, respectively.
For asymptotic energies, the ratio of longitudinal to transverse cross sections R → 1/Q2 → 0,
a consequence of the scattering of (asymptotically free) spin-1/2 constituents. At lower and
finite Q2, the ratio R becomes sensitive to indirect gluon effects and higher-twist contri-
butions. Similarly, in the naive quark-parton model, R is related to the parton’s average
transverse momentum 〈k2

t 〉: R = 4(M2x2 − 〈k2
t 〉)/(Q2 + 2〈k2

t 〉).
In practice, R remains rather constant for the phase space accessible to a 12-GeV JLab, to

only drop ∼ 1/Q2 beyond Q2 ∼ 3 GeV2 [9]. Also keep in mind that for measurements of R in
DIS no distinctions are made between possible diffractive and non-diffractive contributions,
all are included in the experimental determinations. Lastly, DIS measurements of R on
deuterium (for Q2 > 1 GeV2) are found to be in excellent agreement with the data on
hydrogen, so to very good approximation Rp = Rd for DIS.

Semi-Inclusive Scattering In the one-photon exchange approximation, the pion elec-
troproduction cross section can be written as the product of a virtual photon flux (Γ) and a
virtual photon cross section (evaluated in the laboratory frame),

dσ

dΩπdMx
=

dσT

dΩπdMx
+ ε

dσL

dΩπdMx
+ ε

dσT T

dΩπdMx
cos 2φpq +

√
2ε(1 + ε)

dσL T

dΩπdMx
cosφpq , (1)

4

R
S
ID
IS

FIG. 5.13: The ratio (R = σL/σT ) in SIDIS as a function of z as measured at Cornell Ref. [22]. The
red symbols reflect the data on a hydrogen target for π+ (filled circle), and π− (filled triangle). The
blue symbols reflect the data on a deuterium target for π+ (open circle), and π− (open triangle).
The solid curves reflect the parameterization of R for DIS. Projected data for the E12-06-104
experiment have been added as black solid circles Ref. [23].



CHAPTER 6

Asymmetry Results and Discussion

The primary goal of this work is to measure the single and double spin asymmetries

that correspond to the helicity structure functions FUL, FLL and FLU . Extracting azimuthal

moments of these asymmetries allows us to separate specific terms contributing to the

SIDIS cross section in Equation 2.5. The final experimental results are detailed in each

section below.

6.1 Asymmetry and Error Formulae

6.1.1 ALU

We write the experimental expression for the Beam Spin Asymmetry (BSA) in terms

of the four different spin combinations as

ALU =
1
|Pb|

n++−n−+−n−−+n+−

n++ +n−+ +n−−+n+− (6.1)

123
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in which n denotes the semi-inclusive event rate and Pb corrects for the fact that the beam

is not 100% polarized. The notation for event rate for the positively polarized beam and

positively polarized target is,

n++ = N++/F++. (6.2)

Here N++ is the number of semi-inclusive counts for a positively polarized beam and

target. To get the rate, it is scaled by the signal in the Faraday cup (F++) that indicates

the charge collected for that combination of beam and target spins. The error on the beam

spin asymmetry is calculated to be,

∆ALU =

√(
dALU

dN++

)2

∆N++2 +
(

dALU

dN+−

)2

∆N+−2 +
(

dALU

dN−+

)2

∆N−+2 +
(

dALU

dN−−

)2

∆N−−2.

(6.3)

The error on the Faraday cup values is miniscule in comparison with the statistical error

on the number of events, so we ignore it. The derivatives for each term in the error

calculation are
dALU

dN++(+−) =
1
|Pb|

(n−+ +n−−) . 2
F++(+−)

(n++ +n+−+n−+ +n−−)2 (6.4)

and
dALU

dN−+(−−) =
1
|Pb|

(n++ +n+−) . 2
F−+(−−)

(n++ +n+−+n−+ +n−−)2 (6.5)

where,

∆N =
√

N (6.6)

for each helicity combination.
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6.1.2 ALL

We write a similar expression for the Double Spin Asymmetry (DSA),

ALL =−1
f

n++−n−+ +n−−−n+−

|PbP−t |(n++ +n−+)+ |PbP+
t |(n−−+n+−)

(6.7)

The asymmetry in this case is scaled by a product of the beam and target polarization, and

the dilution factor. The superscript on Pt indicates the sign of the target polarization with

respect to the beam direction.

The error on the double spin asymmetry is,

∆ALL =

√(
dALL

dN++

)2

∆N++2 +
(

dALL

dN+−

)2

∆N+−2 +
(

dALL

dN−+

)2

∆N−+2 +
(

dALL

dN−−

)2

∆N−−2

(6.8)

The derivatives for each term in the error calculation are

dALL

dN++(−−) =
1
f

(n−+ +n+−) . PbP+
t +1

F++(−−) +(n++ +n−−) . PbP+
t −1

F++(−−)(
|PbP−t |(n++ +n−+)+ |PbP+

t |(n−−+n+−)
)2 (6.9)

and
dALL

dN−+(+−) =
1
f

(n++ +n−−) . PbP+
t +1

F−+(+−) +(n+−+n−+) . PbP+
t −1

F−+(+−)(
|PbP−t |(n++ +n−+)+ |PbP+

t |(n−−+n+−)
)2 (6.10)

The physics quantity of interest is the double spin asymmetry scaled by the depolar-

ization factor D′. The ratio of polarized to unpolarized structure functions can be written

as
g1

F1
=

[ALL +A⊥ tan(θ/2)]
D′

(6.11)

where θ is the scattering angle and A⊥ is the double spin asymmetry for a transversely

polarized target. We assume A⊥ ≈ 0. The uncertainty on the ratio of structure functions



126

is written as

∆
(

g1

F1

)
=

∆ALL

D′
. (6.12)

The depolarization factor is given by Ref. [64],

D′(y) =
y(2− y)(1+ γ2)

y2 +2
(
1− y− 1

4y2γ2
)
(1+R)

(6.13)

where γ2 = 2MxB/Q2 and R is the ratio of longitudinal to transverse cross sections given

in terms of the unpolarized structure functions as

R+1 =
(1+ γ2)F2

2xBF1
(6.14)

The uncertainty in D′ comes primarily from R and is treated in the systematic error

section. The DSA results are shown in the form of g1/F1.

6.1.3 AUL

The Target Spin Asymmetry (TSA) is written as

AUL =
1
f

n++ +n−+−n−−−n+−

|P−t |(n++ +n−+)+ |P+
t |(n−−+n+−)

(6.15)

which is scaled by target polarization and dilution for the target. The target polariza-

tion here is obtained by dividing the polarization product PbPt from the elastic scattering

study by the average the Pb from the Möller measurements. The error on the target spin
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asymmetry is,

∆AUL =

√(
dAUL

dN++

)2

∆N++2 +
(

dAUL

dN+−

)2

∆N+−2 +
(

dAUL

dN−+

)2

∆N−+2 +
(

dAUL

dN−−

)2

∆N−−2

(6.16)

The derivatives for each term in the error calculation are

dAUL

dN++(−+) =
1
f

(n+−+n−−) P+
t +1

F++(−+) +(n−+ +n++) P−t −1
F++(−+)(

|P−t |(n++ +n−+)+ |P+
t |(n−−+n+−)

)2 (6.17)

and
dAUL

dN+−(−−) =
1
f

(n++ +n−+) P+
t +1

F+−(−−) +(n+−+n−−) P−t −1
F+−(−−)(

|P−t |(n++ +n−+)+ |P+
t |(n−−+n+−)

)2 (6.18)

We separate semi-inclusive rates in bins of helicity to calculate each asymmetry.

6.2 Kinematic Coverage

The sheer statistics available from the eg1-dvcs experiment sets this work apart from

all previous measurements from HERMES, COMPASS and prior CLAS data on a longi-

tudinally polarized target. The high statistics allow us to measure asymmetries and extract

moments differential in Q2, xB, z, Ph⊥ and φh. The size of the kinematic bins are listed in

Table 6.1.

The kinematic coverage of the semi-inclusive data for π±,0 is shown in terms of the

relevant kinematics in Figures 6.1 - 6.3. We probe a momentum fraction range of 0.1 -

0.48. The highest momentum for each pion are ≈ 4.6 GeV. The independent variables xB

and Q2 are kinematically correlated here because of CLAS acceptance. Figure 6.2 shows

that the majority of π±s are dominated at transverse pion momenta, Ph⊥ around 0.45 GeV.

The π0 events are concentrated at slightly lower Ph⊥ values. There is significant improve-
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Bin number Q2 (GeV)2 φh (degrees) z Ph⊥ (GeV) xB

1 0.800 0 0.2 0.000 0.06
2 1.000 30 0.3 0.125 0.12
3 1.250 60 0.4 0.250 0.18
4 1.562 90 0.5 0.375 0.24
5 1.952 120 0.6 0.500 0.30
6 2.440 150 0.7 0.625 0.36
7 3.049 180 0.8 0.750 0.42
8 3.811 210 0.9 0.875 0.48
9 4.763 240 1.0 1.000 0.54
10 5.953 270 1.1 1.125 0.60
11 7.440 300
12 330

TABLE 6.1: Lower bin edges for this experiment. The bin size was constant for all variables
except Q2 for which we used logarithmic bin sizes.

ment in the coverage for the neutral pion due to the presence of the IC compared to earlier

measurements in CLAS. Unfortunately, the IC reduces the π± rates in its shadow, and

Figure 6.3 shows a much lower π− rate at small angles than for π0.

The event selection is further restricted after particle identification to ensure a clean

semi-inclusive sample. The additional restrictions are listed below.

• 0.0 < pelectron <Beam Energy: This ensures a realistic electron momentum.

• Momentum transfer Q2 > 1 GeV2 and W > 2 GeV: This ensures that event are in the

traditional DIS region.

• Fractional Energy 0.4 > z > 0.7: This effectively eliminates events coming from target

fragmentation at low z and coherent events such as ρ0 production at high z.

• Missing Mass Mx > 1.4 GeV: Ensures that several particles are produced in the hadroniza-

tion process.
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• y < 0.85: Removes data dominated by radiative corrections.

• Transverse momentum of pion Ph⊥ > 0.05 GeV: Removes low momentum noise.

• Momentum fraction 0.12 < xB < 0.48: Bins outside of this range have few events.

• Tight IC Fiducial Cuts : Ensure that the recoil particles are coming from the target and

not the support structure of the IC. This is consistent with the IC fiducial cuts used for

the dilution factor study.

An asymmetry value was calculated in each kinematic bin that had more than 10

events for each helicity. Hypothetically, if there were data available in every single pre-

scribed bin we could calculate asymmetries in 132000 bins. However, the additional cuts

placed on the data sample along with the acceptance of CLAS and the IC results in limited

population of this space. Realistically, there are approximately 9000 bins populated for

each pion.
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FIG. 6.1: The kinematic coverage in xB and Q2 (GeV2) in CLAS for semi-inclusive π+ (top), π−
(middle) and π0 (bottom) events. The independent variables xB and Q2 are correlated here because
of CLAS acceptance.
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FIG. 6.2: The kinematic coverage in xB and Ph⊥ (GeV) in CLAS for semi-inclusive π+ (top), π−
(middle) and π0 (bottom) events. The majority of π± are dominated by Ph⊥ values around 0.45
GeV. The π0 events are concentrated at slightly lower Ph⊥ values.
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FIG. 6.3: The kinematic coverage in Ph⊥ (GeV) and φh (degrees) in CLAS for semi-inclusive π+

(top), π− (middle) and π0 (bottom) events. About two thirds of the neutral pions are detected fully
or partially in the IC. This is reflected in the higher event rate on the edges of the bottom plot as
compared to the charged pions which are detected only in CLAS.



133

6.3 Results

Each asymmetry, along with its corresponding dilutions, were calculated for the bins

specified in Table 6.1.

6.3.1 ALU

The beam spin asymmetry integrated over all kinematics except for φh is shown in

Figure 6.4. These data were fit using

f (φh) = AC
LU +Asinφh

LU sinφh +Asin2φh
LU sin2φh. (6.19)

A clear sinφh dependence is seen. The sin2φh dependence is consistent with zero in

all three cases. A similar trend is seen when we break this out into a larger number of bins.

If we integrate only over Q2 and z we can plot the φh distributions for a two dimensional

array of xB and Ph⊥ bins as shown in Figures 6.5, 6.6, 6.7. The projections have one

kinematic quantity relating to the quark distribution (xB) and the other to fragmentation

function (Ph⊥). We justify the z integration because little variation is seen with respect to

z in the quantities involved. We integrate over Q2 because the data are predominantly in

the range 1-2 GeV2 and the logarithmic Q2 evolution is slight over this range of the data.

The three fit coefficients AC
LU , Asinφh

LU and Asin2φh
LU for each pion case were extracted in

(xB, Ph⊥) space. The dependence of the sine moments as a function of Ph⊥ is shown in

Figures 6.8 and 6.9. The constant term in the fit is consistent with zero and is not shown.

The sinφh moment has a smooth dependence for π0. Generally, π+ is largest, π0 a bit

smaller, and π− is close to zero or even negative.

The sin2φh moment is consistent with zero for almost all of the bins except for π−
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especially in the higher Ph⊥ bins.

6.3.2 g1/F1

The double spin asymmetry integrated over (Q2,xB,z,Ph⊥) in form of the ratio of

the polarized to unpolarized structure functions, is shown in Figure 6.10. These plots are

integrated over all kinematics except for φh. The data are fit using

f (φh) = AC
LL +Acosφh

LL cosφh. (6.20)

A clear cos(φh) dependence is seen along with a non-zero constant term. The depen-

dence of g1/F1 on Ph⊥ is shown in Figure 6.11 for π±,0. There is a slight tendency for π+

and π0 to decrease with Ph⊥, and a more noticeable one for π− to increase with Ph⊥. We

also extracted the cosφh momentum of the double spin asymmetry for π±,0 as shown in

Figures 6.12 - 6.15.

6.3.3 AUL

The target single spin asymmetry integrated over all kinematics except for φh is

shown in Figure 6.16. The data are fit using

f (φh) = AC
UL +Asinφh

UL sinφh +Asin2φh
UL sin2φh. (6.21)

A clear sinφh dependence is seen. The sin2φh dependence is consistent with zero in

all three cases. A similar trend is seen in when we break out into a larger number of bins.

If we integrate only over the Q2 and z, what we see in terms of xB, Ph⊥ and φh is shown in

Figures 6.17 - 6.20. Again, these projections, have one kinematic quantity from the quark
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distribution (xB) and the other from fragmentation (Ph⊥).

The three fit coefficients for each pion case were extracted in (xB, Ph⊥) space. The

dependence of these coefficients as a function of Ph⊥ is shown in Figures 6.8 and 6.9. The

constant term in the fit is not shown. The sinφh moment has a smooth dependence for π0.

Generally, π+ and π0 are both positive and π− is close to zero or negative.

The data tables for all three asymmetries are listed in Ref. [70].
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FIG. 6.4: The integrated beam spin asymmetry for π+ (top, red points), π− (middle, blue points),
and π0 (bottom, green points). The data were fit to f (φh) = AC

LU + Asinφh
LU sinφh + Asin2φh

LU sin2φh
and were integrated over all bins of (Q2,xB,z,Ph⊥).
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C         0.003222! -0.002315 
  

h
!sin  0.005663! 0.01744 

  
h
!sin 2  0.005455! -0.0117 

 = 0.68, x = 0.15  
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2

"  1.788 / 7
Prob   0.9706

C         0.002735! -0.002127 
  

h
!sin  0.004396! 0.03025 

  
h
!sin 2  0.005488! 0.002696 

 / ndf 
2

"  1.788 / 7
Prob   0.9706

C         0.002735! -0.002127 
  

h
!sin  0.004396! 0.03025 

  
h
!sin 2  0.005488! 0.002696 

 = 0.68, x = 0.21  
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2

"  7.079 / 8

Prob   0.5281
C         0.004006! -0.003756 

  
h
!sin  0.006535! 0.0242 

  
h
!sin 2  0.00631! -0.006607 

 / ndf 
2

"  7.079 / 8

Prob   0.5281
C         0.004006! -0.003756 

  
h
!sin  0.006535! 0.0242 

  
h
!sin 2  0.00631! -0.006607 

 = 0.68, x = 0.27  
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2

"  4.124 / 7

Prob   0.7654
C         0.006498! -0.005098 

  
h
!sin  0.007972! 0.03729 

  
h
!sin 2  0.009081! 0.005376 

 / ndf 
2

"  4.124 / 7

Prob   0.7654
C         0.006498! -0.005098 

  
h
!sin  0.007972! 0.03729 

  
h
!sin 2  0.009081! 0.005376 

 = 0.68, x = 0.33  
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2

"  11.22 / 7
Prob   0.1291

C         0.009182! 0.01322 
  

h
!sin  0.01538! 0.05898 

  
h
!sin 2  0.01543! -0.008989 

 / ndf 
2

"  11.22 / 7
Prob   0.1291

C         0.009182! 0.01322 
  

h
!sin  0.01538! 0.05898 

  
h
!sin 2  0.01543! -0.008989 

 = 0.67, x = 0.38  
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2

"  6.469 / 5
Prob   0.2632

C         0.01924! 0.007046 
  

h
!sin  0.03269! 0.00831 

  
h
!sin 2  0.03565! 0.003547 

 / ndf 
2

"  6.469 / 5
Prob   0.2632

C         0.01924! 0.007046 
  

h
!sin  0.03269! 0.00831 

  
h
!sin 2  0.03565! 0.003547 

 = 0.67, x = 0.44  
T

p

 (radians)  
h

! 1 2 3 4 5 6

 
L

U
 A

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

 / ndf 
2

"  7.669 / 8
Prob   0.4665

C         0.003856! 0.002143 
  

h
!sin  0.005923! 0.02023 

  
h
!sin 2  0.005983! -0.001878 

 / ndf 
2

"  7.669 / 8
Prob   0.4665

C         0.003856! 0.002143 
  

h
!sin  0.005923! 0.02023 

  
h
!sin 2  0.005983! -0.001878 

 = 0.81, x = 0.15  
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2

"  6.473 / 8
Prob   0.5944

C         0.004475! 0.001739 
  

h
!sin  0.006369! 0.03233 

  
h
!sin 2  0.006821! 0.0002916 

 / ndf 
2

"  6.473 / 8
Prob   0.5944

C         0.004475! 0.001739 
  

h
!sin  0.006369! 0.03233 

  
h
!sin 2  0.006821! 0.0002916 

 = 0.80, x = 0.21  
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2

"  8.309 / 8

Prob   0.4039
C         0.006391! -0.006134 

  
h
!sin  0.008934! 0.04524 

  
h
!sin 2  0.009443! -0.0008034 

 / ndf 
2

"  8.309 / 8

Prob   0.4039
C         0.006391! -0.006134 

  
h
!sin  0.008934! 0.04524 

  
h
!sin 2  0.009443! -0.0008034 

 = 0.80, x = 0.27  
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2

"  2.463 / 7

Prob   0.9298
C         0.01124! -0.0003013 

  
h
!sin  0.01632! 0.02376 

  
h
!sin 2  0.01772! 0.00212 

 / ndf 
2

"  2.463 / 7

Prob   0.9298
C         0.01124! -0.0003013 

  
h
!sin  0.01632! 0.02376 

  
h
!sin 2  0.01772! 0.00212 

 = 0.80, x = 0.32  
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2

"  5.404 / 6
Prob   0.4931

C         0.02416! -0.01212 
  

h
!sin  0.03575! 0.08265 

  
h
!sin 2  0.03915! 0.04119 

 / ndf 
2

"  5.404 / 6
Prob   0.4931

C         0.02416! -0.01212 
  

h
!sin  0.03575! 0.08265 

  
h
!sin 2  0.03915! 0.04119 

 = 0.79, x = 0.38  
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2

"  2.777 / 8
Prob   0.9476

C         0.005986! -0.006126 
  

h
!sin  0.008441! 0.03514 

  
h
!sin 2  0.008794! -0.00461 

 / ndf 
2

"  2.777 / 8
Prob   0.9476

C         0.005986! -0.006126 
  

h
!sin  0.008441! 0.03514 

  
h
!sin 2  0.008794! -0.00461 

 = 0.93, x = 0.15  
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2

"  10.07 / 8
Prob   0.2602

C         0.008164! 0.009637 
  

h
!sin  0.01177! 0.02051 

  
h
!sin 2  0.01192! -0.01385 

 / ndf 
2

"  10.07 / 8
Prob   0.2602

C         0.008164! 0.009637 
  

h
!sin  0.01177! 0.02051 

  
h
!sin 2  0.01192! -0.01385 

 = 0.92, x = 0.21  
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2

"   2.81 / 8

Prob   0.9457
C         0.01512! 0.004977 

  
h
!sin  0.02137! 0.04679 

  
h
!sin 2  0.02339! -0.02518 

 / ndf 
2

"   2.81 / 8

Prob   0.9457
C         0.01512! 0.004977 

  
h
!sin  0.02137! 0.04679 

  
h
!sin 2  0.02339! -0.02518 

 = 0.92, x = 0.26  
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2

"  2.169 / 6

Prob   0.9035
C         0.03896! 0.03025 

  
h
!sin  0.05741! -0.04724 

  
h
!sin 2  0.05942! -0.05234 

 / ndf 
2

"  2.169 / 6

Prob   0.9035
C         0.03896! 0.03025 

  
h
!sin  0.05741! -0.04724 

  
h
!sin 2  0.05942! -0.05234 

 = 0.91, x = 0.32  
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2

"  3.054 / 8
Prob   0.931

C         0.01333! -0.009232 
  

h
!sin  0.01882! 0.0166 

  
h
!sin 2  0.01928! -0.03099 

 / ndf 
2

"  3.054 / 8
Prob   0.931

C         0.01333! -0.009232 
  

h
!sin  0.01882! 0.0166 

  
h
!sin 2  0.01928! -0.03099 

 = 1.04, x = 0.14  
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2

"  2.345 / 7
Prob   0.9383

C         0.03094! 0.006856 
  

h
!sin  0.01802! 0.1046 

  
h
!sin 2  0.0408! -0.0517 

 / ndf 
2

"  2.345 / 7
Prob   0.9383

C         0.03094! 0.006856 
  

h
!sin  0.01802! 0.1046 

  
h
!sin 2  0.0408! -0.0517 

 = 1.03, x = 0.20  
T

p

 (GeV)
h

P
0 0.2 0.4 0.6 0.8 1

B
x

0.1

0.2

0.3

0.4

0.5

0.6

 (radians)  
h

! 
1 2 3 4 5 6

 
L

U
 A

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

 / ndf 
2

"  5.493e-09 / 0

Prob       0
C         0.01713! -0.03025 

  
h
!sin  0.2606! 0.3005 

  
h
!sin 2  0.1626! 0.2277 

 / ndf 
2

"  5.493e-09 / 0

Prob       0
C         0.01713! -0.03025 

  
h
!sin  0.2606! 0.3005 

  
h
!sin 2  0.1626! 0.2277 

 = 0.10, x = 0.27  
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2

"  2.417 / 2

Prob   0.2986
C         0.0116 1! -0.009736 

  
h
!sin  0.04523! -0.01651 

  
h
!sin 2  0.03715! -0.02225 

 / ndf 
2

"  2.417 / 2

Prob   0.2986
C         0.0116 1! -0.009736 

  
h
!sin  0.04523! -0.01651 

  
h
!sin 2  0.03715! -0.02225 

 = 0.10, x = 0.33  
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2

"  4.449 / 4
Prob   0.3487

C         0.01177! -0.01082 
  

h
!sin  0.02343! 0.0118 

  
h
!sin 2  0.02264! -0.01898 

 / ndf 
2

"  4.449 / 4
Prob   0.3487

C         0.01177! -0.01082 
  

h
!sin  0.02343! 0.0118 

  
h
!sin 2  0.02264! -0.01898 

 = 0.09, x = 0.39  
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2

"  0.5307 / 3
Prob   0.9121

C         0.01838! -0.001453 
  

h
!sin  0.06536! 0.009835 

  
h
!sin 2  0.05973! 0.003119 

 / ndf 
2

"  0.5307 / 3
Prob   0.9121

C         0.01838! -0.001453 
  

h
!sin  0.06536! 0.009835 

  
h
!sin 2  0.05973! 0.003119 

 = 0.09, x = 0.45  
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2

"  1.151e-11 / 0
Prob       0

C         0.009145! 0.007654 
  

h
!sin  0.1526! 0.1434 

  
h
!sin 2  0.09381! 0.05586 

 / ndf 
2

"  1.151e-11 / 0
Prob       0

C         0.009145! 0.007654 
  

h
!sin  0.1526! 0.1434 

  
h
!sin 2  0.09381! 0.05586 

 = 0.21, x = 0.22  
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2

"  7.038 / 3

Prob   0.0707
C         0.003641! -0.002743 

  
h
!sin  0.0157! -0.003179 

  
h
!sin 2  0.01317! -0.02477 

 / ndf 
2

"  7.038 / 3

Prob   0.0707
C         0.003641! -0.002743 

  
h
!sin  0.0157! -0.003179 

  
h
!sin 2  0.01317! -0.02477 

 = 0.20, x = 0.27  
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2

"  4.249 / 5

Prob   0.5141
C         0.005049! -0.00154 

  
h
!sin  0.01018! 0.02864 

  
h
!sin 2  0.009612! -0.001556 

 / ndf 
2

"  4.249 / 5

Prob   0.5141
C         0.005049! -0.00154 

  
h
!sin  0.01018! 0.02864 

  
h
!sin 2  0.009612! -0.001556 

 = 0.20, x = 0.33  
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2

"  6.679 / 5
Prob   0.2456

C         0.004881! -0.0009547 
  

h
!sin  0.0106! 0.03495 

  
h
!sin 2  0.005391! -0.007573 

 / ndf 
2

"  6.679 / 5
Prob   0.2456

C         0.004881! -0.0009547 
  

h
!sin  0.0106! 0.03495 

  
h
!sin 2  0.005391! -0.007573 

 = 0.20, x = 0.39  
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2

"  2.345 / 5
Prob   0.7997

C         0.007916! 1.51e-05 
  

h
!sin  0.01581! 0.03494 

  
h
!sin 2  0.01529! -0.01177 

 / ndf 
2

"  2.345 / 5
Prob   0.7997

C         0.007916! 1.51e-05 
  

h
!sin  0.01581! 0.03494 

  
h
!sin 2  0.01529! -0.01177 

 = 0.20, x = 0.45  
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2

"  0.3173 / 1
Prob   0.5732

C         0.003037! 0.004522 
  

h
!sin  0.01287! 0.06059 

  
h
!sin 2  0.007903! -0.006322 

 / ndf 
2

"  0.3173 / 1
Prob   0.5732

C         0.003037! 0.004522 
  

h
!sin  0.01287! 0.06059 

  
h
!sin 2  0.007903! -0.006322 

 = 0.33, x = 0.16  
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2

"  3.033 / 3
Prob   0.3866

C         0.003128! -0.002619 
  

h
!sin  0.00816! -0.002084 

  
h
!sin 2  0.004923! -0.03327 

 / ndf 
2

"  3.033 / 3
Prob   0.3866

C         0.003128! -0.002619 
  

h
!sin  0.00816! -0.002084 

  
h
!sin 2  0.004923! -0.03327 

 = 0.32, x = 0.21  
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2

"  10.74 / 5

Prob   0.0568
C         0.002969! -0.006462 

  
h
!sin  0.006303! 0.04423 

  
h
!sin 2  0.005039! 0.01033 

 / ndf 
2

"  10.74 / 5

Prob   0.0568
C         0.002969! -0.006462 

  
h
!sin  0.006303! 0.04423 

  
h
!sin 2  0.005039! 0.01033 

 = 0.32, x = 0.27  
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2

"  4.492 / 5

Prob   0.4809
C         0.00374! -0.003566 

  
h
!sin  0.0111 7! 0.05237 

  
h
!sin 2  0.01083! 0.007332 

 / ndf 
2

"  4.492 / 5

Prob   0.4809
C         0.00374! -0.003566 

  
h
!sin  0.0111 7! 0.05237 

  
h
!sin 2  0.01083! 0.007332 

 = 0.32, x = 0.33  
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2

"  3.352 / 5
Prob   0.6459

C         0.004592! -0.007729 
  

h
!sin  0.007972! 0.03941 

  
h
!sin 2  0.007672! 0.005635 

 / ndf 
2

"  3.352 / 5
Prob   0.6459

C         0.004592! -0.007729 
  

h
!sin  0.007972! 0.03941 

  
h
!sin 2  0.007672! 0.005635 

 = 0.32, x = 0.39  
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2

"  0.8221 / 5
Prob   0.9756

C         0.007214! 0.003086 
  

h
!sin  0.01445! 0.02706 

  
h
!sin 2  0.01496! -0.004853 

 / ndf 
2

"  0.8221 / 5
Prob   0.9756

C         0.007214! 0.003086 
  

h
!sin  0.01445! 0.02706 

  
h
!sin 2  0.01496! -0.004853 

 = 0.32, x = 0.45  
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2

"  0.3803 / 3
Prob   0.9443
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FIG. 6.5: The beam spin asymmetry vs φh for π+ in bins of xB and Ph⊥. Each xB and Ph⊥ bin is
fit to f (φh) = AC

LU + Asinφh
LU sinφh + Asin2φh

LU sin2φh. The ALU distribution for the 〈xB〉 = 0.33 and
〈Ph⊥〉= 0.44 is highlighted.
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φsin 2  0.02942± -0.006039 

 = 0.09, x = 0.39  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  0.9032 / 3
Prob   0.8247
C         0.02533± 0.04108 

  
h
φsin  0.1129± 0.06355 

  
h
φsin 2  0.1143± 0.02023 

 / ndf 2χ  0.9032 / 3
Prob   0.8247
C         0.02533± 0.04108 

  
h
φsin  0.1129± 0.06355 

  
h
φsin 2  0.1143± 0.02023 

 = 0.09, x = 0.45  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ    3.8 / 1
Prob   0.05124
C         0.008358± 0.01542 

  
h
φsin  0.04 11± 0.1427 

  
h
φsin 2  0.02623± 0.05836 

 / ndf 2χ    3.8 / 1
Prob   0.05124
C         0.008358± 0.01542 

  
h
φsin  0.04 11± 0.1427 

  
h
φsin 2  0.02623± 0.05836 

 = 0.21, x = 0.22  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  1.819 / 3
Prob   0.6109
C         0.004334± 0.009031 

  
h
φsin  0.005431± 0.04672 

  
h
φsin 2  0.0008404± -0.001011 

 / ndf 2χ  1.819 / 3
Prob   0.6109
C         0.004334± 0.009031 

  
h
φsin  0.005431± 0.04672 

  
h
φsin 2  0.0008404± -0.001011 

 = 0.20, x = 0.27  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  1.378 / 5
Prob   0.9267
C         0.006256± 0.0002114 

  
h
φsin  0.01131± 0.03811 

  
h
φsin 2  0.01097± -0.003479 

 / ndf 2χ  1.378 / 5
Prob   0.9267
C         0.006256± 0.0002114 

  
h
φsin  0.01131± 0.03811 

  
h
φsin 2  0.01097± -0.003479 

 = 0.20, x = 0.33  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  5.066 / 5
Prob   0.4079
C         0.007467± -0.006593 

  
h
φsin  0.01343± 0.01087 

  
h
φsin 2  0.002667± -0.0246 

 / ndf 2χ  5.066 / 5
Prob   0.4079
C         0.007467± -0.006593 

  
h
φsin  0.01343± 0.01087 

  
h
φsin 2  0.002667± -0.0246 

 = 0.20, x = 0.39  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
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0.04
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 / ndf 2χ  14.67 / 5
Prob   0.0118 6
C         0.0118 6± -0.008878 

  
h
φsin  0.02181± 0.04683 

  
h
φsin 2  0.02129± 0.004498 

 / ndf 2χ  14.67 / 5
Prob   0.0118 6
C         0.0118 6± -0.008878 

  
h
φsin  0.02181± 0.04683 

  
h
φsin 2  0.02129± 0.004498 

 = 0.20, x = 0.45  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
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0.04
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 / ndf 2χ   6.47 / 1
Prob   0.01097
C         0.008711± -0.001499 

  
h
φsin  0.4124± 0.1137 

  
h
φsin 2  0.2368± 0.06706 

 / ndf 2χ   6.47 / 1
Prob   0.01097
C         0.008711± -0.001499 

  
h
φsin  0.4124± 0.1137 

  
h
φsin 2  0.2368± 0.06706 

 = 0.33, x = 0.16  hP

 (radians)  
h
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
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0.04
0.05

 / ndf 2χ  1.232 / 3
Prob   0.7453
C         0.004773± 0.005233 

  
h
φsin  0.01688± 0.04841 

  
h
φsin 2  0.01431± -0.0003737 

 / ndf 2χ  1.232 / 3
Prob   0.7453
C         0.004773± 0.005233 

  
h
φsin  0.01688± 0.04841 

  
h
φsin 2  0.01431± -0.0003737 

 = 0.32, x = 0.21  hP

 (radians)  
h
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
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0.04
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 / ndf 2χ  5.771 / 5
Prob   0.3291
C         0.004783± -0.0009547 

  
h
φsin  0.01108± 0.02645 

  
h
φsin 2  0.008956± -0.01213 

 / ndf 2χ  5.771 / 5
Prob   0.3291
C         0.004783± -0.0009547 

  
h
φsin  0.01108± 0.02645 

  
h
φsin 2  0.008956± -0.01213 

 = 0.32, x = 0.27  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
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 / ndf 2χ  0.7635 / 5
Prob   0.9793
C         0.004928± -0.004085 

  
h
φsin  0.01077± 0.01568 

  
h
φsin 2  0.009331± -0.02669 

 / ndf 2χ  0.7635 / 5
Prob   0.9793
C         0.004928± -0.004085 

  
h
φsin  0.01077± 0.01568 

  
h
φsin 2  0.009331± -0.02669 

 = 0.32, x = 0.33  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
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 / ndf 2χ  3.938 / 5
Prob   0.5584
C         0.006412± 0.0003768 

  
h
φsin  0.01473± 0.002576 

  
h
φsin 2  0.01383± -0.01072 

 / ndf 2χ  3.938 / 5
Prob   0.5584
C         0.006412± 0.0003768 

  
h
φsin  0.01473± 0.002576 

  
h
φsin 2  0.01383± -0.01072 

 = 0.32, x = 0.39  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  5.171 / 5
Prob   0.3954
C         0.009713± -0.001676 

  
h
φsin  0.02273± 0.03286 

  
h
φsin 2  0.02119± 0.015 

 / ndf 2χ  5.171 / 5
Prob   0.3954
C         0.009713± -0.001676 

  
h
φsin  0.02273± 0.03286 

  
h
φsin 2  0.02119± 0.015 

 = 0.32, x = 0.45  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
-0.03
-0.02
-0.01
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0.02
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 / ndf 2χ  2.884 / 3
Prob   0.4099
C         0.005764± -0.003632 

  
h
φsin  0.02932± -0.03806 

  
h
φsin 2  0.02564± -0.02065 

 / ndf 2χ  2.884 / 3
Prob   0.4099
C         0.005764± -0.003632 

  
h
φsin  0.02932± -0.03806 

  
h
φsin 2  0.02564± -0.02065 

 = 0.44, x = 0.16  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
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0.02
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 / ndf 2χ  3.718 / 5
Prob   0.5907
C         0.003986± 0.003462 

  
h
φsin  0.009499± -0.007573 

  
h
φsin 2  0.009551± -0.01984 

 / ndf 2χ  3.718 / 5
Prob   0.5907
C         0.003986± 0.003462 

  
h
φsin  0.009499± -0.007573 

  
h
φsin 2  0.009551± -0.01984 

 = 0.44, x = 0.21  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
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0.02
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0.04
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 / ndf 2χ  10.12 / 5
Prob   0.07178
C         0.004137± -7.028e-05 

  
h
φsin  0.00772± -0.01123 

  
h
φsin 2  0.008283± -0.01133 

 / ndf 2χ  10.12 / 5
Prob   0.07178
C         0.004137± -7.028e-05 

  
h
φsin  0.00772± -0.01123 

  
h
φsin 2  0.008283± -0.01133 

 = 0.44, x = 0.27  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  6.322 / 5
Prob   0.2761
C         0.004611± -0.005472 

  
h
φsin  0.007058± 0.009818 

  
h
φsin 2  0.008241± 0.01032 

 / ndf 2χ  6.322 / 5
Prob   0.2761
C         0.004611± -0.005472 

  
h
φsin  0.007058± 0.009818 

  
h
φsin 2  0.008241± 0.01032 

 = 0.44, x = 0.33  hP

 (radians)  
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 A
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-0.04
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-0.02
-0.01
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0.02
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0.05

 / ndf 2χ   1.17 / 7
Prob   0.9916
C         0.006007± -0.003785 

  
h
φsin  0.009515± 0.007283 

  
h
φsin 2  0.01055± -0.01548 

 / ndf 2χ   1.17 / 7
Prob   0.9916
C         0.006007± -0.003785 

  
h
φsin  0.009515± 0.007283 

  
h
φsin 2  0.01055± -0.01548 

 = 0.44, x = 0.39  hP

 (radians)  
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 A

-0.05
-0.04
-0.03
-0.02
-0.01
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 / ndf 2χ  2.007 / 5
Prob   0.8481
C         0.009924± -0.0007682 

  
h
φsin  0.01797± 0.01615 

  
h
φsin 2  0.0218± -0.01535 

 / ndf 2χ  2.007 / 5
Prob   0.8481
C         0.009924± -0.0007682 

  
h
φsin  0.01797± 0.01615 

  
h
φsin 2  0.0218± -0.01535 

 = 0.43, x = 0.45  hP

 (radians)  
h
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 A
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-0.04
-0.03
-0.02
-0.01

0
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0.02
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 / ndf 2χ  12.51 / 5
Prob   0.02844
C         0.00436± 0.006491 

  
h
φsin  0.01041± -0.007886 

  
h
φsin 2  0.0111 9± -0.006386 

 / ndf 2χ  12.51 / 5
Prob   0.02844
C         0.00436± 0.006491 

  
h
φsin  0.01041± -0.007886 

  
h
φsin 2  0.0111 9± -0.006386 

 = 0.56, x = 0.15  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
-0.03
-0.02
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0.02
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 / ndf 2χ  3.728 / 6
Prob   0.7135
C         0.003794± -0.004826 

  
h
φsin  0.007001± -0.007713 

  
h
φsin 2  0.00797± -0.002254 

 / ndf 2χ  3.728 / 6
Prob   0.7135
C         0.003794± -0.004826 

  
h
φsin  0.007001± -0.007713 

  
h
φsin 2  0.00797± -0.002254 

 = 0.56, x = 0.21  hP

 (radians)  
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 A
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-0.04
-0.03
-0.02
-0.01
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 / ndf 2χ  5.127 / 7
Prob   0.6444
C         0.004094± -0.001532 

  
h
φsin  0.006584± -0.01044 

  
h
φsin 2  0.007329± -0.01186 

 / ndf 2χ  5.127 / 7
Prob   0.6444
C         0.004094± -0.001532 

  
h
φsin  0.006584± -0.01044 

  
h
φsin 2  0.007329± -0.01186 

 = 0.56, x = 0.27  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A
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-0.04
-0.03
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-0.01
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 / ndf 2χ   7.24 / 7
Prob   0.4043
C         0.005447± -0.001526 

  
h
φsin  0.008391± 5.56e-05 

  
h
φsin 2  0.009834± -0.001323 

 / ndf 2χ   7.24 / 7
Prob   0.4043
C         0.005447± -0.001526 

  
h
φsin  0.008391± 5.56e-05 

  
h
φsin 2  0.009834± -0.001323 

 = 0.56, x = 0.33  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 / ndf 2χ  3.204 / 7
Prob   0.8655
C         0.007509± 0.006304 

  
h
φsin  0.0111 5± 0.0001196 

  
h
φsin 2  0.01312± -0.00932 

 / ndf 2χ  3.204 / 7
Prob   0.8655
C         0.007509± 0.006304 

  
h
φsin  0.0111 5± 0.0001196 

  
h
φsin 2  0.01312± -0.00932 

 = 0.55, x = 0.39  hP

 (radians)  
h

φ 1 2 3 4 5 6
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-0.04
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-0.02
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0.02
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 / ndf 2χ  2.704 / 5
Prob   0.7456
C         0.01302± 0.003277 

  
h
φsin  0.02002± -0.02114 

  
h
φsin 2  0.02463± -0.01876 

 / ndf 2χ  2.704 / 5
Prob   0.7456
C         0.01302± 0.003277 

  
h
φsin  0.02002± -0.02114 

  
h
φsin 2  0.02463± -0.01876 

 = 0.55, x = 0.44  hP

 (radians)  
h

φ 1 2 3 4 5 6
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-0.04
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 / ndf 2χ  3.366 / 7
Prob   0.8492
C         0.004839± -0.001214 

  
h
φsin  0.008001± -0.003622 

  
h
φsin 2  0.008834± 0.002112 

 / ndf 2χ  3.366 / 7
Prob   0.8492
C         0.004839± -0.001214 

  
h
φsin  0.008001± -0.003622 

  
h
φsin 2  0.008834± 0.002112 

 = 0.68, x = 0.15  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A
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 / ndf 2χ  7.218 / 7
Prob   0.4065
C         0.004652± 0.00488 

  
h
φsin  0.007215± -0.004227 

  
h
φsin 2  0.008107± -0.01286 

 / ndf 2χ  7.218 / 7
Prob   0.4065
C         0.004652± 0.00488 

  
h
φsin  0.007215± -0.004227 

  
h
φsin 2  0.008107± -0.01286 

 = 0.68, x = 0.21  hP

 (radians)  
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 / ndf 2χ  7.845 / 8
Prob   0.4487
C         0.005694± 0.001253 

  
h
φsin  0.008483± -0.001577 

  
h
φsin 2  0.009709± -0.00153 

 / ndf 2χ  7.845 / 8
Prob   0.4487
C         0.005694± 0.001253 

  
h
φsin  0.008483± -0.001577 

  
h
φsin 2  0.009709± -0.00153 

 = 0.68, x = 0.27  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A
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 / ndf 2χ  4.461 / 7
Prob   0.7254
C         0.009008± 0.01918 

  
h
φsin  0.01261± 0.01794 

  
h
φsin 2  0.01486± 0.01292 

 / ndf 2χ  4.461 / 7
Prob   0.7254
C         0.009008± 0.01918 

  
h
φsin  0.01261± 0.01794 

  
h
φsin 2  0.01486± 0.01292 

 = 0.68, x = 0.33  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 A
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 / ndf 2χ  6.172 / 7
Prob   0.5198
C         0.01355± 9.34e-05 

  
h
φsin  0.0193± 0.04516 

  
h
φsin 2  0.02171± 0.02776 

 / ndf 2χ  6.172 / 7
Prob   0.5198
C         0.01355± 9.34e-05 

  
h
φsin  0.0193± 0.04516 

  
h
φsin 2  0.02171± 0.02776 

 = 0.67, x = 0.38  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
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-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  5.364 / 5
Prob   0.3731
C         0.02812± -0.02592 

  
h
φsin  0.04527± -0.0262 

  
h
φsin 2  0.05453± -0.03533 

 / ndf 2χ  5.364 / 5
Prob   0.3731
C         0.02812± -0.02592 

  
h
φsin  0.04527± -0.0262 

  
h
φsin 2  0.05453± -0.03533 

 = 0.67, x = 0.44  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 / ndf 2χ  13.24 / 8
Prob   0.1039
C         0.005827± -0.01618 

  
h
φsin  0.00873± 0.01167 

  
h
φsin 2  0.009065± 0.009595 

 / ndf 2χ  13.24 / 8
Prob   0.1039
C         0.005827± -0.01618 

  
h
φsin  0.00873± 0.01167 

  
h
φsin 2  0.009065± 0.009595 

 = 0.81, x = 0.15  hP

 (radians)  
h

φ 1 2 3 4 5 6
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 / ndf 2χ  3.163 / 9
Prob   0.9575
C         0.00656± -0.005724 

  
h
φsin  0.009311± 0.01564 

  
h
φsin 2  0.01001± -0.005803 

 / ndf 2χ  3.163 / 9
Prob   0.9575
C         0.00656± -0.005724 

  
h
φsin  0.009311± 0.01564 

  
h
φsin 2  0.01001± -0.005803 

 = 0.80, x = 0.21  hP

 (radians)  
h
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 A
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 / ndf 2χ  4.447 / 8
Prob   0.8147
C         0.009427± 0.001011 

  
h
φsin  0.01379± 0.00312 

  
h
φsin 2  0.01497± -0.01947 

 / ndf 2χ  4.447 / 8
Prob   0.8147
C         0.009427± 0.001011 

  
h
φsin  0.01379± 0.00312 

  
h
φsin 2  0.01497± -0.01947 

 = 0.80, x = 0.27  hP

 (radians)  
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 / ndf 2χ  3.223 / 7
Prob   0.8636
C         0.0169± -0.008183 

  
h
φsin  0.02436± 0.009005 

  
h
φsin 2  0.02581± 0.02386 

 / ndf 2χ  3.223 / 7
Prob   0.8636
C         0.0169± -0.008183 

  
h
φsin  0.02436± 0.009005 

  
h
φsin 2  0.02581± 0.02386 

 = 0.80, x = 0.32  hP

 (radians)  
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 / ndf 2χ  1.782 / 6
Prob   0.9386
C         0.03774± 0.01368 

  
h
φsin  0.05609± 0.02963 

  
h
φsin 2  0.05801± 0.0372 

 / ndf 2χ  1.782 / 6
Prob   0.9386
C         0.03774± 0.01368 

  
h
φsin  0.05609± 0.02963 

  
h
φsin 2  0.05801± 0.0372 

 = 0.79, x = 0.38  hP

 (radians)  
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 / ndf 2χ  5.071 / 8
Prob   0.7499
C         0.008924± 0.002005 

  
h
φsin  0.01283± 0.005836 

  
h
φsin 2  0.01293± -0.003656 

 / ndf 2χ  5.071 / 8
Prob   0.7499
C         0.008924± 0.002005 

  
h
φsin  0.01283± 0.005836 

  
h
φsin 2  0.01293± -0.003656 

 = 0.93, x = 0.15  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  4.275 / 8
Prob   0.8315
C         0.01246± 0.01756 

  
h
φsin  0.01741± 0.03489 

  
h
φsin 2  0.01785± 0.00236 

 / ndf 2χ  4.275 / 8
Prob   0.8315
C         0.01246± 0.01756 

  
h
φsin  0.01741± 0.03489 

  
h
φsin 2  0.01785± 0.00236 

 = 0.92, x = 0.21  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  2.347 / 8
Prob   0.9685
C         0.02347± 0.03907 

  
h
φsin  0.03339± 0.02794 

  
h
φsin 2  0.03324± 0.004821 

 / ndf 2χ  2.347 / 8
Prob   0.9685
C         0.02347± 0.03907 

  
h
φsin  0.03339± 0.02794 

  
h
φsin 2  0.03324± 0.004821 

 = 0.92, x = 0.26  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  1.572 / 6
Prob   0.9545
C         0.04415± 0.05952 

  
h
φsin  0.06246± -0.02699 

  
h
φsin 2  0.06263± -0.03494 

 / ndf 2χ  1.572 / 6
Prob   0.9545
C         0.04415± 0.05952 

  
h
φsin  0.06246± -0.02699 

  
h
φsin 2  0.06263± -0.03494 

 = 0.90, x = 0.32  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ   2.27 / 8
Prob   0.9716
C         0.01884± 0.02109 

  
h
φsin  0.02664± 0.03713 

  
h
φsin 2  0.02664± -0.01581 

 / ndf 2χ   2.27 / 8
Prob   0.9716
C         0.01884± 0.02109 

  
h
φsin  0.02664± 0.03713 

  
h
φsin 2  0.02664± -0.01581 

 = 1.04, x = 0.14  hP

 (radians)  
h

φ 1 2 3 4 5 6

 
LU

 A

-0.05
-0.04
-0.03
-0.02
-0.01

0
0.01
0.02
0.03
0.04
0.05

 / ndf 2χ  2.547 / 7
Prob   0.9235
C         0.0409± 0.01225 

  
h
φsin  0.05924± 0.05861 

  
h
φsin 2  0.05535± -0.05145 

 / ndf 2χ  2.547 / 7
Prob   0.9235
C         0.0409± 0.01225 

  
h
φsin  0.05924± 0.05861 

  
h
φsin 2  0.05535± -0.05145 

 = 1.03, x = 0.20  hP

FIG. 6.6: Same as Figure 6.5 except for π−.
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FIG. 6.7: Same as Figure 6.5 except for π0.
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FIG. 6.8: The sinφh moments of ALU as a function of Ph⊥ for different bins in xB. The average
value of xB is displayed in the title of each plot for π+ (red) , π− (blue), and π0 (green).
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FIG. 6.9: The sin2φh moments of ALU as a function of Ph⊥ for different bins in xB. The average
value of xB is displayed in the title of each plot for π+ (red) , π− (blue), and π0 (green).
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FIG. 6.10: The ratio of polarized to unpolarized structure functions integrated over (Q2,xB,z,Ph⊥)
for π+ (red, top), π− (blue, middle) and, π0 (green, bottom). The data are fit to f (φh) = AC

LL +
Acosφh

LL cosφh.
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FIG. 6.11: The ratio of polarized to unpolarized structure functions, g1/F1 versus Ph⊥ for different
bins in xB. The average value of xB is displayed in the title of each plot for π+ (red) , π− (blue),
and π0 (green).
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FIG. 6.12: The ratio of polarized to unpolarized structure functions integrated over (Q2,z) for π+.
The data are fit to f (φh) = AC

LL +Acosφh
LL cosφh.
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FIG. 6.13: Same as Figure 6.12 except for π−.
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FIG. 6.14: Same as Figure 6.12 except for π0
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FIG. 6.15: The cosine φh moment of the ratio of polarized to unpolarized structure functions,
g1/F1 versus Ph⊥ for different bins in xB. The average value of xB is displayed in the title of each
plot for π+ (red) , π− (blue), and π0 (green).
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FIG. 6.16: The integrated target spin asymmetry for π+ (top, red points), π− (middle, blue points),
and π0 (bottom, green points). The data were fit to f (φh) = AC

UL +Asinφh
UL sinφh +Asin2φh

UL sin2φh and
were integrated over all bins of (Q2,xB,z,Ph⊥).
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 / ndf 2"   1.49 / 6
Prob   0.9602
Constant  0.06522± -0.1671 

 moment #sin  0.09039± 0.05821 
 moment #sin 2  0.09363± 0.07463 

 / ndf 2"   1.49 / 6
Prob   0.9602
Constant  0.06522± -0.1671 

 moment #sin  0.09039± 0.05821 
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 / ndf 2"   8.27 / 5
Prob   0.142
Constant  0.04883± -0.1344 

 moment #sin  0.1364± 0.1112 
 moment #sin 2  0.1119± 0.03519 

 / ndf 2"   8.27 / 5
Prob   0.142
Constant  0.04883± -0.1344 

 moment #sin  0.1364± 0.1112 
 moment #sin 2  0.1119± 0.03519 
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 / ndf 2"  1.314 / 5
Prob   0.9335
Constant  0.0274± -0.08858 

 moment #sin  0.08312± 0.03762 
 moment #sin 2  0.06142± 0.004613 

 / ndf 2"  1.314 / 5
Prob   0.9335
Constant  0.0274± -0.08858 

 moment #sin  0.08312± 0.03762 
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 / ndf 2"   4.03 / 7
Prob   0.7763
Constant  0.01994± -0.05961 

 moment #sin  0.04595± 0.03087 
 moment #sin 2  0.04311± -0.04172 

 / ndf 2"   4.03 / 7
Prob   0.7763
Constant  0.01994± -0.05961 

 moment #sin  0.04595± 0.03087 
 moment #sin 2  0.04311± -0.04172 
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 / ndf 2"  2.975 / 8
Prob   0.9359
Constant  0.01916± -0.0656 

 moment #sin  0.03975± 0.04686 
 moment #sin 2  0.03867± 0.008313 

 / ndf 2"  2.975 / 8
Prob   0.9359
Constant  0.01916± -0.0656 

 moment #sin  0.03975± 0.04686 
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 / ndf 2"  7.249 / 8
Prob    0.51
Constant  0.02422± -0.05097 

 moment #sin  0.04254± 0.006054 
 moment #sin 2  0.04313± 0.004086 

 / ndf 2"  7.249 / 8
Prob    0.51
Constant  0.02422± -0.05097 

 moment #sin  0.04254± 0.006054 
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 / ndf 2"  4.194 / 7
Prob   0.7572
Constant  0.03364± -0.05323 

 moment #sin  0.06046± -0.05071 
 moment #sin 2  0.06047± -0.1057 

 / ndf 2"  4.194 / 7
Prob   0.7572
Constant  0.03364± -0.05323 

 moment #sin  0.06046± -0.05071 
 moment #sin 2  0.06047± -0.1057 
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 / ndf 2"  2.087 / 5
Prob   0.837
Constant  0.03388± -0.09867 

 moment #sin  0.2012± 0.1956 
 moment #sin 2  0.1517± 0.1309 

 / ndf 2"  2.087 / 5
Prob   0.837
Constant  0.03388± -0.09867 

 moment #sin  0.2012± 0.1956 
 moment #sin 2  0.1517± 0.1309 
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 / ndf 2"  4.178 / 7
Prob   0.7591
Constant  0.01796± -0.07767 

 moment #sin  0.04519± 0.06977 
 moment #sin 2  0.0425± -0.02833 

 / ndf 2"  4.178 / 7
Prob   0.7591
Constant  0.01796± -0.07767 

 moment #sin  0.04519± 0.06977 
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 / ndf 2"  5.466 / 7
Prob   0.6033
Constant  0.01433± -0.04486 

 moment #sin  0.02844± 0.0702 
 moment #sin 2  0.02793± 0.005561 

 / ndf 2"  5.466 / 7
Prob   0.6033
Constant  0.01433± -0.04486 

 moment #sin  0.02844± 0.0702 
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 / ndf 2"  4.126 / 7
Prob   0.7652
Constant  0.01513± -0.0517 

 moment #sin  0.02917± 0.06357 
 moment #sin 2  0.02866± -0.01263 

 / ndf 2"  4.126 / 7
Prob   0.7652
Constant  0.01513± -0.0517 

 moment #sin  0.02917± 0.06357 
 moment #sin 2  0.02866± -0.01263 
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 / ndf 2"  5.629 / 7
Prob   0.5836
Constant  0.0225± -0.06574 

 moment #sin  0.03422± 0.06102 
 moment #sin 2  0.0379± -0.005662 

 / ndf 2"  5.629 / 7
Prob   0.5836
Constant  0.0225± -0.06574 

 moment #sin  0.03422± 0.06102 
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 / ndf 2"  6.055 / 7
Prob   0.5333
Constant  0.02717± -0.04894 

 moment #sin  0.04924± 0.06011 
 moment #sin 2  0.05098± 0.06821 

 / ndf 2"  6.055 / 7
Prob   0.5333
Constant  0.02717± -0.04894 

 moment #sin  0.04924± 0.06011 
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 / ndf 2"  2.831 / 7
Prob   0.9002
Constant  0.0158± -0.0815 

 moment #sin  0.03301± 0.02535 
 moment #sin 2  0.02979± -0.003041 

 / ndf 2"  2.831 / 7
Prob   0.9002
Constant  0.0158± -0.0815 

 moment #sin  0.03301± 0.02535 
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 / ndf 2"   4.81 / 7
Prob   0.6831
Constant  0.04232± -0.08021 

 moment #sin  0.0541± 0.06358 
 moment #sin 2  0.06874± -0.006513 

 / ndf 2"   4.81 / 7
Prob   0.6831
Constant  0.04232± -0.08021 
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 / ndf 2"  3.028 / 7
Prob   0.8824
Constant  0.01272± -0.04383 

 moment #sin  0.02599± 0.08325 
 moment #sin 2  0.02466± -0.004452 

 / ndf 2"  3.028 / 7
Prob   0.8824
Constant  0.01272± -0.04383 

 moment #sin  0.02599± 0.08325 
 moment #sin 2  0.02466± -0.004452 
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 / ndf 2"  4.342 / 7
Prob   0.7396
Constant  0.01589± -0.03853 

 moment #sin  0.02347± 0.07586 
 moment #sin 2  0.02591± -0.02604 

 / ndf 2"  4.342 / 7
Prob   0.7396
Constant  0.01589± -0.03853 
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 / ndf 2"  3.928 / 7
Prob   0.788
Constant  0.01909± -0.0565 

 moment #sin  0.02991± 0.03183 
 moment #sin 2  0.03096± -0.004724 

 / ndf 2"  3.928 / 7
Prob   0.788
Constant  0.01909± -0.0565 

 moment #sin  0.02991± 0.03183 
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 / ndf 2"  3.548 / 7
Prob   0.8301
Constant  0.0244± -0.02186 

 moment #sin  0.04191± 0.0419 
 moment #sin 2  0.0461± -0.09173 

 / ndf 2"  3.548 / 7
Prob   0.8301
Constant  0.0244± -0.02186 

 moment #sin  0.04191± 0.0419 
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 / ndf 2"  2.213 / 8
Prob   0.9738
Constant  0.01444± -0.05362 

 moment #sin  0.02952± 0.1326 
 moment #sin 2  0.03059± 0.02181 

 / ndf 2"  2.213 / 8
Prob   0.9738
Constant  0.01444± -0.05362 

 moment #sin  0.02952± 0.1326 
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 / ndf 2"   1.75 / 8
Prob   0.9877
Constant  0.01205± -0.05606 

 moment #sin  0.01831± 0.07697 
 moment #sin 2  0.01901± -0.03289 

 / ndf 2"   1.75 / 8
Prob   0.9877
Constant  0.01205± -0.05606 
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 / ndf 2"  8.858 / 8
Prob   0.3544
Constant  0.01406± -0.06355 

 moment #sin  0.02185± 0.08254 
 moment #sin 2  0.02252± 0.01324 

 / ndf 2"  8.858 / 8
Prob   0.3544
Constant  0.01406± -0.06355 
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 / ndf 2"  8.399 / 7
Prob   0.2988
Constant  0.01945± -0.03767 

 moment #sin  0.02758± 0.07285 
 moment #sin 2  0.02935± -0.03656 

 / ndf 2"  8.399 / 7
Prob   0.2988
Constant  0.01945± -0.03767 

 moment #sin  0.02758± 0.07285 
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 / ndf 2"   4.24 / 7
Prob   0.7518
Constant  0.02867± -0.08799 

 moment #sin  0.04666± 0.1112 
 moment #sin 2  0.05152± -0.05668 

 / ndf 2"   4.24 / 7
Prob   0.7518
Constant  0.02867± -0.08799 
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 / ndf 2"  9.802 / 7
Prob   0.2001
Constant  0.04346± -0.03754 

 moment #sin  0.06458± 0.1036 
 moment #sin 2  0.07089± -0.04785 

 / ndf 2"  9.802 / 7
Prob   0.2001
Constant  0.04346± -0.03754 

 moment #sin  0.06458± 0.1036 
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 / ndf 2"  4.435 / 8
Prob   0.8159
Constant  0.01624± -0.07674 

 moment #sin  0.02419± 0.1102 
 moment #sin 2  0.02619± -0.02492 

 / ndf 2"  4.435 / 8
Prob   0.8159
Constant  0.01624± -0.07674 

 moment #sin  0.02419± 0.1102 
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 / ndf 2"  7.494 / 8
Prob   0.4843
Constant  0.01609± -0.0331 

 moment #sin  0.02359± 0.1077 
 moment #sin 2  0.02634± -0.02799 

 / ndf 2"  7.494 / 8
Prob   0.4843
Constant  0.01609± -0.0331 

 moment #sin  0.02359± 0.1077 
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 / ndf 2"  5.765 / 9
Prob   0.7632
Constant  0.02075± -0.05769 

 moment #sin  0.0288± 0.1042 
 moment #sin 2  0.0308± 0.02399 

 / ndf 2"  5.765 / 9
Prob   0.7632
Constant  0.02075± -0.05769 

 moment #sin  0.0288± 0.1042 
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 / ndf 2"  3.355 / 8
Prob   0.9101
Constant  0.02698± -0.04776 

 moment #sin  0.0388± 0.09823 
 moment #sin 2  0.04284± -0.001097 

 / ndf 2"  3.355 / 8
Prob   0.9101
Constant  0.02698± -0.04776 

 moment #sin  0.0388± 0.09823 
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 = 0.33  
B

 = 0.68, xhP

 (radians)  ! 
1 2 3 4 5 6

 
U

L
 A

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 / ndf 2"  2.769 / 7
Prob   0.9055
Constant  0.04614± -0.1094 

 moment #sin  0.07112± 0.07433 
 moment #sin 2  0.07668± -0.05068 

 / ndf 2"  2.769 / 7
Prob   0.9055
Constant  0.04614± -0.1094 

 moment #sin  0.07112± 0.07433 
 moment #sin 2  0.07668± -0.05068 
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 / ndf 2"  2.852 / 6
Prob   0.8272
Constant  0.09445± -0.05316 

 moment #sin  0.1442± -0.00688 
 moment #sin 2  0.1611± -0.04809 

 / ndf 2"  2.852 / 6
Prob   0.8272
Constant  0.09445± -0.05316 

 moment #sin  0.1442± -0.00688 
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 / ndf 2"  1.552 / 9
Prob   0.9967
Constant  0.02386± -0.08168 

 moment #sin  0.03522± 0.08626 
 moment #sin 2  0.03865± 0.008513 

 / ndf 2"  1.552 / 9
Prob   0.9967
Constant  0.02386± -0.08168 
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 / ndf 2"  3.176 / 9
Prob   0.9569
Constant  0.02624± -0.05502 

 moment #sin  0.03545± 0.1325 
 moment #sin 2  0.03607± -0.02359 

 / ndf 2"  3.176 / 9
Prob   0.9569
Constant  0.02624± -0.05502 
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 / ndf 2"  7.845 / 8
Prob   0.4487
Constant  0.03777± -0.07087 

 moment #sin  0.05506± 0.1582 
 moment #sin 2  0.05637± 0.04181 

 / ndf 2"  7.845 / 8
Prob   0.4487
Constant  0.03777± -0.07087 
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 / ndf 2"   5.06 / 8
Prob   0.7512
Constant  0.06391± -0.1158 

 moment #sin  0.08776± 0.1073 
 moment #sin 2  0.09731± 0.008152 

 / ndf 2"   5.06 / 8
Prob   0.7512
Constant  0.06391± -0.1158 
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 / ndf 2"  0.8477 / 7
Prob   0.9969
Constant  0.1275± -0.1879 

 moment #sin  0.1756± 0.1429 
 moment #sin 2  0.1823± 0.08809 

 / ndf 2"  0.8477 / 7
Prob   0.9969
Constant  0.1275± -0.1879 
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Prob   0.974
Constant  0.0402± -0.04698 

 moment #sin  0.05575± 0.09648 
 moment #sin 2  0.05966± -0.0428 

 / ndf 2"  2.208 / 8
Prob   0.974
Constant  0.0402± -0.04698 
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Prob   0.8526
Constant  0.0552± 0.01769 

 moment #sin  0.07939± 0.1217 
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Prob   0.8526
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Prob   0.4816
Constant  0.09976± -0.1437 

 moment #sin  0.1435± 0.07703 
 moment #sin 2  0.1458± 0.05466 

 / ndf 2"  7.521 / 8
Prob   0.4816
Constant  0.09976± -0.1437 
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Constant  0.2466± 0.09937 
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 / ndf 2"  2.844 / 5
Prob   0.724
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FIG. 6.17: The target spin asymmetry vs φh for π+ in bins of xB and Ph⊥. Each xB and Ph⊥ bin is
fit to f (φh) = AC

UL +Asinφh
UL sinφh +Asin2φh

UL sin2φh.
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FIG. 6.18: Same as Figure 6.17 except for π−.
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FIG. 6.19: Same as Figure 6.17 except for π0.

FIG. 6.20: The target spin asymmetry vs φh for π0 in bins of xB and Ph⊥. Each xB and Ph⊥ bin is
fit to f (φh) = AC

UL +Asinφh
UL sinφh +Asin2φh

UL sin2φh.
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FIG. 6.21: The sinφh moments of AUL as a function of Ph⊥ for different bins in xB. The average
value of xB is displayed in the title of each plot for π+ (red) , π− (blue), and π0 (green).
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FIG. 6.22: The sin2φh moments of AUL as a function of Ph⊥ for different bins in xB. The average
value of xB is displayed in the title of each plot for π+ (red) , π− (blue), and π0 (green).
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6.4 Comparison to Model and Existing Data

We interpret g1/F1 by assuming the simple factorized model for TMDs and FFs of

Anselmino [24] which assumes Gaussian distributions of transverse momenta. Under this

assumption, the unpolarized TMD f1 summed over all quarks q for a hadron h in the final

state has transverse momenta described as a Gaussian with width µ0,

f q
1 (xB,k⊥) = f q

1 (xB)
1

πµ2
0

exp
(
−k2
⊥

µ2
0

)
(6.22)

and the unpolarized fragmentation function has transverse momenta described as a Gaus-

sian with width µD written as

Dh
q(z, p⊥) = Dh

q(z)
1

πµ2
D

exp
(
− p2
⊥

µ2
D

)
. (6.23)

The momenta k⊥ and p⊥ refer to the quark before scattering and the fragmenting

quark respectively 1. These are written in terms of the transverse momentum of the hadron

in the final state as

Ph⊥ = p⊥+ zk⊥. (6.24)

A similar expression for the polarized structure function is written as

gq
1(xB,k⊥) = gq

1(xB)
1

πµ2
2

exp
(
−k2
⊥

µ2
2

)
(6.25)

where µ2 is the width of the Gaussian associated with it.

Using Equations 6.22 - 6.25, we write the ratio of polarized to unpolarized structure

functions for the example of the up quark hadronizing into π+ as,

1This denition of kperp and pperp is opposite that used by Bacchetta et. al. [71]. This document uses the
Bacchetta convention except for this particular subsection.
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g1

F1
(xB,z,Ph⊥) =

g1

F1
(xB,z)

(
µ2

D + z2µ2
0

µ2
D + z2µ2

2

)
exp
[
z2P2

h⊥(µ2
2 −µ2

0 )
]

(6.26)

The model introduces a Ph⊥ dependence for the ratio of structure functions. The

value for the width associated with f1 used here is µ2
0 = 0.25 GeV2. The values for µ2

D

and, µ2
2 are allowed to vary as long as they remain positive. The model predictions for

π±,0 are shown using dashed lines in Figures 6.23 - 6.25.

We compared the beam spin asymmetry for π0 with the recently published results

with an unpolarized hydrogen target Ref. [25]. The comparison seen in Figure 6.26 is

for two bins in xB. The data look consistent with each other. The ‘eg1-dvcs’ results are

largely for proton plus neutron in a nucleus, whereas the results from Ref. [25] are for the

proton only. This indicates that there is probably not much difference in this quantity for

proton and neutron.



156

 (GeV)  h P0.2 0.4 0.6 0.8 1

 1
/F 1

 g

-0.2

0

0.2

0.4

0.6

0.8

> = 0.15B<x

 (GeV)  h P0.2 0.4 0.6 0.8 1

 1
/F 1

 g

-0.2

0

0.2

0.4

0.6

0.8

> = 0.21B<x

 (GeV)  h P0.2 0.4 0.6 0.8 1

 1
/F 1

 g

-0.2

0

0.2

0.4

0.6

0.8

> = 0.27B<x

 (GeV)  h P0.2 0.4 0.6 0.8 1

 1
/F 1

 g

-0.2

0

0.2

0.4

0.6

0.8

> = 0.33B<x

 (GeV)  h P0.2 0.4 0.6 0.8 1

 1
/F 1

 g

-0.2

0

0.2

0.4

0.6

0.8

> = 0.39B<x

 (GeV)  h P0.2 0.4 0.6 0.8 1

 1
/F 1

 g

-0.2

0

0.2

0.4

0.6

0.8

> = 0.45B<x

FIG. 6.23: The ratio of polarized to unpolarized structure functions integrated over (Q2,xB,z,Ph⊥)
for π+ (red). The gray bar at the bottom denotes systematic errors from Table 5.5. The dashed
line represents the Anselmino model prediction Ref. [24].
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FIG. 6.24: Same as Figure 6.23 except for π−.
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FIG. 6.25: Same as Figure 6.23 except for π0.
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FIG. 6.26: The sinφh moments of ALU as a function of Ph⊥ for different bins in xB. The average
value of xB is displayed in the title of each plot for π0 from eg1-dvcs data (green) and π0 from
Ref. [25].
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6.5 Future Studies

Others in the eg1-dvcs analysis group are developing a Monte Carlo (MC) simulation

of this experiment that includes the precise target geometry and a realistic SIDIS event

generator. Using this MC, will eventually lead to greater accuracy in the dilution factor,

radiative corrections, and background corrections.



CHAPTER 7

Conclusion

The semi-inclusive DIS results of this work are divided into three categories, namely

the beam spin asymmetry, double spin asymmetry and target spin asymmetry. The kine-

matic coverage of the eg1-dvcs experiment is:

• Q2 = 1.0−4.5 GeV2

• xB = 0.15−0.48

• z = 0.4−0.7

• Ph⊥ = 0.05−1.0 GeV

• φh = 0◦−360◦.

Beam Spin Asymmetry

We show a significant sinφh moment of the beam spin asymmetry for π±,0. This

is shown to be consistent with the latest CLAS measurement for π0. It is also consistent

161
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with the latest measurement by the HERMES Collaboration in Ref. [72] with significantly

better precision. Both the HERMES and previous CLAS measurements were made with

hydrogen targets. The eg1-dvcs measurement was made with polarized NH3. The region

of xB and Ph⊥ that we study does not show any significant deviation compared to the pure

hydrogen results. The sin2φh moment for the beam spin asymmetry is consistent with

zero.

Double Spin Asymmetry

The double spin asymmetry is studied in the form of the ratio of polarized to un-

polarized structure functions which is a measure of the difference in behavior of quark

transverse momenta in the polarized and unpolarized proton. The transverse momentum

dependence of g1/F1 shows some indication that longitudinally polarized quarks have a

different distribution than unpolarized quarks. The preliminary ratios are in reasonable

agreement for the neutral pion compared to predictions by Anselmino and others in Ref.

[24]. The charged pions however, show possible deviations from predictions. The data

indicate that the double spin asymmetry tends to increase for π−, and decrease for π+,

and stays flat for π0.

Target Spin Asymmetry

We show a significant sinφh moment of the target single spin asymmetry for π±,0.

The Ph⊥ dependence of the sinφh moment increases with Ph⊥ and the moment for π−

has the opposite sign as that for π+. The first measurement of the sin2φh moment was

reported by Ref. [6]. This is confirmed for two bins of < xB >= 0.21 and < xB >= 0.33.
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Summary

These data significantly improve our knowledge of the spin structure of the proton

and together with world data, one can extract individual transverse momentum distribu-

tions e, h⊥1L and g1; and the Collins fragmentation function. A summary of the moments

and their corresponding TMDs is listed in Table 7.1.

Asymmetry Moment Twist FF TMD
ALU sinφh 3 H⊥1 e
ALL - 2 D1 g1L

AUL sinφh 3 H⊥1 hL

AUL sin2φh 2 H⊥1 h1L

TABLE 7.1: Transverse Momentum Distributions and Fragmentation Functions accessed by ob-
servables from the eg1-dvcs measurement.

Compared to the traditional structure functions that depend only on xB and Q2, the

observables in SIDIS typically depend on five variables, (xB, Q2, z, Ph⊥ and φh). This

requires statistics in the data to study each dimension in terms of the others as opposed to

projections for a single variable. This work takes a step in that direction by showing three

semi-inclusive dimensions - xB, Ph⊥ and φh. This is a departure from previous data which

are shown in a one dimensional format with integration over the other four variables.

World data thus far in combination with the eg1-dvcs measurement play an important

role in exploring TMDs on the longitudinally polarized nucleon. They have established

important features, especially relating to the polarized semi-inclusive structure TMD, g1L

and sine-φh moments of the single spin asymmetries. Theoretical models are constrained

using existing data. Assumptions are made to limit the number of parameters in models,

which is important considering the scarcity of the data. One example of a questionable
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assumption is that the Ph⊥ dependence of the difference in parton TMDs is Gaussian.

In order to improve our understanding of TMDs and resolve theoretical model is-

sues, it is important to perform precision measurements of the single and double spin

asymmetries. The Jefferson Lab upgrade to 12 GeV has the promise to produce these

semi-inclusive DIS measurements. There are four approved experiments for the higher

energy using a transversely and longitudinally polarized 3He target in Hall A (E 1209018,

E 1211007), and a longitudinally polarized NH3 target in Hall B (E 1206109, E 1209008).



APPENDIX A

Angles in SIDIS

Using the convention in [26], the target spin vector S is defined in two different

coordinate systems - C and C′. In the coordinate system C, the virtual photon direction is

along the z axis.

S C=




ST cosφS

ST sinφS

−SL




(A.1)

where SL and ST specify the longitudinal and transverse components relative to the virtual

photon direction. In the coordinate system C′, the incoming lepton beam direction is

along the z′ axis. The transformation between the two coordinate systems is described by

a angular rotation θ about the y = y′ axes as seen in Figure A.1.

S C′=




PT cosψ

PT sinψ

−PL




(A.2)
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where PL and PT specify the longitudinal and transverse components relative to the lepton

beam direction.

516 M. Diehl, S. Sapeta: On the analysis of lepton scattering on longitudinally or transversely polarized protons

ST

φ

φ

S

l l’

q

z’

x’y’

z

x

y

z’’

x’’

hadron plane

lepton plane

P

P

hT

h

y’’
Fig. 1. Kinematics of the process (1) in
the target rest frame. P hT and ST respec-
tively are the components of P h and S
perpendicular to q. (The target spin vec-
tor S is not shown.) φ and φS respectively
are the azimuthal angles of P h and S in
the coordinate system with axes x, y, z, in
accordance with the Trento conventions
[7]

any kinematical approximations, except for neglecting the
lepton mass.

To transform between the different target polarization
states, we find it useful to introduce two coordinate sys-
tems C and C ′ in the target rest frame, with respective
axes x, y, z and x′, y′, z′ as shown in Figs. 1 and 2. The
z axis points along q, whereas the z′ axis points along l.
The x axis and the x′ axis are chosen such that l′ lies in
the x-z and the x′–z′ plane and has a positive x and x′

component. The y and y′ axes coincide. The two coordi-
nate systems C and C ′ are related via a rotation about
the y axis by the angle θ between q and l. In terms of
invariants we have

sin θ = γ

√
1− y − 1

4y2γ2

1 + γ2
, γ = 2xBMp/Q, (2)

where Mp is the proton mass. In deep inelastic kinematics
γ is small, and so is sin θ ≈ γ

√
1− y. Note for instance

that γ2 is the parameter controlling the size of target mass
corrections in inclusive DIS [6].

We parameterize the target spin vector S in the two
coordinate systems by

S
C=




ST cos φS

ST sinφS

−SL


 , S

C′
=




PT cos ψ

PT sinψ

−PL


 , (3)

so that PL, PT specify longitudinal and transverse po-
larization relative to the lepton beam direction, and SL,
ST longitudinal and transverse polarization relative to the
virtual photon direction. Likewise, ψ is the azimuthal an-
gle of the target spin around the lepton beam direction,
whereas φS is the corresponding azimuthal angle around
the virtual photon direction. PL and SL are between −1
and 1, and PT and ST are between 0 and 1. The sign con-
vention for the longitudinal case is such that PL = +1 and
SL = +1 correspond to a right-handed proton in the %p
and γ∗p center of mass, respectively. The values of PL and

l
q

θ
z’

l’

z

x

lepton plane

x’

Fig. 2. The lepton plane in the target rest frame. The y and
y′ axes coincide and point out of the paper plane

PT are determined by the experimental setup, whereas SL

and ST depend on the kinematics of an individual event.
The rotation from C to C ′ readily gives

ST cos φS = cos θ PT cos ψ − sin θ PL,

ST sinφS = PT sinψ,

SL = sin θ PT cos ψ + cos θ PL. (4)

We remark that, although we work in the target rest
frame, our results can readily be applied to a polarized
%p collider, whose laboratory frame is obtained from the
target rest frame by a boost along the lepton beam mo-
mentum. PL and PT then give the longitudinal and trans-
verse polarization of the proton beam with respect to the
beam axis.

2.1 Longitudinal polarization
with respect to the lepton beam

We have PT = 0, so that

ST cos φS = − sin θ PL,

FIG. A.1: The lepton plane in the target rest frame. The y and y′ axes coincide and point out of
the plane of the paper [26].

The azimuthal angles ψ and φS are defined as the angle formed by the target spin

with respect to the lepton beam direction and virtual photon direction, respectively. The

rotation transformation gives the relationship between the target spin vector in the two

different reference frames.

ST cosφS = cosθPT − sinθPL (A.3)

ST sinφS = PT sinψ

SL = sinθPT cosψ + cosθPL



APPENDIX B

Light Cone Coordinates

A summary of light cone coordinates is described here as sketched in [3]. The light

cone coordinate system is deemed particularly useful for calculating expressions for trans-

verse momentum distributions and fragmentation functions. Consider an arbitrary four

vector,

v =




v0

v1

v2

v3




(B.1)

The light cone decomposition of a vector can be written in a Lorentz covariant fash-

ion using two light-like vectors - n+ = [0,1,0T] and n− = [1,0,0T].

vµ = v+nµ
+ + v−nµ

−+ vµ
T (B.2)

where v+ = v ·n− and v− = v ·n+. Also, vT ·n− = vT ·n+ = 0. The transformation of v is
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thus given by,

v+ =
v0 + v3
√

2
(B.3)

v− =
v0− v3
√

2

vT =




v1

v2



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