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ABSTRACT PAGE

At the Thomas Jefferson National Accelerator Facility, glass target cells con-

taining a high density of highly polarized 3He nuclei are used in electron scattering

experiments studying the substructure of the neutron. In addition to 3He, these

cells contain a small amount of rubidium (Rb), potassium (K), and nitrogen (N2),

which facilitate the polarization process. The work presented here represents studies

of the interactions between the alkali vapor and 3He nuclei when both are polarized

and unpolarized.

Our investigations into the mechanisms responsible for the relaxation of the
3He polarization have measured unusually large polarization losses. In addition,

most cells studied exhibited polarization lifetimes much shorter than those typically

observed in cells used for scattering experiments. These results suggest there are

relaxation mechanisms that depend on whether the cell contains polarized or un-

polarized alkali vapor, solid alkali, or no alkali. Previous cell studies have assumed

these relaxation mechanisms are independent of the presence of alkali in any form.

Modication of the polarization rate equations to include these new relaxation mech-

anisms are given. Further studies are needed to fully understand the origin of these

additional relaxation mechanisms.

Studies of the interactions between 3He and alkali vapor, when both are unpo-

larized, were motivated by the need to determine the number density of 3He inside

sealed cells. The system we have implemented to measure the number density ex-

amines the broadening of the absorption profiles of the D1 and D2 lines of Rb and K

due to collisions with 3He and N2. However, in order to relate this broadening to the

gas density, the value of the velocity-averaged collisional cross-section (broadening

coefficient) for the interacting pair of atoms must be known. While the value of the

coefficient has been measured for Rb, no data have been published for K interacting

with 3He at the high number densities required for scattering experiments. Fur-

thermore, pressure broadening theory predicts a temperature dependence for the

coefficients, but very little experimental data has been published. In addition to

broadening, a shift in the central frequency is also predicted and has been experi-

mentally verified. We have measured both the broadening and shift of the D1 and

D2 lines of Rb and K in the presence of 3He and N2 over a range of number densities

and temperatures.



TABLE OF CONTENTS

Page

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1 Electron scattering experiments . . . . . . . . . . . . . . . . . . . 3

1.2 Other applications of polarized 3He . . . . . . . . . . . . . . . . . 5

1.3 Outline of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Polarization by Spin Exchange Optical Pumping . . . . . . . 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Optical pumping . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Spin exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5 Alkali polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.5.1 Alkali polarization relaxation . . . . . . . . . . . . . . . . . 13

2.6 Spin-exchange rates . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Hybrid spin exchange optical pumping . . . . . . . . . . . . . . . 15

2.8 3He polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

i



2.8.1 Sources of relaxation . . . . . . . . . . . . . . . . . . . . . 20

2.9 The polarization system . . . . . . . . . . . . . . . . . . . . . . . 22

2.9.1 The polarization optics . . . . . . . . . . . . . . . . . . . . 24

3 Cell Construction and Characterization . . . . . . . . . . . . . 27

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Cell construction . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Filling a Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Preparing for the fill . . . . . . . . . . . . . . . . . . . . . 30

3.3.2 Measuring the volume . . . . . . . . . . . . . . . . . . . . 32

3.3.3 N2 and 3He fill . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.4 Determining the alkali ratio . . . . . . . . . . . . . . . . . 34

3.4 Measuring the internal volume . . . . . . . . . . . . . . . . . . . . 35

3.5 Adiabatic fast passage nuclear magnetic resonance . . . . . . . . . 36

3.5.1 Magnetic moment in a static field . . . . . . . . . . . . . . 37

3.5.2 Introduction of an oscillating field . . . . . . . . . . . . . . 37

3.5.3 Finding resonance . . . . . . . . . . . . . . . . . . . . . . . 38

3.5.4 AFP conditions . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5.5 NMR system . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.6 NMR data analysis . . . . . . . . . . . . . . . . . . . . . . 45

3.5.7 AFP loss correction . . . . . . . . . . . . . . . . . . . . . 47

3.5.8 Masing effects . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Polarization dynamics for a double-chamber cell . . . . . . . . . . 49

3.6.1 Polarization gradient . . . . . . . . . . . . . . . . . . . . . 51

3.7 Electron paramagnetic resonance . . . . . . . . . . . . . . . . . . 52

3.7.1 Amplitude modulated EPR . . . . . . . . . . . . . . . . . 53

3.7.2 Frequency modulated EPR . . . . . . . . . . . . . . . . . . 60

ii



3.8 Pressure broadening . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4 Additional Relaxation Mechanisms . . . . . . . . . . . . . . . 76

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Polarization evolution revisited . . . . . . . . . . . . . . . . . . . 77

4.3 The X-Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.1 Anisotropic spin exchange . . . . . . . . . . . . . . . . . . 80

4.4 Experimental considerations . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Cell design and construction . . . . . . . . . . . . . . . . . 82

4.4.2 Measuring X . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.4.3 Setup modifications . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Initial test with Gravy . . . . . . . . . . . . . . . . . . . . . . . . 89

4.5.1 Summary of results . . . . . . . . . . . . . . . . . . . . . . 92

4.5.2 AFP loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.6 AFP loss studies with Gravy . . . . . . . . . . . . . . . . . . . . . 93

4.6.1 Tests at William and Mary . . . . . . . . . . . . . . . . . . 93

4.6.2 Tests at Jefferson Lab . . . . . . . . . . . . . . . . . . . . 96

4.6.3 Summary of results . . . . . . . . . . . . . . . . . . . . . . 100

4.7 Studies with test cells . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.7.1 Cell#1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.7.2 Cell#2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7.3 Sphere 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.7.4 Batman: a new valved cell . . . . . . . . . . . . . . . . . . 112

4.7.5 Engelbert at William and Mary . . . . . . . . . . . . . . . 115

4.7.6 Engelbert at the University of Virginia . . . . . . . . . . . 118

4.8 Conclusions from AFP loss studies . . . . . . . . . . . . . . . . . 119

4.9 Possible sources of relaxation . . . . . . . . . . . . . . . . . . . . . 121

iii



4.9.1 Magnetic field gradients . . . . . . . . . . . . . . . . . . . 122

4.9.2 Masing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.9.3 The RF field magnitude . . . . . . . . . . . . . . . . . . . 124

4.9.4 Metal reduction . . . . . . . . . . . . . . . . . . . . . . . . 125

4.9.5 Lock-in amplifier time constant . . . . . . . . . . . . . . . 126

4.10 Modified relaxation equations . . . . . . . . . . . . . . . . . . . . 127

4.11 Further investigations . . . . . . . . . . . . . . . . . . . . . . . . . 130

5 Pressure Broadening and Shift of the D1 and D2 Lines of Rb

and K with 3He and N2 . . . . . . . . . . . . . . . . . . . . . . . . 132

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

5.2 The pressure-broadened line shape . . . . . . . . . . . . . . . . . . 133

5.3 Experimental arrangements . . . . . . . . . . . . . . . . . . . . . 136

5.3.1 Cell design and preparation . . . . . . . . . . . . . . . . . 137

5.3.2 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . 139

5.4 Fitting and analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4.1 Alkali density . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.5 Temperature and density dependence of the line width and shift . 147

5.5.1 Broadening and shift coefficients as a function of temperature147

5.5.2 Line width and central frequency shift as a function of

temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.5.3 Line width and central frequency shift as a function of

density and temperature . . . . . . . . . . . . . . . . . . . 152

5.6 Fitting results for N2 . . . . . . . . . . . . . . . . . . . . . . . . . 153

5.7 Comparison of results . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

APPENDIX A

Magnetic Field Maps . . . . . . . . . . . . . . . . . . . . . . . . . . 163

iv



APPENDIX B

Additional Pressure Broadening Plots . . . . . . . . . . . . . . . . 168

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

v



DEDICATION

In fond memory of Gravy, a very nice cat.

vi



ACKNOWLEDGMENTS

The work presented here would not have been possible without contributions
from the following individuals:
My advisor: Todd Averett
My committee: Irina Novikova, Seth Aubin, Gina Hoatson, Wolfgang Korsch
Glass blower: Mike Souza
Very helpful discussions: Jaideep Singh, Al Tobias, Mikhail Romalis, Tom Gentile,
Bob Vold, Aidan Kelleher, Joe Katich
Jefferson Lab polarized target group: Jian-Ping Chen, Jie Liu, Yawei Zhang, Zhiwen
Zhao
University of Virginia polarized target lab: Gordon Cates, Yunxiao Wang, Yuan
Zheng
Best lab tech ever: Pete DeCastro
Undergrad researchers: Christine McLean, Brian Wolin, Sara Mohon, Kasie Haga,
Brian Chase
My first advisor: Jan Chaloupka
The machine shop: Kirk Jacobs, John Bensel, Will Henninger
The physics office: Paula Perry, Carol Hankins, Elle Wilkinson, Sylvia Stout
Friends and housemates: Doug Beringer, Megan Ivory, Dylan Albrecht, Matt Si-
mons, Callao
My family: Nate Phillips, Judy and Richard Kluttz, Kim Henderson, Batman: The
Cat, Gravy

vii



LIST OF TABLES

Table Page

3.1 Magnetic field for hyperfine sublevel transitions . . . . . . . . . . . . 57

3.2 Broadening coefficients for Rb. . . . . . . . . . . . . . . . . . . . . . . 75

4.1 Calculated surface-to-volume ratio . . . . . . . . . . . . . . . . . . . . 83

4.2 Spin-up summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.3 AFP loss studies with Gravy . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 AFP loss results from Jefferson Lab . . . . . . . . . . . . . . . . . . . 101

4.5 Cell Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.6 Cold spin-down summary . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.7 Hot spin-down summary . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.8 Summary of AFP loss studies with test cells . . . . . . . . . . . . . . 110

4.9 AFP loss results for Batman . . . . . . . . . . . . . . . . . . . . . . . 114

4.10 Engelbert spin-up time constants . . . . . . . . . . . . . . . . . . . . 118

4.11 AFP loss results for Engelbert at UVa . . . . . . . . . . . . . . . . . 119

4.12 H1 vs. tc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1 Broadening and shift coefficients . . . . . . . . . . . . . . . . . . . . . 144

5.2 Broadening coefficient temperature dependence, 3He . . . . . . . . . . 150

viii



5.3 Frequency shift coefficient temperature dependence, 3He . . . . . . . 150

5.4 Temperature and density dependence of line width, 3He . . . . . . . . 152

5.5 Temperature and density dependence of central frequency shift, 3He . 152

5.6 Temperature and density dependence of line width, 3He . . . . . . . . 154

5.7 Temperature and density dependence of frequency shift, 3He . . . . . 154

5.8 Coefficients for broadening and shift due to N2 . . . . . . . . . . . . . 155

5.9 Broadening coefficient temperature dependence, N2 . . . . . . . . . . 155

5.10 Frequency shift coefficient temperature dependence, N2 . . . . . . . . 158

5.11 Temperature and density dependence of line width, N2 . . . . . . . . 159

5.12 Temperature and density dependence of line width, N2 . . . . . . . . 160

5.13 Comparison of Rb broadening and shift coefficients to previous results 160

5.14 3He density from line width . . . . . . . . . . . . . . . . . . . . . . . 162

B.1 Linear fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

B.2 Linear fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.3 Linear fit results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

ix



LIST OF FIGURES

Figure Page

1.1 A polarized 3He nucleus is an effective polarized neutron . . . . . . . 3

1.2 A typical polarized 3He target cell . . . . . . . . . . . . . . . . . . . . 4

2.1 Optical pumping of Rb and spin-exchange with 3He . . . . . . . . . . 8

2.2 The polarization system: oven, coils, and cell. . . . . . . . . . . . . . 23

2.3 The optics for producing circularly polarized light. . . . . . . . . . . . 25

3.1 A typical JLab-style cell. . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 The filling system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 NMR electronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Impedance matching for the RF amplifier. . . . . . . . . . . . . . . . 44

3.5 An AFP-NMR signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Rb energy levels. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Amplitude modulated EPR electronics. . . . . . . . . . . . . . . . . . 55

3.8 An amplitude modulated EPR spectrum. . . . . . . . . . . . . . . . . 57

3.9 Frequency modulated EPR electronics. . . . . . . . . . . . . . . . . . 61

3.10 An AFP-EPR signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.11 Frequency modulated EPR signal. . . . . . . . . . . . . . . . . . . . . 63

x



3.12 The proportional-integral feedback circuit. . . . . . . . . . . . . . . . 65

3.13 A pressure-broadened absorption profile. . . . . . . . . . . . . . . . . 73

4.1 The X-factor as a function of surface-to-volume ratio . . . . . . . . . 81

4.2 Valved cell designed for relaxation studies . . . . . . . . . . . . . . . 82

4.3 NMR signal for valved cell . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Gravy pumping chamber spin-up, valve open . . . . . . . . . . . . . 90

4.5 Gravy pumping chamber cold spin-down . . . . . . . . . . . . . . . . 91

4.6 Gravy pumping chamber spin-up, valve closed . . . . . . . . . . . . . 97

4.7 Gravy target chamber spin-up, valve open . . . . . . . . . . . . . . . 98

4.8 Gravy pumping chamber cold spin-down . . . . . . . . . . . . . . . . 99

4.9 Gravy pumping chamber hot spin-down . . . . . . . . . . . . . . . . . 100

4.10 AFP loss vs. Sweep rate . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.11 AFP loss vs. Sweep rate . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.12 Cell#1 spin-up and hot spin-down . . . . . . . . . . . . . . . . . . . . 105

4.13 Cell#1 cold spin-down . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.14 Cell#2 spin-up and spin-down . . . . . . . . . . . . . . . . . . . . . . 109

4.15 Sphere 2.2 spin-up and spin-down . . . . . . . . . . . . . . . . . . . . 113

4.16 Batman spin up with fit . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.17 Engelbert spin-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.18 Engelbert spin-down . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.19 Engelbert masing at UVa . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.20 Cell#1 AFP loss as a function of gradient coil current . . . . . . . . . 123

4.21 Cell#2 AFP loss as a function of gradient coil current . . . . . . . . . 124

4.22 H1 as a function of RF voltage . . . . . . . . . . . . . . . . . . . . . . 125

xi



4.23 H1 as a function of RF voltage . . . . . . . . . . . . . . . . . . . . . . 126

4.24 Signal shape as a function of tc for 1.2 G/s . . . . . . . . . . . . . . . 128

4.25 Signal shape as a function of tc for 2.4 G/s . . . . . . . . . . . . . . . 129

5.1 A collision between an alkali atom and a perturbing atom. . . . . . . 135

5.2 The pressure broadening setup . . . . . . . . . . . . . . . . . . . . . . 137

5.3 The valved cell for pressure broadening studies. . . . . . . . . . . . . 139

5.4 K D2 with etalon effect. . . . . . . . . . . . . . . . . . . . . . . . . . 140

5.5 Broadening of K D2 in the presence of 3He. . . . . . . . . . . . . . . . 145

5.6 Full width at half maximum vs. 3He number density . . . . . . . . . 146

5.7 Frequency shift vs. 3He number density . . . . . . . . . . . . . . . . . 146

5.8 Broadening coefficient vs. Temperature . . . . . . . . . . . . . . . . . 148

5.9 Frequency shift coefficient vs. Temperature . . . . . . . . . . . . . . . 149

5.10 Broadening of K D1 in the presence of N2 . . . . . . . . . . . . . . . . 156

5.11 Full width at half maximum vs. N2 number density . . . . . . . . . . 157

5.12 Frequency shift vs. N2 number density . . . . . . . . . . . . . . . . . 157

5.13 Broadening coefficient temperature dependence, N2 . . . . . . . . . . 158

5.14 Frequency shift coefficient temperature dependence . . . . . . . . . . 159

A.1 Holding field map, transverse direction. . . . . . . . . . . . . . . . . . 164

A.2 Holding field map, transverse direction. . . . . . . . . . . . . . . . . . 165

A.3 Holding field map at target chamber location. . . . . . . . . . . . . . 166

A.4 Longitudinal holding field map, low field. . . . . . . . . . . . . . . . . 167

B.1 Rb D1 γ vs. T with linear fit . . . . . . . . . . . . . . . . . . . . . . . 172

xii



B.2 Rb D1 ∆ν vs. T with linear fit . . . . . . . . . . . . . . . . . . . . . 173

B.3 Rb D2 γ vs. T with linear fit . . . . . . . . . . . . . . . . . . . . . . . 174

B.4 Rb D2 ∆ν vs. T with linear fit . . . . . . . . . . . . . . . . . . . . . 175

B.5 K D1 γ vs. T with linear fit . . . . . . . . . . . . . . . . . . . . . . . 176

B.6 K D1 ∆ν vs. T with linear fit . . . . . . . . . . . . . . . . . . . . . . 177

B.7 K D2 γ vs. T with linear fit . . . . . . . . . . . . . . . . . . . . . . . 178

B.8 K D2 ∆ν vs. T with linear fit . . . . . . . . . . . . . . . . . . . . . . 179

xiii



STUDIES OF POLARIZED AND UNPOLARIZED 3HE IN THE PRESENCE

OF ALKALI VAPOR



CHAPTER 1

Introduction

The motivation for the research described in this thesis has been the applica-

tion of 3He targets in electron scattering experiments performed at Thomas Jefferson

National Accelerator Facility (JLab) that seek to probe the substructure of the neu-

tron. For this application, it is necessary to have a high density of highly polarized

neutrons. In this context, “polarization” refers to the spin-state of the neutron with

the quantization axis established by an external magnetic field.

A free neutron is unstable and has a lifetime of only 885.7 ± 0.8 seconds [1].

Fortunately, the 3He nucleus, which has two protons and one neutron, is a good

approximation of a single neutron as it can be shown that the spin state of the 3He

nucleus is mostly determined by the spin state of the neutron [2]. Figure 1.1 shows

the ground state configuration of the 3He nucleus where the S-state, in which the

two protons have their spins anti-aligned, is the most probable (88.2%). In this

case, the polarization of the 3He nucleus is given by the polarization of the neutron.

However, the D- and S
′

- states each contribute a small percentage (∼ 9.8% and

∼ 1.4%) to the ground state wavefunction. Based on the relative contributions of

the ground state wavefunction components, the neutron and proton polarizations

2
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FIG. 1.1: The most probable neutron and proton spin orientations in the ground state for
a 3He nucleus. The S-state probability is 88.2%, while the D- and S

′

-state probabilities
are 9.8% and 1.4%. Neutrons are red and protons are blue.

have been calculated to be 86% and −2.8%, respectively [2].

Figure 1.2 shows a typical glass cell used to contain the polarized 3He gas along

with a mixture of alkali metals and a small amount of N2. The double-chamber

design allows the 3He to become polarized in the upper chamber through spin-

exchange collisions with the optically pumped alkali atoms (see Chapter 2) and to

diffuse to the lower chamber where electron scattering occurs.

1.1 Electron scattering experiments

Measurements of the neutron electric form factor, which provides information

regarding the neutron charge distribution, benefit from high neutron polarization,

fast polarization spin-up time, and accurate knowledge of the 3He number density

of the target. Blankleider and Woloshyn first suggested measuring the ratio of the

the electric to magnetic form factors, which depends on the target polarization, by

scattering polarized electrons from polarized neutrons [3].

Early experiments incorporated optically pumped Rb to polarize the 3He nuclei

with high-power broadband diode lasers tuned to the Rb D1 transition and reached

maximum target polarizations of around 40%. In recent years, implementation of
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FIG. 1.2: A typical 3He target cell used in electron scattering experiments at Jefferson
Lab. The 3He nuclei become polarized in the pumping chamber, diffuse through the
transfer tube and into the target chamber where scattering occurs.

hybrid alkali spin-exchange, where K is included along with Rb, has significantly

improved target performance. The beam time required at JLab to reach a certain

statistical uncertainty on nuclear physics experiments depends on the polarization

squared, so higher polarization means less beam time is required or, equivalently,

increasing the polarization increases the effective beam time [4]. JLab experiment

E02-013 was the first to use hybrid alkali spin-exchange, which provided a faster

spin-up time and higher in-beam polarization (over 50%) compared to the ear-

lier experiments. In addition to the introduction of hybrid spin-exchange optical

pumping, further improvements in target performance have been made with the

implementation of spectrally narrowed diode lasers [5]. JLab experiment E05-105,

which incorporated both of these improvements, measured in-beam polarizations of

around 60% [6].
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1.2 Other applications of polarized 3He

Polarized 3He targets have also been used for three-body photodisintegration

studies with the High-Intensity Gamma Source (HIγS) at the Duke Free Electron

Laser Laboratory (DFELL). However, these cells are designed with a slightly differ-

ent geometry from those used at JLab and are constructed from a different type of

glass to minimize the number of background events using HIγS [7].

3He, as well as other noble gases, polarized through spin-exchange optical pump-

ing have been used in pulmonary magnetic resonance imaging [8, 9]. For this appli-

cation, the noble gas must be polarized then transported; therefore, long relaxation

times are required to minimize the loss of polarization. Furthermore, high polariza-

tion translates into better image quality.

In addition to scattering experiments and MRI, other applications of polarized

3He have included neutron spin filters [10, 11], precision measurements using a K-

3He magnetometer [12, 13], and studies of Lorentz and CPT violation of the neutron

[14].

1.3 Outline of the Thesis

After an overview of spin-exchange optical pumping in Chapter 2, the process

of preparing a 3He target cell is described in Chapter 3, where the diagnostic tools

used for characterizing the cells, such as nuclear magnetic resonance and electron

paramagnetic resonance, are also introduced. In Chapter 4, results are presented

from an investigation into mechanisms that contribute to the relaxation of the 3He

polarization where cells with different geometries, alkali ratios, 3He number densities,

and glass types were studied under a variety of conditions. Chapter 5 describes a

technique for examining the line widths of the D1 and D2 transitions of Rb and K
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to accurately determine the 3He number density inside target cells.



CHAPTER 2

Polarization by Spin Exchange

Optical Pumping

2.1 Introduction

The process of spin exchange optical pumping (SEOP) has been implemented to

produce highly polarized 3He targets. In SEOP, alkali atoms are spin- polarized with

circularly polarized laser light. Through collisions, they transfer their polarization

by a hyperfine-like interaction to the 3He nucleus. Rb has traditionally been used due

to the commercial availability of high-power lasers tuned to the Rb D1 transition

(λ = 795 nm). However, using a hybrid mixture of Rb and K such that the K

number density is greater than the Rb number density has been shown to increase

the efficiency of the polarization transfer [15, 16, 17]. The addition of K modifies

the process such that Rb is optically pumped and undergoes spin-exchange collisions

with K as well as 3He and the K atoms also transfer their spin to 3He.

7
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FIG. 2.1: a. Rb D1 in the presence of a magnetic field for optical pumping by circularly
polarized light. b. A 3He atom and a Rb atom exchange spins through a binary collision.

2.2 Optical pumping

The SEOP process begins by optically pumping an alkali vapor to the desired

spin state. Figure 2.1 shows the D1 transition of Rb in the presence of a uniform

magnetic field, ignoring the effect of the nuclear spin. Right circularly polarized D1

light is propagating in the direction of the magnetic field (σ+ light). Since λ = 795

nm and σ+ light carries angular momentum of +1, transitions will occur only from

the mj = −1
2

state of the 5S1/2 level to the mj = +1
2

state of the 5P1/2 level such

that ∆m = +1 and ∆l = +1 as required by the angular momentum selection rules

for dipole transitions.

Collisional mixing causes both excited states to become populated and the

electrons will decay to either ground state with equal probability. However, only

atoms in the 5S1/2, mj = −1
2

state will be re-excited until most of the alkali atoms
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are in the 5S1/2, mj = +1
2

state from which they cannot be excited by the pumping

light. If the electrons are allowed to decay radiatively, the emitted photons will have

random polarization, which has a de-polarizing effect on the alkali. To mitigate this

effect, a small amount of N2 (approximately 90 torr at room temperature, or 0.1 amg)

is added to nonradiatively quench the excited electrons back to the ground state as

the quenching cross-section for diatomic molecules is large due the vibrational and

rotational degrees of freedom [18].

For the magnetic fields used in these experiments (∼ 13 G), the Zeeman splitting

of the fine structure levels is smaller than the hyperfine splitting, so the electrons

actually occupy eigenstates of the total angular momentum, ~F = ~I+ ~J . (The nuclear

spin, I, is 3/2 for 87Rb, 39K, and 41K and I = 5/2 for 85Rb.) In the case of the

I = 3/2 atoms, the polarized state from which the electron cannot absorb σ+ light is

F = 2, mF = 2 (see Figure 3.6 in Chapter 3). However, given the more complicated

level structure that arises due to the hyperfine coupling, more excitation cycles are

required for the atom to reach the polarized state [18]. A general discussion and

detailed survey of optical pumping are provided in Ref. [19] and more recently in

Ref. [20].

2.3 Spin exchange

A polarized alkali atom will interact with a 3He nucleus through a magnetic-

dipole interaction (also referred to as the isotropic hyperfine interaction) which is

responsible for spin-exchange, and through a spin-rotation interaction, which con-

tributes to spin-relaxation [21]. The magnetic-dipole interaction is described by the

Hamiltonian

HI,S = α~I · ~S (2.1)
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where ~I is the noble gas nuclear spin, ~S is the alkali valence electron spin, and α is

the Fermi-contact interaction:

α(R) =
16π

3

µBµI

I
|ψ(R)|2, (2.2)

where µB is the Bohr magneton, µI is the magnetic moment of the 3He nucleus, R

is the internuclear separation of the alkali-noble gas pair, and ψ(R) is the valence

electron wave function, evaluated at the position of the noble gas nucleus [22]. The

spin-exchange process can be represented by

Rb(↑) +3 He(↓) −→ Rb(↓) +3 He(↑) (2.3)

In other words, the total spin of the interacting pair is conserved [19]. The spin-

rotation interaction couples the rotational angular momentum of the alkali-noble

gas pair, ~N , to the alkali electron spin:

HN,S = β ~N · ~S (2.4)

where

β(R) = −mG
µR

d|φ(R)|2
dR

(2.5)

with the factor G, which depends only on the spin-orbit interaction of the noble

gas, calculated by [23, 24], m is the electron mass, and µ is the reduced mass of the

alkali atom-noble gas pair. φ(R) is the electronic wave function in the absence of

the noble gas and is related to ψ(R) through an enhancement factor:

φ(R) = ξψ(R) (2.6)
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Values for the enhancement factor, ξ, have been calculated as ξ ≫ 1 for all noble

gases [23]. This interaction is often referred to as anisotropic spin-exchange and it

tends to polarize the 3He nucleus opposite the alkali polarization.

For 3He, the spin exchange occurs during binary collisions (Figure 2.1), where

the duration of the collision is much shorter than the time between collisions, rather

than through the temporary formation of van der Waals molecules, which contributes

significantly if heavier noble gases are the spin-exchange partners [21].

2.4 Polarization

For a spin-1
2

particle, which has two spin states (N+ and N−), the spin polar-

ization is defined as the fractional difference between those two states:

P =
N+ −N−

N+ +N−

(2.7)

If a process that contributes to populating one state occurs at a rate of Γ+ and the

processes depleting that state occur at a rate of Γ+ + Γ−, then the rate-of-change of

the polarization is described by

dP

dt
= −P (Γ+ + Γ−) + Γ+, (2.8)

which has the solution

P (t) = Ce−(Γ++Γ−)t +
Γ+

Γ+ + Γ−

. (2.9)

In the limit of t→ ∞, the polarization becomes

P∞ =
Γ+

Γ+ + Γ−

(2.10)
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and if the initial polarization at t = 0 is P (0) = P0, then C = P0 − P∞ and the

polarization equation (Eqn. 2.9) can be written

P (t) = P∞ + (P0 − P∞)e−(Γ++Γ−)t

= P∞

[

1 − P∞ − P0

P∞

e−(Γ++Γ−)t

] (2.11)

2.5 Alkali polarization

During SEOP the average alkali polarization is given by [18]

〈PA〉 =
R

R + ΓA

(2.12)

where ΓA is the electronic spin destruction rate for the polarized alkali, which is due

primarily to collisions with other atoms. The optical pumping rate is

R =

∫

Φ(ν)σ(ν)dν (2.13)

where Φ(ν) is the photon flux as a function of frequency and σ(ν) is the alkali

absorption cross-section. To account for less-than-unity laser polarization (Pl) and a

beam propagation direction at an angle θ to the magnetic field, the alkali polarization

can be written as

〈PA〉 =
PlR cos(θ)

R + ΓA
. (2.14)

Because the alkali vapor near the front of the cell absorbs much of the pumping light,

the photon flux varies with distance inside the cell. If the beam is propagating in

the z-direction, the attenuation can be described by [21, 25]

dΦ

dz
= −Φ(z, ν)σ(ν)[A](1 − PA(z)) (2.15)



13

where [A] is the alkali number density.

2.5.1 Alkali polarization relaxation

The relaxation of the alkali spin is due primarily to collisions with other atoms;

relaxation due to alkali collisions with cell walls is generally negligible. The spin-

destruction rate depends on the number densities of the collision partners and the

spin-destruction rate constant for the interacting pair. In these collisions, the total

spin is not conserved and angular momentum is transferred to the rotational angu-

lar momentum of the colliding pair. In the case of a Rb-only cell, the total spin

destruction rate for Rb can be written [17]

ΓRb
sd = ΓRb−Rb + ΓRb−He + ΓRb−N2

. (2.16)

Each spin destruction rate depends on the spin destruction rate coefficient, ksd,

and the number density of the collision partner, [X], such that ΓRb−X = kRb−X
sd [X].

The number densities of 3He and N2 are usually given in amagats where 1 amg =

2.69× 1019 cm−3. The spin destruction rate coefficients are temperature-dependent

and have been measured or calculated to be [15, 17, 26, 27]:

kRb−Rb
sd = 4.2 × 10−13

kRb−He
sd = 1.0 × 10−29T 4.259

kRb−N2

sd = 1.3 × 10−25T 3

where all rate constants are in cm3/s and temperatures in K. Rb-only target cells

are polarized at 180◦ C. At this temperature the Rb number density is [Rb]= 4 ×
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1014 cm−3, so the total spin-destruction rate is

ΓRb
sd = (168 + 552 + 33) Hz = 753 Hz (2.17)

for [3He] = 10 amg and [N2] = 0.1 amg.

2.6 Spin-exchange rates

The rate at which Rb atoms exchange spin depends on the Rb number density

and the spin-exchange rate coefficient:

γRb−Rb
se = kRb−Rb

se [Rb] (2.18)

where kRb−Rb
s e = 8.4 × 10−10 cm3/s [19]. The efficiency of this process is evaluated

by comparing the rate at which polarization is transferred to the rate at which it is

lost:

ηRb−Rb
se =

γRb−Rb
se [Rb]

γRb−Rb
se [Rb] + ΓRb

sd [Rb]
(2.19)

At T = 180◦ C, the Rb-Rb spin-exchange rate and efficiency are

γRb−Rb
se = 300 kHz = 1/(3 µs)

and

ηRb−Rb
se = 0.997.

The rate at which polarization is transferred from the Rb valence electron to

the 3He nucleus is

γRb−He
se = kRb−He

se [Rb] (2.20)
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where kRb−He
se = 6.8 × 10−20 cm3/s [16] and the spin-exchange efficiency is

ηRb−He
se =

γRb−He
se [3He]

γRb−He
se [3He] + ΓRb

sd [Rb]
=

kRb−He
se [3He]

kRb−He
se [3He] + ΓRb

sd

(2.21)

At T = 180◦ C, the Rb-3He spin-exchange rate

γRb−He
se = 2.7 × 10−5 Hz = 1/(10.2 hrs)

The slow spin-exchange rate yields an efficiency of only ηRb−He
se = 0.02, which implies

that 50 polarized Rb atoms are required to produce one polarized 3He nucleus.

Note that spin-exchange with 3He will contribute to the Rb spin relaxation if

the 3He polarization is not equal to the Rb polarization and an additional term

should be included in the total alkali spin destruction rate, Eqn. (2.16) [25]:

Γ
′

Rb−He = kRb−He
se [3He]

(

1 − PHe

PRb

)

(2.22)

For [3He] = 10 amg, the maximum value is

Γ
′

Rb−He = 18.3 Hz

However, this additional term is usually ignored since kRb−He
se [3He] ≪ kRb−Rb

sd [Rb].

2.7 Hybrid spin exchange optical pumping

Traditionally, SEOP cells used for electron scattering experiments contained

only Rb, which resulted in maximum 3He polarizations around 40%. However,

it has been noted that other alkali metals might be more efficient spin-exchange

partners and lead to a higher 3He polarization [6]. In addition to the spin-exchange
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efficiency, the photon efficiency is useful for evaluating the efficacy of SEOP for

polarizing a 3He nucleus [16]. The photon efficiency, ηγ , is the number of polarized

nuclei produced per photon absorbed by the alkali vapor:

ηγ =
[3He]V

Φ

dPHe

dt
(2.23)

where V is the cell volume and Φ is the photon flux. Ideally, ηγ = ηse, but it has been

shown that the photon efficiency is typically much smaller than the spin-exchange

efficiency [16].

Despite having comparable spin-exchange rate coefficients (kK−He
se = 6.1×10−20

cm3/s and kRb−He
se = 6.8 × 10−20 cm3/s [16]), the spin-destruction rates for K are

smaller than those for Rb. In general, the heavier alkali metals have higher spin-

exchange and spin-destruction rates, but the spin-destruction rates increase more

significantly [6]. For K, the spin-destruction rate constants have been measured or

calculated to be [17]:

kK−K
sd = 9.6 × 10−14

kK−He
sd = 5.5 × 10−20 + 5.8 × 10−31T 4.259

kK−N2

sd = 7.0 × 10−26T 3

with units of cm3/s and temperatures in K. The total spin relaxation rate is

ΓK
sd = ΓK−K + ΓK−He + ΓK−N2

(2.24)

For a pure K cell at T = 235◦C, [K]= 6.2× 1014 cm−3 and the spin-exchange rate is

comparable to that of Rb at T = 180◦ C. With [3He] = 10 amg and [N2] = 0.1 amg,
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the total rate is

ΓK
sd = (60 + 67 + 25) Hz = 152 Hz

The spin-exchange efficiency is given by

ηK−He
se =

γK−He
se [3He]

γK−He
se [3He] + ΓK

sd[K]
=

kK−He
se [3He]

kK−He
se [3He] + ΓK

sd

(2.25)

and at T = 235◦ C, ηK−He
se = 0.1 and only ten polarized K atoms are required to

produce one polarized 3He nucleus.

The slower spin-relaxation rate and higher efficiency suggest that K would be

a better spin-exchange partner for 3He than Rb; however, the close spacing of the

D1 and D2 lines in the K spectrum prevent direct optical pumping of K given cur-

rent diode laser technology. An alternative is to implement a hybrid spin-exchange

method where both Rb and K are present in the cell and Rb is optically pumped

as described in the previous section. The Rb atoms will then exchange spins with

K with very high efficiency (∼ 99.8%) while both Rb and K undergo spin-exchange

with 3He. The alkali-alkali spin-exchange rate coefficients are:

kRb−Rb
se = 8.4 × 10−10 cm3/s

kK−K
se = 11.3 × 10−10 cm3/s

kRb−K
se = 10.1 × 10−10 cm3/s

At T = 235◦ C, the spin-exchange rates are:

γRb−Rb
se = 100 kHz

γK−K
se = 680 kHz

γRb−K
se = 120 kHz
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Since 3He undergoes spin-exchange with both Rb and K, the total 3He spin-exchange

rate is [28]:

γse = kKse[K] + kRb
se [Rb] (2.26)

For an alkali density ratio of D = 5 at T = 235◦ C, [Rb] = 1.2 × 1014 cm−3 and

[K] = 6.0 × 1014 cm−3. The 3He spin-exchange rate is

γse = 4.5 × 10−5 Hz = 1/(6.2 hrs)

It is useful to compare the effective Rb relaxation rate, ΓRb′

sd , in the case of

hybrid optical pumping to that of a pure Rb cell, ΓRb
sd . The rapid spin exchange

between Rb and K contributes to the Rb spin relaxation such that the total spin

relaxation rate of Rb is

ΓRb′

sd = ΓRb
sd + DΓK

sd + qKR[K] (2.27)

where D = [K]
[Rb]

is the number density ratio and qKR is the spin destruction rate

for collisions between K and Rb, which is assumed to be the geometric mean of the

Rb-Rb and K-K spin destruction rates: qKR = 2.2 × 10−13 cm3/s [17]. For D = 5

and T = 235◦ C, the total Rb relaxation rate is

Γ
′

Rb = (996 + 5 · 149 + 132) Hz = 1873 Hz,

which is actually larger than that of a Rb-only cell where ΓRb
sd = 753 Hz.

The spin-exchange efficiency in the presence of a hybrid alkali mixture becomes

ηse =
γse[

3He]

γse[3He] + Γ
′

Rb[Rb]
=

γse[
3He]

γse[3He] + ΓRb + DΓK + qKR[K]
(2.28)
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and at T = 235◦ C, ηse = 0.05. As the alkali density ratio increases,

ηse −→
kKse[

3He]

kKse[
3He] + ΓK

. (2.29)

and the efficiency approaches that of a K-only cell.

2.8 3He polarization

The 3He polarization depends on the average alkali polarization, the spin-

exchange rate between the 3He atom and the alkali, and the rate at which 3He

depolarizes. The rate of change of the 3He polarization is [16]

dPHe(t)

dt
= −PHe(t) (γse + Γr) + γse〈PA〉 (2.30)

where γse is the total spin-exchange rate between 3He and the alkali, Γr is the 3He

relaxation rate (i.e., the rate at which the 3He polarization relaxes in the absence of

spin exchange with optically pumped alkali atoms) and 〈PA〉 is the volume-averaged

alkali polarization. Solving for the 3He polarization gives

PHe(t) =
γse

γse + Γr

〈PA〉(1 − e−(γse+Γr)t) (2.31)

Letting ΓHe = γse + Γr, we can define a polarization or “spin up” time constant,

τu ≡ 1
ΓHe

, which describes the rate at which the 3He polarization increases during

SEOP. With this definition, Eqn. (2.31) becomes

PHe(t) =
γse

γse + Γr

〈PA〉(1 − e−t/τu) (2.32)
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The limiting 3He polarization

PHe(t→ ∞) =
γse

γse + Γr
〈PA〉 (2.33)

will approach the average alkali polarization if Γr is minimized.

In addition to the spin-up time constant, τu, which relates to the build-up of

polarization, we can define a “spin-down” time constant, τr = 1
Γr

, which describes

how the 3He nuclear spins relax in the absence of alkali vapor and is often referred

to as the “lifetime” of the cell. In terms of the alkali and 3He polarizations and the

spin-up time, tu, the spin-exchange efficiency can be written [16]:

ηse =
[3He]P eq

He/τu
PA[Rb]Γ

′

Rb

(2.34)

2.8.1 Sources of relaxation

The relaxation rate, Γr, includes all sources of relaxation not related to spin-

exchange. It can be measured by monitoring the polarization decay in the absence

of optical pumping and spin-exchange, i.e., with the lasers off and the alkali at

room temperature. The generally acknowledged sources of this relaxation in 3He

target cells are the 3He-3He magnetic dipole-dipole interaction, inhomogeneities in

the magnetic field, and collisions with the walls of the cell [18]. Consequently, the

relaxation rate can be written as

Γr = Γdip + ΓB + Γwall (2.35)

Dipole-dipole relaxation

In a binary collision between two 3He atoms, nuclear polarization is lost to

orbital angular momentum through the magnetic dipole interaction, which couples
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the nuclear spins to the orbital momentum of the colliding pair [29]. The result

is a density-dependent relaxation rate and is the theoretical minimum rate for the

3He polarization relaxation. Newbury et al. [29] have calculated the rate at room

temperature as a function of 3He number density in amagats where 1 amg = 2.69×

1019 cm−3:

Γdip =
[3He]

744 amg · hrs
(2.36)

They note that the rate is temperature dependent and decreases with increasing

temperature, but do not provide an analytical expression for the relaxation as a

function of temperature. A parameterization of their data is given in [25] and yields

a relaxation of

Γdip =
[3He]

893 amg · hrs
(2.37)

at a typical hybrid cell polarization temperature of T = 508 K. For a 10 amg cell,

Γdip = 3.7 × 10−6 Hz at room temperature and Γdip = 3.1 × 10−6 Hz at T = 508 K.

Magnetic field gradients

To a 3He nucleus in motion, an inhomogeneity in the holding field will appear

as a time-varying field and contribute to the spin relaxation. Gamblin and Carver

[30] derived an expression for the relaxation rate due to gradients transverse to the

holding field:

ΓB = DHe
|~∇Bx|2 + |~∇By|2

B2
z

, (2.38)

where the 3He self-diffusion coefficient is

DHe = 0.235 cm2/s

(

T

400 K

)0.7(
10 amg

[3He]

)

. (2.39)

For a cell with [3He] = 10 amg, DHe = 0.19 cm2/s at room temperature and

DHe = 0.28 cm2/s at T = 235circ C.
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Wall interactions

The relaxation induced by collisions with the cell walls is the least well-understood.

Several factors are suspected to contribute to the wall relaxation: paramagnetic im-

purities in the glass, contaminates on the glass surface, and 3He atoms becoming

trapped in microfissures at the surface of the glass [18, 31] . Some of these effects

can be reduced by using “re-blown” glass [6].

Additional limits

Recent experiments [26, 28] have found an additional relaxation when the cell is

hot that appears to depend on the surface-to-volume ratio of the cell and scale with

temperature, alkali density, or both. Chapter 4 discusses this additional relaxation

further.

2.9 The polarization system

Polarized 3He cells used for scattering experiments typically have a double-

chamber design such that optical pumping takes place in an upper “pumping”

chamber (PC) and the electron beam is directed through the lower “target” cham-

ber (TC) with the two chambers connected by a “transfer” tube (TT). The process

of filling the cell involves condensing the alkali into the pumping chamber only. To

prevent any liquid alkali from entering the transfer tube, a small lip extends from

the top of the transfer tube into the pumping chamber.

Figure 2.2 shows the setup for polarizing 3He target cells. The process requires

the alkali to be heated such that the desired vapor number density and number

density ratio are reached; this is typically 235◦C for a [K]:[Rb] density ratio of 5:1.

The cell is oriented in a forced-air oven such that only the pumping chamber is
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FIG. 2.2: The cell, shown in blue, is centered between the Helmholtz coils while the
pumping chamber is heated inside the oven and the target chamber extends below the
oven. The large coils (green) provide a uniform holding field, the small coils (red) create
an oscillating field for NMR measurements, the pick-up coils on the side of the oven
(black) and along the target chamber are used for detection during NMR and the EPR
coil provides the RF excitation described in Chapter 3.

heated and the target chamber remains outside of the oven. This configuration

confines the alkali atoms to the upper chamber where they are continually optically

pumped while the 3He atoms in the pumping chamber become polarized through

spin-exchange with the polarized alkali and are free to move between the pumping

and target chambers through the transfer tube.

The majority of the data presented in Chapters 3 and 4 were collected using

an oven constructed from Torlon, a high-temperature plastic. To heat the pumping

chamber, hot air flows through a pipe into the top of the oven and an additional

pipe provides an exhaust outlet. A window in the front of the oven allows laser
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light to enter, while a window in the back allows the laser spectrum to be monitored

by a fiber-coupled high-resolution spectrometer. The oven sits between two sets

of Helmholtz coils, which are oriented perpendicularly to each other as in Figure

2.2. The larger set provides a uniform holding field along the direction of the target

chamber and laser propagation direction and defines the quantization axis. The

smaller set located above and below the oven provides an oscillating field during the

nuclear magnetic resonance measurements described in Chapter 3. The large coils

have an inner diameter of 1.42 m, a 1.63 m outer diameter, and are separated by

0.76 m (center-to-center). They provide a uniform (≪ 1%) field over a (40 x 4 x 15)

cm3 volume. The voltage supplied to the coils is controlled by a function generator

connected to the main power supply and the current in the coils is monitored by an

ammeter. The field is maintained at approximately 13 G during optical pumping,

but is varied during several of the diagnostic measurements described in Chapter 3.

The magnitude of the field is related to the function generator voltage through

B = αV + β (2.40)

where α = 3.9539 G/V and β = 0.1507 G. To determine this calibration, a gauss-

meter was used to measure the magnitude of the magnetic field at the center of the

coils as the function generator voltage was varied.

2.9.1 The polarization optics

Figure 2.3 shows the optics used to produce circularly polarized laser light

for optical pumping of Rb. The laser system consists of three Coherent fiber-

array-packaged (FAP) diode lasers and one Newport Comet diode laser, all with

a wavelength of approximately 795 nm corresponding to the Rb D1 transition. The

maximum output power of each laser is approximately 25 W and can be adjusted by
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FIG. 2.3: The optics used to produce circularly polarized σ+ light. The distance between
the pair of lenses can be adjusted to change the diameter of the beam at the target.

changing the diode current. The central wavelength can be optimized by changing

the operating temperature and current. The FAP lasers are considered broad-band

with a line width of 2 nm, while the Comet is a narrow-band laser with a line width

of 0.2 nm. The width of the narrowed laser is a closer match to the absorption

cross-section of the Rb D1 transition under typical conditions, which increases the

pumping rate and results in higher polarization [5, 32]. The Comet was typically

used along with two FAP lasers for most of the optical pumping experiments de-

scribed here.

The optical fiber outputs of each laser are coupled together by a 5-to-1 optical

fiber combiner. The highly divergent output is intercepted by a plano-convex lens

with f1 = 76.2 mm and reflected to a second bi-convex lens with f2 = 750 mm.

Changing the distance between the pair of lenses allows the diameter of the beam

to be adjusted to match the diameter of the pumping chamber for optimal optical

pumping. The beam splitter resolves the laser light into horizontal (P) and vertical

(S) polarizations. The portion of the beam reflected by the beam splitter is S-

polarized. It passes through a λ/4 plate then retro-reflects through the waveplate
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again so that the S-polarization is converted to P-polarization. This beam now

passes through the beam splitter cube and, along with the portion of the beam that

originally passed through the cube, is directed through another λ/4 plate so that

both beams are right-circularly polarized. The beams travel approximately 140 cm

to the oven entrance window. The two beams are approximately parallel to each

other and to the holding field.

Since a small amount of P-polarized light is reflected from the beam splitter

cube along with the S-polarized component, it will be converted to S-polarized light

after its second pass through the λ/4 plate and will be reflected from the cube

to travel back through the optical train to the optical fiber output coupler. To

prevent damage to the fiber, the beam cube is rotated very slightly to prevent the

back-reflection from striking the face of the optical fiber.

Creating circularly polarized light requires the fast and slow axes of the λ/4

plates be oriented correctly. To check the orientation, a polarizer is placed in front

of the target, followed by a photodiode. As the polarizer is rotated, a minimum

and maximum in the light intensity will be detected if the incident light is not

completely circularly polarized. (For perfect circular polarization, the intensity does

not change as the polarizer is rotated; for perfect linear polarization, the minimum

intensity would be zero, implying that the transmission axis of the polarizer is

perpendicular to the light polarization.) The λ/4 plate is rotated until the difference

between the minimum and maximum intensity is as close to zero as possible, thereby

removing the residual linear polarization. However, Chann et al. [33] note that, in

the case of imperfect circular polarization, the unwanted polarization component is

quickly attenuated at the front of the cell provided that the propagation direction

is completely parallel to the holding field.



CHAPTER 3

Cell Construction and

Characterization

3.1 Introduction

Polarized 3He cells are designed and filled to meet the specifications of the

experiment for which they are intended. The cells are hand-blown and delivered

in several pieces, which must be assembled in the lab. Prior to filling, the cells

are usually baked and pumped out on an ultra-high vacuum system. After a cell

is filled, it is characterized in terms of its maximum achievable 3He polarization,

polarization lifetime, 3He number density, alkali ratio, and alkali polarization.

Several techniques have been implemented to examine quantities related to a

cell’s polarization and relaxation. Most of these methods involve probing the bulk

magnetization of the polarized 3He nuclei. Because the contribution from the 3He

nuclei to the total magnetic field is so small, adiabatic fast passage is used to re-

verse the direction of the polarization in order to isolate the 3He magnetic field

component from the external field. Nuclear magnetic resonance data are collected

27
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to monitor the relative 3He polarization during spin-exchange optical pumping and

as the polarization decays in the absence of optical pumping. When a polarization

maximum is reached, electron paramagnetic resonance is used to determine the ab-

solute 3He polarization, the alkali polarization, and the alkali density ratio. Finally,

absorption spectroscopy probes the pressure broadened widths of the alkali D1 and

D2 transitions to reveal the 3He number density.

3.2 Cell construction

The 3He target cells used in scattering experiments are hand-blown by Mike

Souza, a professional glass blower at Princeton University, and are usually con-

structed from GE180–an aluminosilicate glass. GE180 is preferred as it is signifi-

cantly less permeable to 3He compared to Pyrex and has few magnetic or param-

agnetic impurities. Pyrex cells have also been used with an aluminosilicate coating

[34].

The cells consist of a spherical upper chamber where optical pumping and spin

exchange occur and a cylindrical lower chamber where electron scattering takes

place. The diameter of the pumping chamber varies depending on the specifications

of the experiment, but the range is typically 2 to 4 inches with a wall thickness of

several mm. The target chamber is roughly 400 mm in length to allow for sufficient

electron scattering, with a diameter of 0.75 inches. The end windows of the target

chamber, through which the electron beam is directed, have a thickness of only 130

µm [35].

The cell arrives attached to a long glass tube (“string”) as in Figure 3.1. Prior

to filling, the cell’s external dimensions are carefully measured with a caliper so that

the internal volume can be estimated and used in calculations during the fill. Two

other glass segments must be attached to the string prior to connecting the cell to
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FIG. 3.1: A JLab-style cell attached to its string. The cell is baked inside the oven while
attached to the vacuum system; the glass portion of the string outside of the oven is
periodically baked with a hand torch.

the vacuum system. The right side has a receptacle for the alkali (the “retort”) and

the left side transitions from glass to a metal bellows connection so that the entire

assembly can be connected to a vacuum system.

Figure 3.2 shows the valves, gauges, and pumps that comprise the vacuum and

gas handling systems. The roughing pump is used to bring the system into the 10−3

torr range, while the turbo pump can achieve pressures on the order of 10−9 torr.

The ion pump is used to maintain a clean system between cell fills. The valves are

labeled by type: bellows valve (BV), diaphragm valve (DV), and gate valve (GV).

The pressure within the system can be monitored by a Baratron pressure gauge and

hot cathode and Pirani vacuum gauges with each sensitive to a different pressure

range. The “getters” remove impurities from each gas before it is released into the

cell and are heated to 350◦C during the fill. Regulators control the gas flow from

the bottles.
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FIG. 3.2: The vacuum and gas handling system for pumping out and filling 3He target
cells.

The system can be divided into three sections with the “gas” side to the left

of BV11 and the “cell” side to the right of BV13. The “manifold” is the region

between BV11, BV13, and BV15, with BV12 closed.

3.3 Filling a Cell

A detailed procedure has been developed and optimized for filling JLab-style

cells. After assembling the string, the cell is baked and pumped for several days

before the alkali and gases are moved into the cell. Two LabView programs are

used to collect data and perform calculations to monitor the progress of the fill.

These use a GPIB interface to communicate with the gauges and sensors in the

vacuum system.

3.3.1 Preparing for the fill

To ensure that the cell is as free from impurities as possible prior to the intro-

duction of the alkali and gases, it is baked at 425◦C and pumped with the turbo
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pump for approximately one week. When the cell is first attached to the system, a

leak check is performed using 4He gas to identify any cracks in the glass joints or

bellows connection. The system is then flushed by flowing N2 through the string.

While the cell sits inside the oven, a large section of the string, including the retort,

is outside of the oven. These sections are heated with a cool oxygen-methane hand

torch several times a day to liberate any impurities from these surfaces. Early in

the process, the pressure will increase by several orders of magnitude during flame-

baking and drop afterward. The procedure is repeated until the pressure no longer

changes significantly. The oven is turned off the day before the fill and the cell is

allowed to cool to room temperature.

The alkali mixture is prepared inside a dry nitrogen glovebox at the University

of Virginia and sealed in a glass ampoule. The tip of the ampoule is broken off and

the ampoule is quickly inserted into the retort. The top of the retort is melted with

a hand torch and sealed. The bottom of the retort is heated with a cool flame to

melt the solid alkali out of the ampoule. A few days prior to the fill, the alkali is

moved into the dip (see Figure 3.1) and the retort is removed by melting the glass

at the pull-off.

The first step in the filling process is to purge the getters by heating them to

440◦C and filling the gas side to approximately 850 torr of N2 and then pumping it

from the system. The process of filling and pumping is repeated with alternating

getters. After purging, BV11 is closed and BV13 is opened. The alkali is moved

from the dip to the pumping chamber through a “chasing” process where the dip

is heated until the alkali vaporizes and condenses on cooler sections of the string.

These areas are heated to again vaporize the alkali until it eventually condenses in

the pumping chamber.
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3.3.2 Measuring the volume

Prior to the fill, the desired 3He number density is specified. As 3He is in-

troduced into the system, the pressure is monitored and the number density is

calculated. To facilitate this calculation, the volume of the string plus the cell (Vsc)

is measured before the fill begins. After the system is pumped out, a charge of N2

is dispersed through the manifold and calibrated volume with BV13 closed. The

temperature (Tcv) and pressure (Pcv) of the calibrated volume are measured and

valves BV11 and BV12 are closed to trap N2 in the calibrated volume. The man-

ifold is pumped out, BV12 is opened to allow the gas in the calibrated volume to

expand and fill the manifold, and the manifold temperature (Tm) and pressure (Pm)

are measured. The manifold volume is given by

Vm =

(

PcvTm
PmTcv

− 1

)

Vcv (3.1)

However, since the manifold volume is known, this result is only used to verify

that the string and cell volume determined subsequently are reliable. To measure the

volume of the string plus the cell, BV13 is opened to allow the gas in the manifold

and calibrated volume to expand into the string and cell. The pressure (Psc) and

temperature (Tsc) of the string and cell are measured and are used to calculate the

volume:

Vsc =

(

PcvTsc
PscTcv

)

Vcv − Vm − Vcv (3.2)

where Vm is the known manifold volume. The volume of the string is calculated

from Vsc and the cell volume (V est
c ), which is calculated from external measurements

and the estimated glass thickness. The total string volume is: Vs = Vsc − V est
c .
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3.3.3 N2 and 3He fill

The estimated and measured volumes are used to determine the required pres-

sure of N2 to introduce into the system based on the desired final pressure (PN2

f ) in

the cell at room temperature:

PN2 =
PN2

f V est
c

Vsc
(3.3)

After the N2 getter valves and BV13 are opened, BV1 and BV11 are opened slowly

until the desired pressure of N2 is reached, as indicated by the pressure gauge. Then,

BV13 is closed and the gas side of the system is pumped out to prepare for the 3He

fill. The oven is removed and replaced by a dewar filled with liquid 4He in which

only the target chamber is submerged. The temperature of the target chamber is

monitored by a cryogenic sensor and when T = 4K, the 3He fill begins. Cooling

the cell to liquid 4He temperature causes the pressure inside the cell during the fill

to drop below atmospheric pressure and the N2 to condense in the bottom of the

target chamber. A target pressure is calculated for 3He based on the desired final

number density; however, the pressures required for typical number densities are

often higher than the pressure gauge can read. For this reason, 3He is introduced

in two or more charges with the number density calculated after each.

When the target density is reached, BV13 is closed and the cell is separated

(“pulled off”) from the string by melting the glass at the narrowed section and

pulling the string away until the cell is detached. With the pressure inside the

cell below atmosphere, the pressure outside causes the melted glass to seal itself.

Otherwise, the high pressure 3He would push outward and rupture the seal. The

cell is allowed to sit in the liquid 4He bath as the liquid boils off and the cell slowly

returns to room temperature.

With the cell removed from the system, the volume measurements described
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in the previous section are repeated to obtain the volume of only the string, Vs.

This is subtracted from the earlier measurement of Vsc to obtain a more accurate

measurement of the internal volume of the cell.

3.3.4 Determining the alkali ratio

The vapor density for a pure alkali as a function of temperature is given by [36]

[A] = 10A−BT 1

kT
(3.4)

with A and B for Rb and K given by

over solid:

AK =4.961 BK =4646K−1

ARb =4.857 BRb =4215K−1

over liquid:

AK =4.402 BK =4453K−1

ARb =4.312 BRb =4040K−1

Raoult’s Law (see, for example, [36]) provides the vapor density for an alkali in a

mixed, i.e., impure, sample:

[A] = fA[A]pvp (3.5)

where fA is the mole fraction of the alkali in the mixture and [A]pvp is the number

density of the pure sample from Eqn. (3.4). The goal is to determine the mass of

each alkali to be mixed inside the glove box using the desired number density of Rb
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and vapor density ratio. From Eqn. (3.5), the ratio is

D =
[K]

[Rb]
=

fK
fRb

[K]pvp
[Rb]pvp

(3.6)

By specifying the ratio and temperature, Eqn. (3.6) can be solved for the molar

fraction. Assuming some mass of K, the amount of Rb required to obtain the desired

ratio at the specified temperature can be found from the molar fraction.

Despite the precise control over the measuring and mixing procedure, it is

common to find that the actual ratio varies from cell to cell. It is suspected that

these variations are introduced during the process of moving the alkali mixture from

the retort to the dip to the pumping chamber. However, studies of alkali polarization

as a function of alkali ratio have found little variation in the maximum polarization

achieved as long as the alkali ratio in the the range of 4 to 10 [25].

3.4 Measuring the internal volume

Prior to filling and in order to calculate the appropriate pressure of 3He to

achieve the desired number density, the internal volume of the cell (V est
c ) must

be estimated from external measurements. During the fill, the volume is calculated

from the ideal gas law using measurements of temperature, pressure, and a calibrated

volume. After the cell is filled, a more precise measurement of the volume can be

made using Archimedes’ principle.

The cell is suspended from a scale and its mass is measured in air and in water.

While the cell is submerged, the buoyant force exerted on the cell is equal to weight

of the displaced water with the volume of the displaced water equal that of the cell:

FB = ρwVcg, (3.7)
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where ρw is the density of water. The cell’s total volume is

Vc =
m−m

′

ρw
(3.8)

where m is the mass of the cell in air and m
′

is the mass measured when the cell

is submerged. The cell’s internal volume is the total volume minus the volume

contribution from the glass walls, Vi = Vc − Vg. The glass volume is Vg = mg

ρg
where

ρg is the density of the type of glass used. Since the masses of the alkali, 3He, and N2

contribute negligibly to the total mass of the cell, mg ≃ m and the internal volume

of the cell is

Vi =
m−m

′

ρw
− m

ρg
. (3.9)

This volume is used to correct the 3He number density calculated during the fill,

which is based on an estimated volume, and when the absolute polarization is cal-

culated as described later in this chapter.

3.5 Adiabatic fast passage nuclear magnetic res-

onance

Adiabatic fast passage nuclear magnetic resonance (AFP-NMR) measures the

relative 3He polarization in order to determine the time constants as the polarization

grows and decays: the “spin-up” time and “spin-down” time (lifetime) respectively.

The latter is typically measured at room temperature, i.e., in the absence of alkali

vapor. However, allowing the cell to spin down at operating temperature can provide

additional insight into a cell’s relaxation due to alkali vapor and possible temperature

dependence of surface effects.

The goal of the AFP method is to reverse the direction of all of the 3He spins
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with respect to the holding field. The 3He spins are not actually aligned with the

holding field, but precess about it at the Larmor frequency. An oscillating magnetic

field, which is perpendicular to the holding field, is used to change the orientation of

the 3He nuclear spins. When the direction change occurs, a voltage is induced in a

nearby set of pick-up coils due to the changing magnetic flux caused by the flipping

of the 3He spins. The magnitude of the induced signal is detected by a lock-in

amplifier referenced to the oscillating magnetic field frequency and is proportional

to the 3He polarization. However, the rate-of-change of the effective field resulting

from the oscillating field coupled with the holding field must be slow enough for the

spins to follow, yet fast relative to the spin relaxation time of the 3He nuclei when

no oscillating field is applied.

3.5.1 Magnetic moment in a static field

When a particle with a magnetic moment ~µ = γ~I, where γ is the gyromagnetic

ratio (γHe = 2.0379 × 108 rad/s/T = 3.243 kHz/G [36]) and ~I is the spin, is placed

in a uniform magnetic field ~H, it will experience a torque

~τ = γ~µ× ~H =
1

γ

d~I

dt
(3.10)

will precess about ~H such that the angle between the two is constant and the

magnetic moment precesses at the Larmor frequency. If ~H = H0ẑ, the frequency of

precession is ω0 = γH0 [37, 38].

3.5.2 Introduction of an oscillating field

An oscillating field, ~H1(t), perpendicular to the static field with frequency ωRF

can be decomposed into two counter-rotating components with frequencies ±ωRF .
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In a frame rotating at ωRF about the z-axis, only the component rotating in the

same direction as the precession of ~µ will have a significant effect. The other com-

ponent rotates in the opposite direction at 2ωRF and can be ignored when ω0 ≫ ω1.

Switching to the rotating frame also eliminates the time-dependence of the oscillat-

ing field. If ωRF = ω0, ~µ will be stationary in the rotating frame and from Eqn.

(3.10), H0 = 0, and the only field seen by the dipole is H1, about which it precesses

with ω1 = γH1 [37, 38].

If the oscillating field is temporarily ignored, but the problem is still being

considered in the reference frame rotating with ωRF , the Larmor frequency will be

ωL = ω0 − ωRF . In other words, there is an effective magnetic field with magnitude

Heff =
ω0 − ωRF

γ
= H0 −

ωRF

γ
. (3.11)

If H1 is re-introduced, the magnitude of the total field is

Htot =
√

H2
eff +H2

1 . (3.12)

If the magnitude of the holding field is such that H0 <
ωRF

γ
and it is slowly increased,

when H0 = ωRF

γ
, Heff = 0. At this point, the dipole only sees H1. If H0 continues

to increase until H0 >
ωRF

γ
, Heff will point in the opposite direction, i.e., −ẑ, and

the magnetic moment will have reversed its orientation relative to the holding field

[37, 38].

3.5.3 Finding resonance

The conditions necessary to reverse the polarization direction can be found by

ramping either the magnitude of the holding field or the frequency of the oscillating

field, while the other is held constant. For the NMR measurements to monitor the
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polarization growth or decay, the holding field is ramped. ~H0 begins at a value

below resonance such that the effective field is nearly parallel to ~H0. It is then

swept through resonance to a value above resonance and the magnetic moment, ~µ,

initially parallel to ~H0, remains parallel to ~Heff during the sweep and, thus, ends

up antiparallel to ~H0. At resonance, there will be a transverse magnetization with

respect to the z-axis due to the 3He spins that is equal to the initial value of the

magnetization M0 along the z-axis [37].

3.5.4 AFP conditions

As H0 is swept through resonance, the spins will follow the effective field if

the adiabatic fast passage conditions, which place restrictions on the rate-of-change

of the holding field and magnitude of the oscillating field, are satisfied. The fast

condition requires that the holding field change quickly relative to the longitudinal

and transverse relaxation times. The longitudinal relaxation time, T1, describes the

relaxation when the 3He spins are aligned with H0, while the transverse relaxation

time, T2, is relevant when the spins pass through resonance and are perpendicular to

H0. The adiabatic condition, however, limits the rate-of-change of the holding field

relative to the Larmor frequency so that the spins can follow the Heff through its

rotation. In other words, it requires the holding field to vary slowly enough that the

magnetization angle relative to the holding field is constant in the rotating frame.

Specifically, these conditions are [37],

H1

T2
<<

∣

∣

∣

∣

dH0

dt

∣

∣

∣

∣

<< γHeH
2
1 (3.13)

After dividing by the sweep rate, Eqn. 3.13 can be can be re-written as

δf << 1 <<
1

δa
(3.14)
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where

δa =
γHe

ω2
1

∣

∣

∣

∣

dH0

dt

∣

∣

∣

∣

(3.15)

and

δf =
1

T2

ω1

γHe

(

dH0

dt

)−1

. (3.16)

If the AFP conditions are well-satisfied, losses in the 3He polarization should

be minimized as the spins are swept from below to above resonance. Typically, AFP

losses are due to a short T2, which is assumed to be dominated by the contribution

from longitudinal magnetic field gradients.

For our system, H1 = 76 mG and dH0

dt
= 1.2 G/s have been the standard

operating parameters. However, the AFP conditions will be re-visited in Chapter 4

where it will be shown that these values do not satisfy the AFP conditions under

all circumstances.

3.5.5 NMR system

Figure 3.3 shows the electronics that are responsible for generating the AFP-

NMR fields and detecting the 3He nuclear spin-flip. The positions of the coils,

oven, and cell were shown in Figure 2.2. A DC current from a Kepco power supply

generates a uniform field between the large set of Helmholtz coils. While a cell

is polarizing, the voltage is set such that the holding field maintains a value of

approximately 13 G. During an NMR measurement, a function generator sends a

linear ramp to the Kepco and sweeps the holding field magnitude up to 21 G and

then back down to 13 G. at a rate of 1.2 G/s.

As the holding field is ramped, the perpendicular RF coils maintain an oscillat-

ing magnetic field at a frequency of f = 53.6 kHz, which is the resonant frequency

at the center of the holding field sweep range. The RMS voltage supplied to the RF
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FIG. 3.3: The electronics responsible for generating and detecting AFP-NMR signals.
The locations of the coils relative to the cell and oven are shown in Figure 2.2
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coils, VRF , is related to H1 and is selected to satisfy the AFP conditions. Details

of the calibration relating the magnitude of H1 to the RF voltage can be found in

Chapter 4.

As the holding field is ramped from low to high (the “up sweep”) and then

back down (the “down sweep”), the 3He spins reverse their orientation twice. As

the spins flip, their transverse magnetic field, rotating at the RF frequency, induces

a voltage in the pick-up coils, which are oriented perpendicularly to both the main

coils and the RF coils. Two sets of pick-up coils are present in order to monitor the

polarization in either the target or pumping chamber. The upper set is wound from

copper wire with approximately 250 turns around the end of a 2.5 cm-diameter

Torlon rod with each having an inductance of L = 5 mH. The rods are inserted

into holes on either side of the oven such that the coils are as close as possible to

the pumping chamber. The lower coils each have 250 turns with an inductance of

L = 3.6 mH and are wound in an 11×2.5 cm2 rectangle. These are oriented with the

longest dimension along the target chamber. With the current setup, only one set of

coils can be monitored at a time; switching between sets is accomplished by simply

switching cables at the filter A and B inputs. The output of the pre-amplifier is the

difference (A-B) between the two coils and, because the coils are wound in opposite

directions, the signals add while any background noise cancels. The pre-amplifier

output is read by a lock-in amplifier referenced to the RF frequency.

Communication with the lock-in amplifier and function generators occurs over

GPIB through a LabView interface. The phase of the lock-in amplifier is chosen to

maximize the signal in the x-channel. The sensitivity depends on the magnitude

of the induced voltage, which depends on the proximity of the pick-up coils to the

cell, the size of the cell and the 3He number density. The lock-in time constant is

adjusted to minimize the noise in the signal; it’s value often changes if the rate of

the sweep is changed. Values have ranged from 3 ms up to 30 ms.
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Impedance matching

The RF amplifier driving the coils requires a 50Ω resistive load to operate with

zero reverse power. Since the RF coils have a total inductance of L = 110µH, an 81

nF capacitor is added in series with the coils. This balances the reactive components,

i.e., those that do not dissipate power, since the total impedance is given by

Z = iωL− i

ωC
(3.17)

and the magnitude is

|Z| =

∣

∣

∣

∣

ωL− 1

ωC

∣

∣

∣

∣

(3.18)

where ω = 2πf and f = 53.6 kHz is the typical operating frequency of the RF coils.

However, since no power is dissipated by these elements, all the power is reflected

back to the amplifier. Including a resistive element in series with the capacitor yields

an impedance of

Z =

√

R2 +

(

ωL− 1

ωC

)2

= R, (3.19)

if L and C are balanced for a given ω. Adding 50 Ω of resistance would satisfy the

amplifier, but the coils should be operated with much lower resistance to maximize

the current through the coils. A simple solution is to include a small resistance in

series with the capacitor and coils. However, some power would still be reflected

back to the amplifier, so this is only practical in low power applications. The correct

solution is to insert a transformer between the amplifier and the coils to act as an

“impedance amplifier” as in Figure 3.4. For the transformer,

I1N1 = I2N2 (3.20)

I2 =

(

N1

N2

)

I1 (3.21)
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FIG. 3.4: Impedance matching circuit for the RF amplifier with impedance amplifying
transformer.

and

I1V1 = I2V2 = I22R (3.22)

where R is the resistance added to the LC circuit. Substituting yields

I1V1 =

(

N1

N2

)2

I21R

V1
I1

=

(

N1

N2

)2

R

R1 =

(

N1

N2

)2

R

(3.23)

where R1 = V1/I1 is the resistance seen by the amplifier. If the transformer coil

ratio is N1/N2 = 5 and R = 2Ω (a small resistance seen by the coils to maximize the

current), the amplifier will see R1 = 52 · 2Ω = 50Ω, thus minimizing the reflected

power.

Aligning the coils

If the plane of the pick-up coils is not parallel to the field generated by the

RF coils, the oscillating field will induce a signal in the pick-up coils, which could

dominate the signal from the AFP flip of the 3He spins. The lower coils can be

adjusted to isolate the spin-flip signal and minimize background. With the RF on,

the output of each coil is examined with an oscilloscope and the orientation of the
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FIG. 3.5: The voltage induced in the pick-up coils and read by the lock-in amplifier as
the 3He spins are flipped. The data points are shown along with the fit; the right peak
corresponds to the holding field ramping up (“up sweep”) while the left peak is the ramp
down (“down sweep”).

coil is adjusted until the signal is minimized.

3.5.6 NMR data analysis

Figure 3.5 is an example of an NMR signal collected from the x-channel of the

lock-in amplifier with the down-sweep on the left and the up-sweep on the right.

While the amplitude of the peaks can be positive or negative depending on the phase

of the lock-in, only the magnitude of the peak height is relevant. Note the the peak

height magnitudes are approximately equal. This indicates that little polarization

was lost as the spins were swept through resonance. Also, resonance occurs are

the same field value for the up-sweep and down-sweep; the peaks in Figure 3.5 are

shifted due to a delay in the read-out of the signals. The signal is proportional to
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the transverse magnetization, which is given by [37]

Mtr =
M0H1

√

H2
1 + (H −H0)2

(3.24)

Each up-sweep and down-sweep signal is fit with

S(t) =
AH1

√

(H(t) −H0)2 +H2
1

+ aH(t) + b, (3.25)

where H(t) is the magnitude of the holding field, A is proportional to the mag-

netization, H0 is the resonance field, and 2H1 is the magnitude of the applied RF

field. The term linear in H(t) describes the background. As the polarization builds,

the signal amplitudes, A, given by the fit are plotted as a function of time and fit

with an exponential where the time constant describes the “spin-up” time, τu. For

a single-chamber cell, the spin-up peak heights are fit with

P (t) = P
′
(

1 − e−t/τu
)

(3.26)

NMR data are also acquired as the polarization is allowed to relax (i.e., the lasers

are off); in this case the spin-down peak heights as a function of time are described

by

P (t) = Poe
−Γt (3.27)

When the spin-down occurs at room temperature, the time constant is τr = 1/Γr and

is the “cold” lifetime of the cell. It is also useful to monitor the polarization decay

at operating temperature. Under these conditions, the spin-down time constant is

related to the “hot” lifetime of the cell: τh = 1/Γh. Cold lifetimes are typically

tens of hours with some cells reaching lifetimes of hundreds of hours [28], while

hot lifetimes are expected to approximate the spin-up time when the relaxation
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mechanisms are assumed to be the same. However, deviations from both of these

expectations have recently been observed and a more detailed discussion of the

implications of variations in cell lifetimes is presented in Chapter 4.

3.5.7 AFP loss correction

Although the rate-of-change of the holding field is optimized to minimize spin

relaxation, a small amount of polarization is lost during each NMR measurement.

This loss in polarization can be determined by taking a series of NMR measure-

ments with a negligible delay between spin flips. A percent difference is calculated

between subsequent up-sweep peak heights and between subsequent down-sweep

peak heights. The average of all the percent differences is calculated. This is the

“AFP loss” and is used to correct NMR data collected during a spin-down mea-

surement where the lifetime in the absence of AFP loss is of interest. Without this

correction, the lifetime derived from the spin-down curve is too short. If the AFP

loss is α, the first measured peak height for the spin-down series, Pm
1 , will be smaller

than its actual value, P1 due to the AFP loss:

Pm
1 = P1(1 − α) (3.28)

The second measured peak height is reduced from the first due to the polarization

decay as well as the AFP loss:

Pm
2 = Pm

1 e
−Γt(1 − α) = P1e

−Γt(1 − α)2 (3.29)

Finally, the nth measured peak height will be

Pm
n = P1e

−Γt(1 − α)n (3.30)
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The measured peak heights are corrected for the AFP loss by calculating

P corr
n =

Pm
n

(1 − α)n
(3.31)

for each peak; the resulting data are fit with

P (t) = P1e
−Γt. (3.32)

It is important to note that when Γ and t are small, α = δf (see Eqn. 4.28), and

the loss is due to passage through resonance. Acceptable AFP losses are typically

α < 0.01.

3.5.8 Masing effects

The 3He spins are typically polarized into the low energy state and will reverse

their direction to occupy the high energy state during AFP-NMR, although the

opposite configuration is occasionally implemented. If large AFP losses are observed

when pumping in the low energy state or the 3He polarization abruptly saturates at a

low value when pumping in the high energy state, a phenomenon known as “masing”

might be present [18, 25, 39]. As the spins precess about the holding field, they can

induce a voltage in the pick-up coils. This voltage will cause a current to flow in the

coils, which will create a magnetic field transverse to the holding field. This creates

a positive-feedback situation where the induced transverse field pulls the spins away

from the holding field, resulting in a larger induced current in the pick-up coils

and a larger transverse field. This causes the polarization along the holding field to

decrease until it reaches a threshold value at which point masing stops. Early studies

of masing suggested that the point at which masing begins depends on the difference

between the resonant frequency of the pick-up coil and the Larmor frequency [18, 39].
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However, the masing effect has recently been observed in the absence of any obvious

coupling and in these experiments seemed to be confined to the pumping chamber

[25]. Regardless, both experiments found that the negative impact of masing on the

polarization and AFP loss could be mitigated with the introduction of a magnetic

field gradient along the direction of the holding field. Gradients of ≈ 10 mG/cm

have been shown to suppress masing without contributing significantly to additional

3He spin relaxation [18, 25]. The gradient may be introduced through an additional

set of coils in an anti-Helmholtz configuration (i.e., the current flows in opposite

directions) whose axis is coincident with that of the holding field coils.

3.6 Polarization dynamics for a double-chamber

cell

The description of the 3He polarization evolution given in Chapter 2 assumes

that the cell has only a single chamber. However, the target cells used at Jefferson

Lab have a double-chamber design that allows optical pumping to take place in an

upper chamber while the lower chamber is used for scattering. When the cell is

filled, the alkali is deposited in the upper chamber. During optical pumping, the

upper chamber is heated to vaporize the alkali while the 3He and N2 gases are free

to move around both chambers. The 3He nuclei in the pumping chamber are polar-

ized through spin-exchange collisions with alkali atoms, while the target chamber

becomes populated by polarized 3He nuclei that diffuse through the tube connect-

ing the two chambers. Consequently, the spin-exchange and polarization equations

should be modified to incorporate the double-chamber dynamics; the results of the

detailed analysis provided in [6, 7, 25] are summarized here.

The fraction of 3He nuclei in the pumping and target chambers are fpc = v
t+v
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and ftc = t
t+v

, where t = Tpc

Ttc
and v = Vpc

Vtc
. The rate-of-change of 3He polarization in

the pumping chamber is

dPpc

dt
= γse (〈PA〉 − Ppc) − ΓpcPpc − dpc (Ppc − Ptc) , (3.33)

where 〈PA〉 is the average alkali polarization. In the target chamber there is negli-

gible alkali vapor:

dPtc

dt
= −ΓtcPtc + dtc (Ppc − Ptc) (3.34)

The diffusion rates, dpc and dtc, are the probability per unit time per nucleus that a

nucleus will exit the pumping (or target) chamber and enter the target (or pumping)

chamber. The limiting polarization in the pumping chamber becomes

P∞

pc =
〈PA〉fpcγse

fpcγse + 〈ΓHe〉
, (3.35)

where the 3He relaxation is

〈ΓHe〉 = Γpcfpc + Γtcftc

(

P∞

tc

P∞
pc

)

(3.36)

and

P∞
tc

P∞
pc

=

[

1 +
Γtc

dtc

]−1

(3.37)

The coupled differential equations (Eqns. 3.33 and 3.34) can be solved to give

the polarization in the pumping chamber:

Ppc(t) = P∞

pc +
[

P 0
pc − P∞

pc − cpc
]

e−Γst + cpce
−Γf t (3.38)

where P∞

pc is the equilibrium polarization, P 0
pc is the initial polarization, and cpc is
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given by [25]

cpc =
Γs(P

∞

pc − P 0
pc) − dpcP

0
tc + P 0

pc(γse + Γpc + dpc) − γsePA

Γf − Γs
(3.39)

Γf and Γs are the reciprocals of the fast and slow time constants, τf and τs, where

τs is identified as the “spin-up” time constant (τu). The target chamber polarization

has a similar form:

Ptc(t) = P∞

tc +
[

P 0
tc − P∞

tc − ctc
]

e−Γst + ctce
−Γf t (3.40)

with ctc given by [25]

ctc =
Γs(P

∞

tc − P 0
tc) + (Γtc + dtc)P

0
tc − dtcP

0
pc

Γf − Γs

(3.41)

Note that

Γf + Γs = dpc + dtc + γse + Γpc + Γtc (3.42)

where Γpc and Γtc are the individual relaxation rates for the pumping and the target

chamber.

While spin-up data has previously been fit with the single exponential function,

the double-exponential resulting from the double-chamber analysis has been shown

to significantly reduce the χ2 of the fit [25].

3.6.1 Polarization gradient

A consequence of the double-chamber design is that a gradient in the polar-

ization exists between the pumping and target chambers. Since the 3He nuclei are

polarized in the upper chamber and then diffuse down into the target chamber, af-

ter leaving the pumping chamber they no longer undergo spin-exchange with the



52

alkali atoms, so the polarization begins to decay. For this reason, the polarization

in the target chamber is lower than the polarization in the pumping chamber. The

polarization gradient is defined in terms of the equilibrium polarizations:

P∇ = 1 − P∞

tc

P∞
pc

=
1

1 + dtc/Γtc
(3.43)

Note that the gradient can be large if the target cell lifetime is very short.

3.7 Electron paramagnetic resonance

When sufficiently high 3He polarization is reached, the 3He nuclei contribute

measurably to the total magnetic field experienced by the alkali atoms. Depending

on whether the 3He nuclear spins are aligned with or against the holding field, the

total field has a greater or smaller magnitude than it would in the absence of the

polarized nuclei. An electron paramagnetic resonance (EPR) technique has been

implemented to determine the absolute 3He polarization by isolating the contribu-

tion to the total magnetic field from the polarized nuclei [40]. In addition, this

method can provide the alkali polarization and alkali vapor density ratio [26, 41]. A

frequency modulated technique is used for the former, while the latter is determined

through an amplitude modulated variation.

Figure 3.6 shows the fine and hyperfine structure of 85Rb (I = 5
2
). The fine

structure arises from the coupling between the electron’s orbital angular momentum

and its spin (Hso = Aso
~L · ~S) to give the total angular momentum of the electron,

~J = ~L+ ~S. When the nuclear spin is included, it couples to ~J through the hyperfine

interaction:

Hhf = Ahf
~I · ~J (3.44)

Throughout the polarization process, the alkali atoms experience a strong, con-
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stant magnetic field from the large set of Helmholtz coils and a smaller magnetic field

due to the polarized 3He nuclei. This lifts the hyperfine degeneracy and separates

the 2F + 1 magnetic sublevels, mF . In electron paramagnetic resonance (EPR), the

alkali atoms are excited by a radio frequency signal that drives transitions between

the mF sublevels. The resonant frequency is determined by the magnitude of the

magnetic field, the alkali isotope, and the transition. The resonant frequency is

found with the 3He nuclei polarized in the direction of the holding field and then

with the spins aligned in the opposite direction. The difference between the two

frequencies is proportional to the magnetic field due to the 3He nuclei, which is

related to the polarization.

For these experiments, σ− D1 light has been used to optically pump Rb. This

implies that transitions will occur for F → F +1 and mF → mF −1. In other words,

when equilibrium polarization is reached, most of the 85Rb atoms, for example, will

be in the mF = −3 state, from which they cannot absorb σ− D1 light. If a frequency

resonant with this transition is applied, the atom will transition from the mF = −3

state into a state from which it may absorb the pumping light. When excited by

the D1 light, the atom may be further excited to the P3/2 state through collisional

mixing. Despite the presence of N2, whose purpose is to radiationlessly quench the

excited alkali, some of the atoms will emit D1 and D2 light with random polarization

as they decay. The resonant frequency between mF levels, which depends on the

degree of 3He polarization, can be identified by a peak in D2 intensity.

3.7.1 Amplitude modulated EPR

The EPR coil mounted to the side of the oven in Figure 2.2 provides the radio

frequency excitation that drives transitions between mF levels. The photodiode

positioned above the cell is covered with a Rb D2 bandpass filter to block the Rb D1
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FIG. 3.6: Fine structure, hyperfine structure, and hyperfine structure in an external
magnetic field for 85Rb. The F = 3,mF = −3 is the polarized state for pumping with
σ− light.
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FIG. 3.7: The electronics used for generating and detecting AM EPR signals. Note: the
RF generator is operated in “Amplitude Modulation” mode.

pumping light. The photodiode signal is read by a lock-in amplifier referenced to

the modulation frequency (see Figure 3.7). When the EPR RF signal is amplitude

modulated and the EPR frequency or holding field is swept, the lock-in signal is

proportional to the intensity of the D2 fluorescence as a function of frequency, i.e.,

the line shape of the EPR transition.

To determine when resonance occurs, either the excitation frequency or the

magnitude of the holding field can be varied while the other is held constant. For

the data presented here, the excitation frequency is fixed at f = 17.5 MHz and

amplitude modulated by a 200 Hz sine wave. The holding field is incremented by

approximately 2 mG by stepping the voltage to the coils provided by the holding field

function generator. The lock-in amplifier is referenced to the modulation frequency

and isolates the component of the D2 fluorescence at that frequency. The resulting

spectrum is the D2 intensity as a function of holding field magnitude. Figure 3.8
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shows a spectrum from a hybrid cell; the individual Rb transitions are not resolvable

at our field values. The Breit-Rabi equation, which gives the energies of the hyperfine

ground state levels, can be inverted at low fields to find the approximate fields

required for transitions mF ↔ mF − 1 given a frequency, ν [25],

H ≈
(

hν

µB

)

2I + 1

1 +
√

1 + 4(1 − 2mF )ν/νhfs
(3.45)

where νhfs is the zero-field hyperfine frequency. The low-field approximation neglects

the effect of F with the result that the fields calculated for the twin transitions (tran-

sitions between the same mF sublevels on different F manifolds) are identical. This

is a reasonable approximation as the twin transitions are unresolvable under these

experimental conditions. The frequency difference between the twin transitions is

∆ν = νlower − νupper = 2gI
µN

h
H (3.46)

Table 3.1 shows the magnitude of the magnetic fields required for transitions between

hyperfine Zeeman levels (mF ↔ mF − 1) at 17.5 MHz. Note the close proximity of

the Rb transitions while the K transitions are well-separated.

Extracting the alkali polarization

The alkali polarization and density can be determined from the area under the

peaks of the AM-EPR spectrum. The area under each peak is proportional to the

population difference between the |F,m〉 and |F,m−1〉 states and is given by [26, 41]

as

AF,m ∝ fI [A]

[

HRF

2I + 1

]2

[F (F + 1) −m(m− 1)](ρF,m − ρF,m−1) (3.47)

where [A] is the alkali number density, HRF is the magnitude of the RF magnetic

field, m indicates the higher level, fI is the natural isotopic fraction of the species,
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I νhfs (MHz) mF H (G)
39K 3

2
462 −1 22.67

0 24.12
1 26.03
2 28.77

41K 3
2

254 −1 21.27
0 23.49
1 27.02
2 35.31

85Rb 5
2

3035 −2 36.49
−1 36.88
0 37.30
1 37.73
2 38.18
3 38.66

87Rb 3
2

6835 −1 24.82
0 24.94
1 25.07
2 25.20

TABLE 3.1: Magnetic field for hyperfine sublevel transitions (mF ↔ mF − 1) given a
constant EPR frequency of 17.5 MHz.
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FIG. 3.8: Hyperfine spectroscopy at 17.5 MHz. The peaks, from left to right, are 41K
(mF = −1 ↔ −2), 39K (mF = −1 ↔ −2), 39K (mF = 0 ↔ −1), 87Rb (unresolved). The
85Rb (unresolved) peak is located at approximately 35.5 G and is not shown.
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and ρF,m ∝ exp(βm), where β is the spin temperature [42] and is related to the

alkali polarization through

PA = tanh

(

β

2

)

(3.48)

or

exp β =
1 + PA

1 − PA
(3.49)

At sufficiently high fields, adjacent mF transitions can be resolved, but twin

transitions are typically not resolvable. The profile of each peak is fit with a

Lorentzian [25]:

L =
γm

(H −HF,m)2 + γ2m
(3.50)

where HF,m is the magnetic field for which the driving frequency is resonant with

an mF ↔ mF − 1 transition and γm is the width of the peak.

From 3.47, the ratio of the areas under adjacent peaks of the same alkali species

will be

r =
AF,m + AF ′,m

AF,m′ + AF ′,m′

(3.51)

=

[

F (F + 1) −m(m− 1) + F ′(F ′ + 1) −m(m− 1)

F (F + 1) −m′(m′ − 1) + F ′(F ′ + 1) −m′(m′ − 1)

]

exp[β(m−m′)] (3.52)

Since F = I + 1
2
, F ′ = I − 1

2
, and m = m′ + 1,

r =

[

F (F + 1) −m(m− 1) + F (F − 1) −m(m− 1)

F (F + 1) − (m− 1)(m− 2) + F (F − 1) − (m− 1)(m− 2)

]

exp[β] (3.53)

This can be written in terms of the alkali polarization using Eqn. (3.49) and sim-
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plified to

r =

[

F 2 −m(m− 1)

F 2 − (m− 1)(m− 2)

]

1 + PA

1 − PA
(3.54)

≡ F
(

1 + PA

1 − PA

)

(3.55)

Solving for the alkali polarization gives

PA =
r − F
r + F (3.56)

For example, consider the ratio of the area of the third peak and second peak

in Figure 3.8. In this case, F = 2 since I = 3
2

for 39K and m = 0. Solving for the

polarization in terms of the area ratio gives

PK =
r − 2

r + 2
(3.57)

Note that the fields used for these studies are not high enough to resolve the Rb

transitions, but the K transitions are well-resolved.

Extracting the density ratio

Consider the same m to m− 1 transition for two different alkali species, i and

k, with the same nuclear spin. The ratio of the areas under those peaks, adding the

unresolved twin transitions, is

r =
Ai

F,m + Ai
F ′,m

Ak
F,m + Ak

F ′,m

(3.58)

=
fi[Ai]

fk[Ak]
(3.59)
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From Figure 3.8, since the 87Rb transitions are unresolved, the alkali number density

ratio can be found from

D =

∑39 K +
∑41 K

∑87 Rb/0.2783
(3.60)

where 0.2783 is the natural isotopic fraction of 87Rb.

The spin-exchange rate

The alkali number density ratio calculated from the AM-EPR spectrum can

also provide the spin-exchange rate, which is related to the individual alkali number

densities through

γse = kseK [K] + kseRb[Rb] (3.61)

Given the alkali density ratio from the amplitude modulated EPR data, the molar

fraction ratio can be calculated from Eqn.(3.6). Since fK + fRb = 1, the individual

molar fractions can be determined. Raoult’s law (Eqn.3.5) can be used to find

the individual alkali number densities, [K] and [Rb]. These, along with the spin-

exchange rate constants from Chapter 2, give the predicted spin-exchange rate for

a particular cell at a specific temperature.

3.7.2 Frequency modulated EPR

If the RF is swept and frequency modulated while the holding field is constant,

the signal measured by the lock-in amplifier monitoring the D2 intensity will be the

derivative of the line shape, which is zero at resonance [43, 44]. The output of the

lock-in is sent through a proportional inegral feedback circuit, which corrects the

output frequency of the RF function generator to maintain a lock-in signal of zero

and stay on resonance. (See Figure 3.9). The 3He spins are flipped using adiabatic

fast passage, where, for this measurement, the holding field is constant while the
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FIG. 3.9: The electronics responsible for generating and detecting the frequency modu-
lated EPR signals. This configuration is also used during AFP-EPR with the addition
of a feedback circuit. The RF generator is operated in “Voltage Controlled Oscillator”
mode.

AFP RF is swept through resonance, and the PI circuit correction is applied to the

EPR RF central frequency such that the lock-in signal returns to resonance. Before

the spins are flipped, the magnetic field is H1 = H0 + HHe and after the spins flip

the field becomes H2 = H0 − HHe. The spins are flipped once more to return to

the original orientation. Taking the difference between the two resonant frequencies

cancels the contribution from the holding field while the difference is proportional

to the 3He polarization.

The upper plot in Figure 3.10 shows the frequency output by the RF function

generator as a function of time and the lower plot shows the corresponding lock-

in amplifier signal, i.e., the derivative of the transition. While on resonance the

lock-in signal stays at zero, but when the spins flip, a large signal appears in the

x-channel until the frequency correction is applied by the PI circuit and the new
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FIG. 3.10: The resonance frequencies (ν1 and ν2) for each orientation of the 3He spins
(upper plot) and the lock-in signal (lower plot) showing D2 emission at resonance. ν1
corresponds to the low energy state and ν2 to the high energy state.
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FIG. 3.11: The derivative of the 39K mF = −2 ↔ −1 transition acquired by frequency
modulating the EPR RF signal. The fit to the linear region provides the slope for
calculating the gain for the PI circuit.

resonant frequency is located. Note the “well” shape of the upper plot. For this

measurement, the 3He spins were originally polarized into the low energy state

(higher EPR frequency) and were reversed to occupy the high energy state (lower

EPR frequency). Had the 3He spins been polarized into the high energy state, the

plot of frequency as a function of time would have a “hat” shape.

Prior to the AFP-EPR measurements, a frequency sweep of the frequency mod-

ulated RF is performed across one transition; the 39K peak is usually probed due

to its large signal. Figure 3.11 shows a typical frequency modulation sweep signal.

The frequency is stepped in 1 or 2 kHz increments and modulated with a 200 Hz

sine function. While the peak-to-peak width of the signal is fixed, the height can

be varied by changing the modulation voltage. A larger peak height is beneficial

to maintaining a lock on resonance. The linear region of the signal establishes the

range of the error signal for the PI circuit and if the difference in resonant frequen-
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cies is larger than this range, the lock will be lost and the spins will not return to

their original orientation. The value of the slope is used to set the absolute gain on

the PI circuit for AFP EPR.

The proportional integral feedback circuit

In general, a PI controller monitors the difference between the target value

of a quantity and the measured value to establish an error signal. The controller

integrates the error over some period and adds the result, VI , to a signal proportional

to the error, VP . The output is a correction applied to the system to maintain the

target value. Figure 3.12 shows a schematic of the PI circuit used to correct the

central frequency of the EPR coil to maintain resonance. For these measurements,

the desired lock-in signal is zero, so the error signal is the output of the lock-in

x-channel, VL. The voltage at the output of the unity gain inverting op-amp is

VP = −VL and the output of the integrator is

VI = − 1

RC

∫

VLdt. (3.62)

The voltages are added together:

VPI =
R

′

+RA

R
VP +

R
′

+RA

R′ +Rrel
VI (3.63)

The voltage at the output of the modulation function generator is added to VPI , so

that the voltage at the output of the circuit is

Vout = −Vmod −
R

′

+RA

R

(

1

C(R′ +Rrel)

∫

VLdt+ VL

)

(3.64)
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FIG. 3.12: The proportional integral feedback circuit adapted from Ref. [18] with R=12
kΩ, R

′

=1 kΩ, C=10 µF, and 100 kΩ variable resistors (RA and Rrel).

The resistors RA and Rrel are variable and establish the time constant, the absolute

gain, and the relative gain. The time constant for the circuit is

tc =
R

′

+RA

RC(R′ +Rrel)
(3.65)

To perform the measurement, resonance is found by stepping the frequency by

hand while monitoring the lock-in signal. Since the EPR frequency will be smaller

after the spins are flipped, the PI circuit is locked on a frequency slightly below

resonance. When the signal is locked at zero, a frequency sweep AFP flips the spins

and the PI circuit applies a voltage correction, Vc, to the RF function generator to

maintain a lock-in signal of zero. The RF generator, operating in VCO (voltage-

controlled oscillator) mode, converts the applied voltage to a frequency:

f = MvcoVc + fRF (3.66)

where fRF is the central frequency and Mvco = 576.5 MHz/mV is the voltage-

to-frequency conversion. The frequency correction, fc = MvcoVc, should be some
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fraction, R, of the detuning from resonance; a value of R = 1/2 is typically used.

Before the correction is applied and just after the spins flip, the lock-in signal will

no longer be zero and will have a value:

Vx =
dVx
df

∆f (3.67)

where Mfm = dVx

df
is the slope from the linear region of the FM sweep curve and

∆f is the detuning from resonance. The signal into the PI circuit is VL = Vx
(

10V
S

)

,

where S is the sensitivity of the lock-in, and the signal out of the circuit, without

integrating or adding the modulation signal, is a function of the absolute gain, GA:

Vout =
VL
a

(b+ cGA) (3.68)

The calibration constants, b and c, were determined by a linear fit to Vout as a

function of GA for a constant input voltage and a ≈ 100 is an additional attenuator.

Because b
a

is very small, the output of the circuit, letting CPI ≡ c
a
, can be written

VPI = Vx
10V

S
CPIGA (3.69)

The goal is for the circuit to produce a voltage correction to apply to the RF

generator such that

VPI = Vc = Mvcofc = R∆fMvco (3.70)

or

Vx

(

10

S

)

CPIGA = RMvco∆f (3.71)

After the spins flip,

Vx = Mfm∆f (3.72)
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and combining equations eliminates ∆f to give the absolute gain in terms of the

FM sweep slope:

GA = R
Mvco

Mfm

S

10V

1

CPI

. (3.73)

Setting GA too high or having Mfm too steep will result in over-correction and

possibly cause the lock to be lost if the new resonance frequency is outside the

linear range of the FM sweep curve.

The line shape

The output of the modulation function generator to the VCO input of the RF

generator is

V0 = Vmod sin(2πfmodt+ φ0) (3.74)

where φ0 is an arbitrary phase factor. The input signal is converted to a frequency by

the VCO with the frequency-to-voltage conversion, Mvco, from the previous section:

f = fRF +MvcoV0 (3.75)

The output of the RF generator to the EPR coil is

V1 = VRF sin(2πft+ φ1). (3.76)

where φ1 is another phase factor. However, since the holding field remains constant,

the frequency is stepped through resonance so that the output to the coil has a

frequency

f = fRF +MvcoV0 + ∆f (3.77)
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with the RF generator carrier frequency incremented by ∆f . The D2 intensity at

the photodiode is also a function of the RF generator output frequency:

Ipd = I(f) + I0 (3.78)

where I0 is any signal not at the modulation frequency. The lock-in amplifier isolates

the portion of the photodiode signal at the modulation frequency and the average

over one time constant at the x-channel is

〈x〉 ∝ 1

tc

∫ tc

0

Ipd sin(2πfmodt + φ2)dt, (3.79)

which can be simplified to [45]

〈x〉 ∝MvcoVmod
dI(f)

df
(3.80)

where dI(f)
df

is the derivative of the line shape.

Extracting the 3He polarization

When the EPR measurement begins, the field seen by the alkali atoms is

H1 = H0 +H3He, (3.81)

which corresponds to a resonant frequency of ν1. After the 3He spins are flipped,

the new field is

H2 = H0 −H3He (3.82)

with a new resonant frequency of ν2. The difference between the resonant frequencies

measured for each orientation of 3He spins can be used to isolate the contribution
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from the 3He nuclei to the total magnetic field since

∆H = H1 −H2 = 2H3He (3.83)

The Hamiltonian for the alkali atom in a magnetic field is:

H = Hes + Hso + Hhf − ~µI · ~H − ~µJ · ~H (3.84)

where Hes is the Coulomb interaction, Hso is the spin-orbit interaction, Hhf is the

hyperfine interaction, and the last two terms are the nuclear and electron coupling

to an external magnetic field. The Breit-Rabi equation [46] gives the energies of the

ground state hyperfine levels:

EF=I±1/2,mF
= − hνhf

2(2I + 1)
− gIµNHmF ± hνhf

2

√

1 +
4mF

2I + 1
x+ x2 (3.85)

where x = (gIµN − gsµB) H
hνhf

describes the strength of the Zeeman splitting com-

pared to the hyperfine splitting. The resonant frequency between states mF and

mF − 1 is found from taking the difference between energies:

∆E/h = ν± = ∓gIµNH

h
+
νhf
2

(
√

1 +
4mF

(2I + 1)
x + x2 −

√

1 +
4(mF − 1)

(2I + 1)
x+ x2

)

(3.86)

There are two methods for finding ∆H from ν1 and ν2 [25, 47, 48]. First,

when only the mF = ±(I + 1
2
) sublevels of the F = I + 1

2
manifold (the “end”

transitions) are probed, Eqn. (3.86) can be inverted to give the field corresponding

to the measured EPR frequency. The end transitions have mF = ±(I + 1
2
), so

4mF = ±2[I] and the expression under the first radical in Eqn.(3.86) is a perfect
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square. This leaves only term under a radical and the equation simplifies to

ν± =
νhf
2

[

x

(

1 + gIµN

gsµB

1 − gIµN

gsµB

)

± 1 ∓
√

1 ± 2

(

2I − 1

2I + 1

)

x+ x2

]

, (3.87)

which can be inverted to write an expression for H in terms of ν:

H(ν) = −1

2

(

b±
√
b2 − 4c

)

(3.88)

with the Breit-Rabi coefficients given by

b =
−
[

gsµB

(

hνhf
2I−1

∓ hν
)

− gIµN

(

2Iνhf
2I+1

∓ hν
)]

±gsµBgIµN
(3.89)

and

c =
±hν(hνhf ∓ hν)

gµBgIµN
(3.90)

where ± is given by the shape of the AFP-EPR signal, i.e., a “hat” or “well”. After

the field corresponding to each EPR frequency is calculated, the magnetization due

to the 3He nuclei is found from

MHe =
HHe

2
3
µ0κ0

, (3.91)

where κ0 is a frequency-shift enhancement factor described in the next section, and

the polarization is

PHe =
MHe

µHe[3He]
(3.92)

The second method–an approximation that is valid for all transitions–assumes

that variations in EPR frequency with field are small:

∆ν =
dν(F,mF )

dH
∆H (3.93)
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The difference in EPR frequencies is related to the polarization through [40]

∆ν =
dν(F,mF )

dH

8π

3
κ0[

3He]PHe (3.94)

The derivative of Eqn. (3.86) with respect to H can be expanded in the low-field

limit with the lowest order term given by

dν(F,mF )

dH
=

µBge
h(2I + 1)

. (3.95)

Both methods have been shown to produce results consistent with each other

[48]. Since the data presented here are derived from the 39K mF = −3 ↔ −2

transition, the end transition inversion formula is used to find the magnetic fields

corresponding to the measured frequencies.

Frequency shift enhancement factor

The alkali frequency shift due to 3He can be separated into two components:

the Zeeman shift due to the magnetic field due to the bulk magnetization of the

polarized nuclei and a shift due to the Fermi-contact term (∝ ~I · ~S) in the spin-

exchange interaction. Because the spin-exchange contribution is difficult to calculate

from theory, it is parameterized by the unitless quantity, κ0, which varies for each

alkali and appears to have a temperature dependence such that [43, 49]

κ0 = κ+ κtT (3.96)

Measurements of κ0 for Rb-3He have been made up to temperatures of 350·C by

Babcock, et al. [49] and are in agreement with earlier measurements at lower tem-

peratures [40]. κ0 for K-3He was also determined by [49], but over a narrower range
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of temperatures:

Rb :κ0 = 6.39 + 0.00924(T − 473K) (3.97)

K :κ0 = 5.99 + 0.0086(T − 473K) (3.98)

The polarization direction

When the field due to the polarized 3He nuclei is parallel to the holding field,

the polarization is in the opposite direction because 3He has a negative magnetic

moment. In this case, ∆ν = ν1 − ν2 > 0 and a plot of EPR frequency as a function

of time will have a “well” shape, as in Figure 3.10. When ∆ν = ν1 − ν2 < 0, the

polarization points in the same direction as the holding field and the EPR frequency

plot is a “hat.” The low energy state (well shape) is preferred for polarization as the

high energy state can result in masing (see Section 3.5.8).

3.8 Pressure broadening

Precise knowledge of the 3He number density is necessary for determining the

absolute 3He polarization (Eqn. 3.92). It is also frequently useful to monitor the

density after the cell is filled and while being used in an experiment. While the

number density is calculated during the filling process, this measurement cannot be

repeated after the cell is detached and sealed, eliminating the possibility of checking

for leaks after a fill.

The system we have implemented to determine the density of 3He examines the

broadening of the absorption profiles of Rb and K due to collisions with a buffer

gas, i.e., 3He or N2. A Ti:Sapphire laser is used to collect absorption spectroscopy

data on the D1 and D2 transitions of Rb and K. The data are fit to a modified

Lorentzian [50] and the line width is extracted to calculate the 3He number density
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FIG. 3.13: Rb D2 absorption profile for cell “CN Yang,” which was filled for experiments
at the HIγS facility at Duke University. The line width is γ = 134.8± 0.1 GHz.

given a broadening coefficient, or velocity-averaged collisional cross-section, which

depends on the alkali, the transition, the collision partner, and the temperature.

(See Chapter 5 for details of the experimental procedure). The 90 torr (at room

temperature) of N2 in the cell contributes a small, but non-negligible amount to the

overall broadening. Since the largest contribution is from 3He, the estimated N2

number density is used to extract the 3He number density from the line width. The

N2 contribution to the line width, γ
′

, can be calculated from

γ
′

= [N2]〈σv〉A−N

(

T

T0

)n

(3.99)

where the brackets indicate number density, 〈σv〉 is the broadening coefficient for

the alkali and N2, and T0 = 353 K [51]. A power law dependence on temperature is
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assumed based on collisional broadening theory [52]. The 3He density is

[3He] =
γ − γ

′

〈σv〉A−He

(

T
T0

)n (3.100)

γ is the measured alkali line width, γ
′

is the estimated broadening due to N2, and

〈σv〉 is the broadening coefficient for the alkali and 3He. An absorption profile for a

relatively high density cell is shown in Figure 3.13.

Prior to the measurements described in Chapter 5, the most current values for

the broadening coefficients and their temperature dependence are from [51] and are

summarized in Table 3.2. Note that values have not been published for K in our

number density range and little data exist on the temperature dependence for either

alkali. A detailed discussion of experiments conducted to examine the broadening

coefficients for K and the temperature dependence of the coefficients for Rb and K

is provided in Chapter 5.

Using these values, and given typical fitting uncertainties and the uncertainty

in the N2 density, the 3He number density can be calculated to within 10%. To find

the uncertainty in the 3He number density, let

X0 ≡ 〈σv〉A−N

X ≡ X0

(

T

T0

)n

Y ≡ [N2]

Z0 ≡ 〈σv〉A−He

Z ≡ Z0

(

T

T0

)n
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3He N2

Rb D1 (X0, Z0) 18.7 ± 0.3 GHz/amg 17.8 ± 0.3 GHz/amg
T-dep n 0.05 ± 0.05 0.3

Rb D2 (X0, Z0) 20.8 ± 0.2 GHz/amg 18.1 ± 0.3 GHz/amg
T-dep n 0.53 ± 0.06 0.3

TABLE 3.2: Summary of broadening coefficients for Rb with 3He and N2 from [51] for

T0 = 353 K. The temperature dependence is assumed to be
(

T
T0

)n

; the temperature

dependence for N2 was not measured and is assumed from theoretical predictions.

so that the the 3He number density can be written

f(γ,X, Y, Z) =
γ −XY

Z
(3.101)

The uncertainty in [3He] is

δf =

√

(

∂f

∂γ
δγ

)2

+

(

∂f

∂X
δX

)2

+

(

∂f

∂Y
δY

)2

+

(

∂f

∂Z
δZ

)2

(3.102)

=

√

(

1

Z
δγ

)2

+

(

Y

Z
δX

)2

+

(

X

Z
δY

)2

+

(

XY − γ

Z2
δZ

)2

(3.103)

where the uncertainty in X is

δX =

√

(

∂X

∂X0
δX0

)2

+

(

∂X

∂T
δT

)2

+

(

∂X

∂n
δn

)2

(3.104)

=

√

((

T

T0

)n

δX0

)2

+

(

nX0T n−1

T n
0

δT

)2

+

(

X0

(

T

T0

)n

ln

(

T

T0

)

δn

)2

(3.105)

and δZ has a similar form.



CHAPTER 4

Additional Relaxation

Mechanisms

4.1 Introduction

Recent experiments have indicated that an additional, unaccounted for, relax-

ation mechanism limits the maximum 3He polarization [5, 26]. A small portion of

this additional relaxation is likely due to the anisotropic term in the spin exchange

interaction (Eqn. 2.4), while a more significant contribution appears to originate

from wall interactions. Data suggest that this additional relaxation is correlated

with the surface-to-volume ratio of the cell and scales with either the temperature,

alkali density, or both [28]. Our attempt to further investigate the origin of this

relaxation mechanism has led to a suggested revision of the relaxation equations

where a dependence of the relaxation on temperature is included. Moreover, we

have found a variation in AFP loss between the upper chamber and lower chamber

in double-chamber cells and have noted unusually large AFP losses that are highly

dependent on the sweep rate of the holding field during AFP-NMR measurements.

76
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4.2 Polarization evolution revisited

Chapter 2 introduced the equations that describe the evolution of the 3He

polarization during spin-up and spin-down. When the 3He nuclei are undergoing

spin-exchange with optically pumped alkali vapor, the 3He polarization grows as

P (t) = P
′

(

1 − P
′ − P0

P ′
e−Γut

)

, (4.1)

where P
′

is the equilibrium polarization, P0 is the initial polarization, and τu =

1/Γu is the spin-up time. After the cell has cooled to room temperature, the 3He

polarization decays as

P (t) = P0e
−Γrt, (4.2)

where P0 is the initial polarization and the room temperature lifetime of the cell is

τr = 1/Γr. In this chapter, the 3He polarization decay while the cell is hot, but the

lasers are off, will also be investigated. Under these conditions, the alkali is in vapor

form and will therefore undergo spin-exchange collisions with the 3He nuclei, but is

not being optically pumped. The 3He polarization decay can be described by

P (t) = P0e
−Γht, (4.3)

where P0 is the initial 3He polarization and τh = 1/Γh is the “hot” lifetime of the

cell.

It has traditionally been assumed that the relaxation rates are related such that

Γh = Γu = Γr + γse (4.4)

where γse = kAse[A] is the spin-exchange rate between the alkali and 3He. In other

words, the 3He nuclei are subject to the same relaxation mechanisms regardless of
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whether or not the alkali is being optically pumped and that Γr depends on neither

the presence of the alkali nor the temperature of the cell. In the following sections,

data will be presented that seem to indicate that these assumptions might not be

correct and might only be good approximations under certain conditions.

4.3 The X-Factor

Chann et al. [5, 33] measured the 3He relaxation rate assuming the validity of

Eqn. (4.4) and found the slope of the relaxation rate as a function of alkali density

to be greater than the spin-exchange rate. To account for this additional relaxation,

the total relaxation was written as

Γu = γse(1 +X) + Γr (4.5)

where X is frequently referred to in the literature as the “X-factor.” Recall that in

Chapter 3, the maximum 3He polarization was described by

Pmax =
γse

γse + Γr
〈PA〉. (4.6)

Substituting Eqn. 4.5 gives a limiting polarization of

Pmax =
γse

γse(1 +X) + Γr
〈PA〉 (4.7)

Babcock et al. [28] presented two methods for measuring X as a function of

Rb number density, [Rb]. In both cases 3He cells were polarized at a range of

temperatures in order to vary the alkali density. Most of the cells studied contained

only Rb, but the few hybrid cells studied produced results consistent with the Rb-

only cells.
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One method measured the hot spin-down time constant (τh), which was used

to obtain the total 3He relaxation, Γu, based on the assumption that τh = τu = 1
Γu

.

This measurement was repeated as the temperature, and therefore the alkali number

density, was varied. The slope of Γu − Γr vs. [Rb] was related to X through

Γu = kRb
se [Rb](1 +X) + Γr. (4.8)

The room temperature relaxation rate, Γr, was determined from measuring the

room temperature spin-down lifetime of the cell, τr, while the Rb number density

was measured using Faraday rotation, and the spin-exchange rate constant, kRb
se is

known.

An alternative method examined the maximum 3He polarization in the presence

of a range of Rb number densities. In this case, X was determined from

PHe = 〈PRb〉
kRb
se [Rb]

kRb
se [Rb](1 +X) + Γr

(4.9)

As with the previous method, Γr and [Rb] were determined from a room temperature

spin-down and Faraday rotation, respectively. However, unity Rb polarization was

assumed and not measured. The 3He polarization was calculated from AFP-EPR

data.

The values ofX determined from both methods were in agreement and appeared

to be correlated with the surface-to-volume ratio of the cells such that a small S/V

corresponded to a smaller value of X with less variation and a larger S/V to a larger

value of X with greater variation (Figure 4.1). However, it was unclear whether X

truly scaled with [Rb] or if it had a temperature dependence that mimicked the Rb

vapor pressure curve. Moreover, data were collected on single-chamber cells only, so

it was not clear how X is expected to behave for a double-chamber cell. While X
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appeared to depend on S/V , the data could not predict if the additional relaxation

would occur only in the pumping chamber or if the geometry of the entire cell should

contribute to this additional relaxation.

4.3.1 Anisotropic spin exchange

Babcock et al. [28] suggested a lower limit, X0, to the excess relaxation such

that

X = X0 +X1

(

S

V

)

. (4.10)

It has been proposed that a possible origin for this fundamental limit is anisotropic

spin-exchange. While the contact term of the magnetic dipole interaction polar-

izes the 3He nuclei in the same direction as the alkali polarization, the long-range

interaction (Eqn. 2.4) polarizes the 3He nucleus in the opposite direction.

The anisotropic spin-exchange rates have been calculated for several alkali

metal-noble gas pairs [53]. The results indicate that the anisotropic spin-exchange

could limit the 3He polarization to 95% with X0 = 0.06 for K and 0.05 for Rb, but

these values are insufficient to account for the total X0 observed. However, the un-

certainty is large due to lack of knowledge of the appropriate interatomic potential

for the interaction.

4.4 Experimental considerations

Motivated by the unanswered questions regarding the X-factor’s dependence

on temperature, alkali density, and target chamber geometry, we designed an exper-

iment to further probe the X-factor using a modified two-chamber JLab-style cell.

The new design incorporated a glass valve to separate the upper chamber from the

lower chamber. With this modification, the role of the target chamber S/V was to
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FIG. 4.1: Plot of X as a function of surface-to-volume ratio from [28]. In plot (a), upward
pointing triangles represent data acquired by measuring the hot spin-down time constant
and downward pointing triangles were obtained from measurements of the maximum 3He
polarization. All data in plot (b) were acquired through measurements of the maximum
3He polarization. The colors indicate the type of glass and style of cell. Refer to Ref.
[28].
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FIG. 4.2: The valved cell “Gravy” with all dimensions in mm. The side view shows the
glass Kontes valve, which is perpendicular to the target chamber.

be examined by measuring X for the cell with the valve open and with the valve

closed, while all other variables are kept constant. It is important to note that,

regardless of the valve, a negligible amount of alkali is present in the target chamber

since it is kept at room temperature.

4.4.1 Cell design and construction

Figure 4.2 shows the Pyrex cell “Gravy”, constructed for the X-factor measure-

ments, along with the glass Kontes-style valve. The valve stem is also Pyrex with

EPDM o-rings lubricated with a silicone high-vacuum grease. EPDM was chosen for

the o-rings as other types of rubber can react with the alkali, and the silicone-based

lubricant is compatible with EPDM, while petroleum-based lubricants are not. Prior

to filling the cell, the surface area was calculated from the external dimensions and
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Surface Area (mm2) Volume (ml) S/V (mm−1)
Above valve 12418.2 78.7 0.15
Below valve 17036.8 29.9 0.57

Total 29455.0 106.9 0.27

TABLE 4.1: Internal surface-to-volume ratio for the upper and lower portion of the cell
calculated from mass measurements with the cell filled with water and empty.

the estimated thickness of the glass. The volume was determined by filling each

section–above or below the valve–with de-ionized water, then filling the entire cell

with the valve open. The mass was measured in each case and compared to the

mass of the empty cell. The surface-to-volume ratio for each section is shown in

Table 4.1. Because the o-rings and valve stem cap are rated for temperatures only

up to 100◦C, this cell was not baked at the standard temperature of 425◦C prior to

filling; instead, it was flame-baked with an oxygen-methane torch while connected

to the vacuum system for several days.

While the data presented in [28] were collected from mostly Rb-only cells, we

chose to use a hybrid alkali mixture. Consequently, these data are relevant to

current experiments using polarized 3He target cells as most are now polarized with

the hybrid mixture. Additionally, the method we have adopted to extract X requires

measuring the alkali polarization; our system is optimized to measure PK and, with

our operating parameters, the Rb EPR transitions are not resolved. Furthermore,

we are not able to directly measure [Rb], but only the density ratio, D = [K]/[Rb].

The alkali for this cell was provided by the University of Virginia and was mixed

for a ratio of 5.1:1 (K:Rb) at 235◦ C.

Determining the filling pressures of 3He and N2

The filling procedure was a modified version of the standard method for filling

JLab cells (see Chapter 3). The cell was pulled off from the string while partially

submerged in liquid nitrogen, rather than liquid helium and, since the specified final
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pressure is much lower than that of JLab cells, it could be filled with only one charge

of 3He. The desired final pressures of 3He and N2 are approximately 760 torr and

90 torr, respectively, at room temperature. The pressures of each gas that must

be introduced into the system during the fill are calculated based on these target

pressures as well as volume estimates and measured temperatures.

To begin the fill, the manifold, string, and cell are filled to some initial pressure

of N2 and

PN
0 (Vm + Vs + Vc) = nN

0 kTR (4.11)

where the manifold volume is known to be Vm = 164.2 ml and the volume of the

string plus the cell is determined using the calibrated volume as described in Chapter

3. The valve between the cell side and gas side of the system (BV13 in Figure 3.2)

is closed and the manifold is pumped out. On the cell side, the pressure is still PN
0 ,

but the number of particles changes such that

PN
0 (Vs + Vc) = nN

1 kTR. (4.12)

With BV13 still closed, the manifold and calibrated volume (Vcv = 1.064 × 103 ml)

are filled to some initial pressure of 3He:

PHe
0 (Vm + Vcv) = nHe

0 kTR (4.13)

Next, BV13 is opened and the gases are allowed to mix for several hours in the

cell, string, manifold and calibrated volume. Opening the valve changes the partial

pressure of each gas to

PHe
1 VT = nHe

0 kTR (4.14)
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and

PN
1 VT = nN

1 kTR (4.15)

where VT = Vm+Vcv+Vs+Vc. When the lower portion of the cell is cooled to Tl = 77

K for the pull-off, the upper portion is at Tu and the total number of particles in

the system remains constant such that

P1VT
TR

=
P2 (Vm + Vcv + Vs + V u

c )

Tu
+
P2V

l
c

Tl
(4.16)

for each gas. After the cell is detached from the string, it is allowed to return to

room temperature. Again, n is constant, so the final pressure, Pf , relates to P2

through

P2V
u
c

Tu
+
P2V

l
c

Tl
=
PfVc
TR

(4.17)

Solving for P2 gives the pressure after cooling in terms of the required Pf :

P2 =
PfVc
TR

TuTl
V u
c Tl + V l

cTu
(4.18)

Assuming Tu = TR = 297 K and using the estimated upper and lower volumes, the

total pressure in the cell is P2 = 524.4 torr with partial pressures PHe
2 = 468.9 torr

and PN
2 = 55.5 torr. From Eqn. (4.16), P2 can be used to find the pressure of each

gas after BV13 is opened to allow the gases to mix:

P1 = 548.6 torr

PHe
1 = 490.5 torr

PN
1 = 58.1 torr

Finally, the initial pressures of each gas can be determined from P1 and Eqns. (4.11)



86

to (4.15):

PHe
0 = 584.6 torr

PN
0 = 360.9 torr

These are the target pressures for the fill; however, the actual pressures reached

were

PHe
0 = 583.8 torr

PN
0 = 355.2 torr

with P1 = 547.4 torr after opening BV13 and P2 = 527.0 torr after cooling.

Pressure broadening results

Absorption spectroscopy data were collected across all four transitions at T =

352 K. The density was calculated using the temperature and density dependence

of the line widths described in Chapter 5. The average 3He density is 0.834 ± 0.004

amg with [N2]=0.116 amg from the filling data. The alkali ratio at T = 352 K is 0.9

(K:Rb). Using this result and Raoult’s law to calculate the density at the typical

polarization temperature (T = 500 K) gives a ratio of 2.2 (K:Rb).

4.4.2 Measuring X

In [28], X was determined by measuring relaxation rates and polarizations as a

function of alkali number density, but X can also be extracted without knowledge

of the alkali density through measuring 〈PA〉 (1 − Γr/Γu) as a function of PHe for

a range of temperatures. Recall that the total spin-relaxation rate for 3He in the
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presence of a hybrid alkali is assumed to be

Γu = (1 +X)(kRb
se [Rb] + kKse[K]) + Γr (4.19)

Eqn. (4.7), can be written as

PHeΓu

PA
= kRb

se [Rb] + kKse[K]. (4.20)

Substituting the left-hand side of Eqn. (4.20) for the spin-exchange rate in Eqn.

(4.19) gives

Γu − Γr = (1 +X)
PHe

PA
Γu, (4.21)

which can be written as

PA

(

1 − Γr

Γu

)

= (1 +X)PHe. (4.22)

To extract X , the quantities measured at each temperature are PHe and PA, which

are determined from EPR measurements, and the relaxation rates, Γr and Γu. Γr

can be calculated from NMR data collected during a room temperature spin-down,

while Γu can be found from a spin-up series or a hot spin-down since it is assumed

that τh = τu = 1/Γu. However, since the lasers cause additional heating to the cell,

care must be taken when making the spin-down measurements. The polarizations

are measured when the lasers are on, but the relaxation data is collected with the

lasers off. Because of this, the oven temperature must be increased prior to the

beginning of the spin-down measurements so that the NMR series begins at the

temperature at which the polarization data were collected.

The first set of data should be taken with the valve between the chambers

closed such that [3He] is equal in both chambers. The pumping chamber is heated
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to Tpc = 235◦C while the target chamber remains outside the oven and at room

temperature during polarization. Both the 3He and K polarizations are measured

and a hot spin-down is performed to determine τh = 1/Γu. The temperature of the

pumping chamber is increased to increase the alkali density and the polarization

and spin-down measured; the series is repeated for several temperatures. This series

generates one measurement of X for a single-chamber cell.

For the next series, the valve is opened and the 3He number density is different

in the two chambers since the target chamber is outside of the oven and at room

temperature. The polarization and spin-down measurements are repeated for the

same range of temperatures and alkali densities. This series of measurements pro-

vides X for a double-chamber cell under typical polarization conditions. If X does

not change from the previous measurement, then it only depends on S/V of the

pumping chamber. If this is not the case and S/V for the target chamber is impor-

tant, then a third series of measurements can be made where the cell is polarized

with the valve open, but a spin-down is measured in the target chamber with the

valve closed.

4.4.3 Setup modifications

Recall that two sets of pick-up coils are available to detect NMR signals in

the upper and lower chamber separately. The upper coils were re-wound for this

experiment with small diameter copper wire with 240 turns and an inductance of

2.3 mH and the lower coils are as described in Chapter 3. A new EPR coil was

also wound with 10 turns of copper wire. To monitor the cell temperature, K-type

thermocouples were attached to the the left and right sides of pumping chamber,

each end of the target chamber, and above and below the valve on the transfer tube.
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FIG. 4.3: NMR signals from Gravy acquired during spin-up. Both signals are fit with
Eqn. (3.25). Note the difference in peak heights, which indicates a large AFP loss.

4.5 Initial test with Gravy

Figure 4.3 shows an NMR signal acquired during the initial spin-up period

using the upper pick-up coils. Note the significant change in peak height from the

up-sweep to the down-sweep; this is indicative of a large AFP loss. An AFP loss test

confirmed the large drop in polarization and yielded an average of 6.6% polarization

lost during each spin flip. This was unexpected as it is significantly larger than

typical AFP losses, which are usually < 1%.

The first spin-up curve is shown at the top of in Figure 4.4. Note that the

polarization rises very quickly and then levels off. The AFP-corrected spin-down

curve in Figure 4.5 indicates a lifetime of approximately 45 minutes. This is sig-

nificantly shorter than typical JLab cell lifetimes, which are on the order of tens of

hours. Amplitude modulated EPR revealed a K polarization of 90%, while the 3He

polarization calculated from the AFP-EPR is only 10%. The AM-EPR data also
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gave an alkali ratio of D = 2.4, which is lower than expected from the alkali mix,

but compares favorably with the density (D = 2.2) calculated from the pressure

broadening data.

4.5.1 Summary of results

The results from this initial test indicated that measurements of the X-factor

would be difficult, perhaps impossible, to perform given the short lifetime, large

AFP loss, and low polarization. All of these results were unexpected; however, it

was not clear if the poor performance was due to the cell itself or to problems with

the NMR or polarization systems. It was first suspected that the valve might have

leaked, so the pressure broadening measurements were repeated approximately three

weeks after the first measurements. The line widths were comparable in both data

sets.

4.5.2 AFP loss

Large AFP losses are often associated with the polarization loss that occurs

at resonance due to a short transverse relaxation time, T2, which is usually due to

longitudinal gradients in the magnetic field. If the relaxation is dominated by field

gradients, it is expected that

1

T2
=
DHe

H1

(

dH

dz

)2
1

|dH/dt| (4.23)

where H1 is the magnitude of the RF field, dH
dt

is the sweep rate of the holding field,

dH
dz

is the longitudinal field gradient, and DHe is the 3He diffusion constant defined

by Eqn. (2.39).

If the longitudinal relaxation time, T1, is very short, it can also contribute
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significantly to losses during AFP if the 3He spins remain in the high energy state

for a relatively long period of time. The time spent in the high energy state depends

on the sweep rate of the holding field, so it is expected that a faster sweep rate will

minimize AFP losses due to a short T1. Known contributions to T1 are the 3He-3He

magnetic dipole interaction (Eqn. 2.36), transverse magnetic field gradients (Eqn.

2.38), and interactions with the cell walls. Note that lower density cells will be

more sensitive to field gradients since the relaxation due to gradients in inversely

proportional to the 3He number density.

Masing can also cause polarization loss when the spins are in the high energy

state and result in a large AFP loss. The addition of a longitudinal gradient has

been shown to suppress masing and reduce the associated loss in polarization [18,

39]. However, Gravy’s AFP loss was not significantly affected by the presence of a

gradient.

4.6 AFP loss studies with Gravy

To further investigate the source of the large AFP loss, Gravy was re-polarized

at William and Mary and at the polarized 3He target lab at Jefferson Lab. Ad-

ditional spin-up and spin-down data were collected on both the upper and lower

chamber with the valve open and closed; the results appear in Table 4.2. The

curves and their fits appear in Figures 4.4 through 4.9.

4.6.1 Tests at William and Mary

While collecting AFP loss data to correct the spin down measurements, it was

noted that the losses in the pumping chamber were significantly larger than those

in the target chamber, as shown in Table 4.3. This was unexpected as differences

in AFP loss between the chambers had not been noted before. In addition, the
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Cell τu (hrs) T (◦C) H1 (mG) dH/dt (G/s) notes
Gravy 0.85 ± 0.17 223 62.5 1.2 PC, O

0.91 ± 0.02 231 62.5 1.2 TC, O
0.99 ± 0.07 230 244.4 1.2 TC, O
1.29 ± 0.12 230 76.8 3.0 PC, O
0.56 ± 0.04 227 76.8 3.0 PC, X
0.84 ± 0.02 230 76.8 3.0 PC, X
1.14 ± 0.06 231 76.8 3.0 PC, X, field rev.
1.40 ± 0.06 230 76.8 3.0 PC, O, field rev.
1.08 ± 0.15 240 75 3.0 PC, X, JLab

Cell#1 6.25 ± 0.11 235 62.5 1.2
7.40 ± 0.08 233 62.5 1.2
7.16 ± 0.07 235 62.5 1.2
7.60 ± 0.10 235 62.5 1.2
6.50 ± 0.11 237 70.3 1.2 H0 = 25 G

Cell#2 3.19 ± 0.03 236 62.5 1.2
3.28 ± 0.03 236 62.5 1.2
3.60 ± 0.02 235 62.5 1.2
5.40 ± 0.05 230 82.0 2.4 1 pick-up coil
3.83 ± 0.20 231 82.0 2.4 1 pick-up coil,

1 FAP laser
Sphere2.2 13.47 ± 0.15 172 62.5 1.2 1 pick-up coil

12.37 ± 0.18 176 62.5 1.2
13.43 ± 0.27 170 254.1 0.4
13.94 ± 0.14 173 244.4 0.4
14.36 ± 0.19 172 244.4 0.4

Engelbert 9.62 ± 0.36 227 244.4 0.7 TC
7.97 ± 0.24 227 244.4 0.7 TC

Batman 0.50 ± 0.05 230 76.8 3.0 PC, X
0.7 ± 0.1 230 76.8 3.0 PC, X

TABLE 4.2: Summary of spin-up times with relevant parameters, where τu is the aver-
age of the up-sweep and down-sweep time constants. Sphere2.2 was polarized with the
narrowed Comet laser only; all other cells were polarized with three lasers: two broad-
band FAP lasers and the narrowed Comet. PC or TC indicates that the polarization
was monitored in the pumping or target chamber of the double-chamber cells. X or O
indicates a closed or open valve.
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Lasers Valve dH
dt

(G/s) H1 (mG) % loss notes
Pumping O O 1.2 62.5 6.6 ± 0.1
chamber O O 0.4 244.4 52.1 ± 0.2

O O 0.5 102.8 27.8 ± 0.2
O O 1.2 150.0 17.6 ± 0.2
O X 1.2 150.0 15.1 ± 0.3
O X 1.2 76.8 11.0 ± 0.2
O X 2.4 76.8 5.7 ± 0.4
O X 3.0 76.8 4.8 ± 0.6
O X 3.0 76.8 3.4 ± 0.4 field reversed
O X 1.2 150.0 14.2 ± 0.1 field reversed
X O 1.2 150.0 16.9 ± 0.4
X X 1.2 150.0 18.3 ± 0.2
X X 1.2 150.0 20.0 ± 1.1 cold
X X 3.0 76.8 5.1 ± 0.5 cold, field rev.
X X 3.0 76.8 5.5 ± 0.5 field reversed
X X 1.2 150.0 15.0 ± 0.1 field reversed

Target O O 0.4 244.4 12.1 ± 0.2
chamber O O 0.5 102.8 7.7 ± 0.2

O O 1.2 150.0 3.8 ± 0.2
O X 1.2 150.0 1.2 ± 0.2
X O 1.2 150.0 5.1 ± 0.4
X X 1.2 150.0 - no signal

TABLE 4.3: Summary of AFP losses for Gravy, the valved cell. O or X indicates whether
the valve was open or closed during the measurement and whether the lasers were on or
off.

AFP losses changed when the valve was opened or closed and varied slightly with

H1 and significantly with dH/dt. For this reason, not all of the spin-down data

were corrected for AFP loss as AFP measurements were not made for every possible

combination of parameters. In those cases, the time constant should be taken as

the minimum possible spin-down time.

Another unexpected result was that the room temperature lifetime measured

in Gravy’s target chamber was longer than that of the pumping chamber when

measurements taken with the valve closed are compared. Also, the target chamber

lifetime decreased when it was measured with the valve open.

Since large AFP losses are expected to be due to a short T1 and/or T2, the sweep
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rate was increased in an attempt to minimize the time the spins are at resonance and

in the high energy state. With H1 ≈ 76 mG, sweeps were performed with dH
dt

=1.2,

2.4, and 3.0 G/s and the results are included in Table 4.3. All measurements in this

set were made with the lasers on and the valve closed. As indicated by the data,

the AFP loss did decrease for faster sweep rates.

To see if the AFP loss is related to the orientation of the 3He spins, we reversed

the direction of the holding field and re-polarized Gravy. Reversing the field direction

reverses the handedness of the laser light seen by the alkali atoms and they are

pumped into the mF = I + 1
2

state. To verify the field direction reversal, FM-

EPR was performed and revealed a large peak at the frequency corresponding to

the mF = 1 ↔ 2 transition for 39K and no peak at the mF = −1 ↔ −2. The

AFP losses measured with the field direction reversed are included in Table 4.3; no

significant change in AFP loss occurred. The AFP loss was measured with the cell

at room temperature (the “cold” losses in Table 4.3) and did not vary significantly

from the hot AFP loss.

4.6.2 Tests at Jefferson Lab

Although no obvious irregularities were discovered during the target and NMR

system diagnostics (Section 4.9), Gravy was polarized in the 3He target lab at Jef-

ferson Lab to confirm that the large AFP losses were due to the cell itself and not an

overlooked problem in the William and Mary NMR system. The cell was polarized

in a 230◦C oven with three FAP lasers. The sweep rate for the spin up NMR was

dH
dt

= 3.0 G/s with H1 ≈ 75 mG, which were the parameters found to minimize the

AFP loss at William and Mary. The NMR signal was monitored in the pumping

chamber with the valve closed. Two sets of three AFP loss tests were performed

with dH
dt

= 3.0 G/s and H1 ≈ 75 mG, dH
dt

= 1.2 G/s and H1 ≈ 75 mG, and dH
dt

= 3.0
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G/s and H1 ≈ 120 mG.

The test results are summarized in Table 4.4. The large uncertainties on the

AFP losses resulted from a small signal-to-noise ratio in the NMR data (Figure

4.10) due to the significant distance between the cell and the pick-up coils and the

cell’s relatively low density. This data set also shows a decrease in AFP loss with

increasing sweep rate; additional sweeps were performed with even faster sweep rates

to confirm this analysis. These results are included in Table 4.4. The AFP loss as a

function of sweep rate for both the JLab and William and Mary AFP data is plotted

in Figure 4.11.

4.6.3 Summary of results

The data collected at both William and Mary and JLab show that the AFP

loss decreases with increasing sweep rate. This indicates that the losses could be

due to a short T1, short T2, and/or masing. Furthermore, the data collected with
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FIG. 4.10: A NMR signal from Gravy acquired in the polarized 3He target lab at Jefferson
Lab.

dH/dt (G/s) H1 (mG) % loss
1.2 75 12.0 ± 1.1
3.0 75 8.9 ± 1.3
3.0 120 8.9 ± 1.3
4.0 75 5.4 ± 1.4
5.0 75 3.6 ± 1.4

TABLE 4.4: Summary of AFP losses for Gravy, the valved cell, measured in the polarized
3He target lab at Jefferson Lab. Losses were measured in the pumping chamber with the
valve closed while the cell was hot. Values of H1 are approximate.
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In both plots, the loss was measured in the pumping chamber with the valve closed.
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Cell [3He] (amg) [N2] (amg) [K]:[Rb] Style D (cm)
Gravy 0.82 0.116 2.4 (5.1) 2-chamber, 5.8

valve
Cell#1 1.01 0.10 5.7 (4.6) sphere 4.9
Cell#2 2.02 0.10 2.5 (4.6) sphere 5.0
Sphere2.2 ∼ 3 unknown 0 sphere 2.5
Engelbert 8.02 0.045 (24.6) 2-chamber 6.5
Batman ∼ 3 0.115 (5.0) 2-chamber, 5.5

valve

TABLE 4.5: Characteristics of the cells used in this study. For the double-chamber cells,
the diameter, D, refers to the pumping chamber diameter. The alkali density ratios
in parentheses are as the mixture was prepared with the actual ratio calculated from
AM-EPR data. Sphere2.2 is a Rb-only cell.

the valve open and closed suggest that the losses originate in the pumping chamber

and diffuse into the target chamber.

4.7 Studies with test cells

In an effort to find the cause of Gravy’s poor performance, several test cells were

polarized and their lifetimes and AFP losses were measured. Four cells were studied

and their relevant characteristics are listed in Table 4.5, along with Gravy (a Pyrex

cell) and a second valved cell, “Batman,” which was designed and constructed from

GE180 to replace Gravy for the X-factor experiment. “Cell#1” and “Cell#2” were

single-chamber GE180 2-inch spheres; these cells were attached to the same string

and filled together in 2009. The third cell, “Sphere2.2”, was a Rb-only 1-inch GE180

sphere. The last test cell, “Engelbert,” was a high density JLab-style cell. For all

cells, NMR data were collected to generate several spin-up curves, AFP losses were

evaluated under different operating conditions, and both hot and cold spin-down

lifetimes were measured when possible. Diagnostic tests of the polarization system

and NMR system were also performed between cell tests and are described in Section

4.9.
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4.7.1 Cell#1

Cell#1 was polarized several times in order to measure the room temperature

relaxation time and the hot relaxation time. The polarization was measured after

the first spin-up and reached 58.7% with an alkali polarization of 90%. A spin-up,

hot spin-down, and two room temperature spin-down curves are shown in Figures

4.12 and 4.13 with the spin-down data corrected for 0.4% AFP loss.

Using the time constants to calculate X as in [28] where

Γu = Γr + γse(1 +X) (4.24)

or

PA

(

1 − Γr

Γu

)

= (1 +X)PHe (4.25)

results in a negative value for X .

In an attempt to reduce the relaxation due to gradients transverse to the holding

field (see Eqn. 2.38), the magnitude of the holding field (H0) was increased to 25

G. Cell #1 was re-polarized and field sweep NMR was performed from 25 to 32 G

(fres = 91 kHz) with a sweep rate of 1.2 G/s. There was little change in the spin-up

time or AFP loss and while the room temperature lifetime increased, it was still too

short to give a non-negative value for X . The results are noted in Tables 4.2, 4.6,

4.7, and 4.8.

Summary of results

Cell#1 had reasonable AFP losses (< 1%), which indicates that there are no

problems with the NMR system. However, the spin-up, hot spin-down, and room

temperature spin-down times were all very similar. For JLab cells characterized prior

to this study, the room temperature spin-down time has always been significantly
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Cell τr (hrs) τAFP
r (hrs) H1 (mG) dH/dt (G/s) notes

Gravy 0.74 ± 0.02 0.78 ± 0.03 62.5 1.2 PC, O
0.64 ± 0.04 - 62.5 1.2 TC, O
1.81 ± 0.03 - 76.8 3.0 TC, X
0.70 ± 0.01 0.74 ± 0.02 76.8 3.0 PC, X
0.67 ± 0.02 - 76.8 3.0 TC, O
0.71 ± 0.02 0.78 ± 0.02 76.8 3.0 PC, X
0.87 ± 0.03 1.05 ± 0.04 76.8 3.0 PC, X, field rev.

Cell#1 7.77 ± 0.01 7.90 ± 0.01 62.5 1.2
12.61 ± 0.03 13.11 ± 0.04 70.3 1.2 high field

Cell#2 5.86 ± 0.01 6.55 ± 0.01 62.5 1.2
10.34 ± 0.01 11.69 ± 0.02 82.0 2.4

Sphere2.2 5.91 ± 0.01 5.93 ± 0.01 62.5 1.2
2.17 ± 0.01 2.19 ± 0.01 244.4 0.4

Engelbert 12.5 ± 0.3 13.2 ± 0.3 244.4 0.7 TC
14.5 16.5 50 1.3 PC, at UVa
14.4 17.4 50 1.3 TC, at UVa

TABLE 4.6: Summary of room temperature lifetimes, where τr is the average of the up-
sweep and down-sweep time constants and τAFP

r is the lifetime from the AFP-corrected
data. Data were not corrected if the AFP loss was not measured for that particular
combination of parameters. Note that the last spin-down for Engelbert was perfomred
at the University of Virginia after the cell had been polarized in the high energy state.

longer than the spin-up time; the hot spin-down measurement was not typically

performed. However, Cell#1’s room temperature lifetime increased from 7.90 to

13.11 hrs when the holding field magnitude was increased to 25 G. Under these

conditions, there was minimal change in the spin-up time or AFP loss.

4.7.2 Cell#2

Cell#1 ([3He] = 1.01 amg) and Cell#2 ([3He] = 2.02 amg) have nearly identical

geometry and were filled at the same time with the same alkali mixture. However,

AM-EPR data shows that the final ratio of K to Rb differs between the cells with

D = 5.7 for Cell#1 and D = 2.5 for Cell#2.

Cell#2 had a shorter initial spin-up time than Cell#1 (Figure 4.14) and reached

a maximum 3He polarization of 64.6% with an alkali polarization of 88%. Unlike
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Cell τh (hrs) τAFP
h (hrs) H1 (mG) dH/dt (G/s) notes

Gravy 0.77 ± 0.01 0.81 ± 0.01 76.8 3.0 PC, X
Cell#1 9.01 ± 0.07 9.34 ± 0.08 62.5 1.2

6.88 ± 0.02 6.98 ± 0.02 62.5 1.2
6.06 ± 0.07 6.14 ± 0.07 62.5 1.2

Cell#2 7.52 ± 0.04 8.64 ± 0.05 62.5 1.2
5.63 ± 0.02 6.00 ± 0.02 82.0 2.4

Sphere2.2 16.3 ± 0.3 16.4 ± 0.3 62.5 1.2
14.63 ± 0.07 - 254.1 0.4

Engelbert 9.66 ± 0.02 10.17 ± 0.03 244.4 0.7 TC

TABLE 4.7: Summary of hot cell lifetimes, where τh is the average of the up-sweep and
down-sweep time constants and τAFP

h is the lifetime from the AFP-corrected data. Data
were not corrected if the AFP loss was not measured for that particular combination of
parameters.

Cell#1, this cell had a rather large AFP loss of 3.5% with the same NMR parame-

ters. The spin-up, room temperature spin-down hot spin-down, and AFP loss were

measured for sweep rates of 1.2 and 2.4 G/s with H1 =62.5 and 82.0 mG. The results

are listed in Tables 4.2, 4.6, 4.7, and 4.8.

Summary of results

As with the previous cells, the room temperature lifetime was much shorter than

expected and gave a negative result for X . Unexpectedly, the room temperature

lifetime increased from 6.55 to 11.69 hrs when the sweep rate was increased from 1.2

to 2.4 G/s. Furthermore, for dH/dt = 1.2 G/s and H1 = 62.5 mG, the hot lifetime

was actually longer than the room temperature lifetime.

4.7.3 Sphere 2.2

Since Gravy, Cell#1, and Cell#2 had unexpectedly short lifetimes, an older

Rb-only cell with [3He] = 3 amg and a very long room temperature lifetime (ap-

proximately 200 hrs when measured in 2003) was selected. In order to replicate the

conditions under which the cell was previously polarized, the NMR parameters were
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FIG. 4.14: Spin-up, hot spin-down, and room temperature spin-down for Cell#2. Fitting
functions are P (t) = P
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Cell Lasers dH
dt

(G/s) H1 (mG) % loss notes
Cell#1 O 1.2 62.5 0.4 ± 0.2

O 1.2 70.3 0.6 ± 0.1 H0 = 25 G
Cell#2 O 1.2 62.5 3.5 ± 0.1

X 1.2 62.5 3.3 ± 0.2
X 1.2 82.0 4.3 ± 0.1
X 1.2 82.5 4.7 ± 0.1
X 2.4 82.0 2.5 ± 0.4
X 2.4 82.0 2.2 ± 0.3
O 2.4 82.0 3.9 ± 0.1
O 1.2 82.0 2.1 ± 0.1

Sphere2.2 O 1.2 62.5 0.1 ± 0.2
O 0.4 136.6 1.3 ± 0.1
O 1.2 62.5 0.0 ± 0.2 lock-in tc = 30 ms
O 1.2 62.5 0.1 ± 0.2 lock-in tc = 3 ms
O 0.4 244.4 0.8 ± 0.1
X 0.4 244.4 0.9 ± 0.1

Engelbert X 0.7 244.4 1.05 ± 0.03 target chamber
X 0.7 244.4 6.89 ± 0.02 pumping chamber
X 0.7 244.4 6.69 ± 0.02 removed

thermocouples

TABLE 4.8: Summary of AFP losses for the test cells. O or X indicates whether the
lasers were on or off during the measurement.
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switched back to the old settings (H1 ≈ 75 mG and dH/dt = 1.2 G/s) and only one

FAP laser was used. However, during the spin-up, the Helmholtz coil power sup-

ply malfunctioned, but was replaced by an identical model. During re-polarization,

the current monitor indicated that the coil current was very unstable. While this

did not effect the spin-up or spin-down, polarization measurements were difficult to

perform as the fluctuating holding field caused the EPR frequency to fluctuate. A

spin-up and two spin-down curves are in Figure 4.15. The initial spin-up time was

τu = 13.47 hours (Table 4.2) and the 3He polarization was 42.4%, which is typical

for the Rb-only cells used prior to the implementation of hybrid spin-exchange op-

tical pumping. However, the lifetime was much shorter (Table 4.6) than the 2003

measurement.

Recall that the AFP conditions are given by [37] as

δf ≪ 1 ≪ 1

δa
(4.26)

where

δa =
γHe

ω2
1

∣

∣

∣

∣

dH

dt

∣

∣

∣

∣

≪ 1 (4.27)

and

δf = DHe

(

dH

dz

)2
ω1

γheH2
1

∣

∣

∣

∣

dH

dt

∣

∣

∣

∣

−1

≪ 1. (4.28)

By substituting different combinations of H1 and dH
dt

, it was determined that the

default parameters of H1 ≈ 76 mG and dH
dt

= 1.2 G/s do not satisfy the AFP

conditions as well as other values. For Sphere 2.2, the optimal parameters predicted

by the AFP conditions were approximately 250 mG and 0.4 G/s. However, these

values resulted in larger AFP loss and a shorter hot lifetime (see Tables 4.7 and

4.8).
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Summary of results

The AFP losses (in Table 4.8) were very small for a sweep rate of 1.2 G/s,

but increased as the sweep rate decreased. However, the AFP condition equations

indicated that the shorter sweep rate was optimal. Similar to Cell#2, Sphere2.2’s

room temperature lifetime increased from 2.19 to 5.93 hours when the sweep rate

increased from 0.4 to 1.2 G/s.

4.7.4 Batman: a new valved cell

A possible explanation for the large losses and short lifetimes associated with

Gravy was the Pyrex glass used to construct the cell. A new valved cell, “Batman,”

was designed with dimensions similar to Gravy’s, but constructed from GE180 glass

rather than Pyrex. A similar filling procedure was followed with the cell flame-

baked with a hand torch for several days while attached to the vacuum system. The

volume measurements made just prior to filling (see Chapter 3) were performed with

the valve open and closed in order to estimate the volumes of the upper and lower

chambers:

Vtotal = 100.5ml

Vup = 73.8ml

Vlow = 26.7ml

The alkali used for this cell was mixed with a ratio of 5:1 and the cell was

filled to a 3He number density of approximately 3 amg with 90 torr of N2. An error

occurred during the filling calculation, so the 3He density could only be estimated.

This cell was polarized under the same conditions as Gravy and had a similar-shaped

spin-up curve, shown in Figure 4.16, where the polarization rose quickly and leveled
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FIG. 4.15: Spin-up, hot spin-down, room temperature spin-down curves for Sphere 2.2.
Fitting functions are P (t) = P

′

(1 − Ce−t/τu), P (t) = P0e
−t/τh , and P (t) = P0e

−t/τr .
Both sets of spin-down data were corrected for AFP losses of 0.1% prior to fitting.
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FIG. 4.16: Batman spin-up with fitting function P (t) = P
′

(1 − Ce−t/τu).

off. However, the spin-up times were much shorter at 0.50 hrs and 0.73 hrs, as

measured on two consecutive days.

An NMR signal was not detectable in the cell after it cooled to room temper-

ature, indicating that the lifetime is extremely short. Consequently, neither a cold

spin-down nor cold AFP loss measurements could be performed. The AFP loss data

collected from the hot cell are summarized in Table 4.9. As with the other cells,

the AFP loss in the pumping chamber decreased with increasing sweep rate. The

Chamber Valve Lasers dB
dt

(G/s) H1 (mG) % loss notes
T O X 0.4 244.4 9.5 ± 0.2
T O X 1.0 76.8 1.7 ± 0.3
T X X 3.0 76.8 3.0 ± 0.9
P X X 3.0 76.8 2.2 ± 0.5
P X X 0.4 244.4 9.4 ± 0.1
P X O 0.4 244.4 4.3 ± 0.1 I = 4.01 A
P X X 0.4 244.4 9.4 ± 0.1 I = 4.01 A
P X X 0.4 244.4 10.9 ± 0.1 I = 8.01 A

TABLE 4.9: Summary of AFP losses for Batman, the second valved cell. For each set,
four NMR sweeps were performed. For the last three sets, the anti-Helmholtz coils were
turned on.
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addition of a gradient did not improve the AFP loss, so masing does not appear to

be present.

4.7.5 Engelbert at William and Mary

Because Gravy’s 3He density was much lower than previously studied JLab cells,

a double-chamber, high density cell was tested. “Engelbert,” a cell with [3He] = 8.02

amg, D = 25 ([K]:[Rb]), and a room temperature lifetime of 24.5 hours (measured

in 2005) was selected for the test and the results are included in Tables 4.2, 4.6, 4.7,

and 4.8.

AFP loss with the lasers off and the cell at operating temperature was 1.0% in

the target chamber and 6.8% in the pumping chamber. Different losses in the two

chambers were unexpected as it has always been assumed that the loss is the same

for the entire cell. Furthermore, if the losses are different, it seems that the target

chamber losses would be greater given that it possibly extends outside the uniform

region of the holding field. Based on the assumption that the thermocouples might

be interfering with the measurement, they were removed from the pumping chamber

and the AFP loss was re-measured as 6.7%, confirming the previous value.

In addition to the single-exponential fit, both sets of spin-up data for Engelbert

were fit with a double-exponential, as suggested by the discussion of double-chamber

polarization dynamics in Chapter 3. Figure 4.17 compares the double exponential

fit to the single exponential for the second spin-up. The results from the fits of both

spin-ups are summarized in Table 4.10. Note that the slow time constants, τs, are

consistent between the two data sets, but that the fast time constants, τf , disagree.

This is unexpected since both data sets were acquired under the same conditions. It

should also be pointed out that, while Gravy is a double-chamber cell, the spin-up

data collected with the valve open could not be fit with a double-exponential, yet
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FIG. 4.17: Engelbert spin-up fit with a single exponential, P (t) = P
′

(1 − Ce−t/τu), in
the upper plot. The lower plot is the same data fit with a double exponential, P (t) =
P

′

+ (P0 − P
′ − c)e−t/τs + ce−t/τf , with “slow” and “fast” time constants, τs and τf .

The residuals for each fit appear at the top of the plots.
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Both were measured in the target chamber and are corrected for 1.05% AFP loss prior
to fitting with P (t) = P0e

−t/τh and P (t) = P0e
−t/τr .
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τu (hrs) τs (hrs) τf (hrs)
Spin-up 1 9.62 ± 0.36 6.52 ± 0.52 3.29 ± 0.62
Spin-up 2 7.97 ± 0.24 6.91 ± 0.15 0.95 ± 0.30

TABLE 4.10: Comparison of time constants from the single-exponential and double-
exponential fits for Engelbert’s spin-up data. τs, the slow time constant, is typically
identified as the spin-up time constant. All time constants are averages of the up-sweep
and down-sweep.

were easily fit with a single-exponential. This is most likely due to the extremely

short spin-up time.

4.7.6 Engelbert at the University of Virginia

AFP loss tests with Engelbert were also performed in the University of Virginia

polarized target lab and the results are summarized in Table 4.11. As was noted in

the William and Mary tests, the pumping chamber losses were always larger than

the target chamber losses, the pumping chamber losses decreased with increased

sweep rate, and the target chamber losses were always 1% or less.

During one of the AFP tests, the spins were held in the high energy state for

one minute and an AFP loss of 24% was measured. This is indicative of a short

T1 or masing; however, subsequent tests strongly suggest the presence of masing.

First, the AFP losses were largest for the initial AFP measurement after the cell was

fully polarized and decreased as the polarization decreased. A possible explanation

is that the degree of masing decreased as the polarization dropped closer to the

masing threshold. Since the AFP loss in the pumping chamber decreased to around

2% only when the polarization was very low, it is likely that the polarization had

dropped below the masing threshold. Also, when Engelbert was polarized in the

high energy state, the AFP losses were smaller than when the cell was polarized in

the low energy state and the application of a gradient did not seem to affect the AFP

losses when pumping in the low energy state. Figure 4.19 shows the most conclusive
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Chamber Lasers dH
dt

(G/s) H1 (mG) % loss notes
P O 1.3 50 4.8
T O 1.3 50 1.0
P O 1.3 50 3.2
T O 1.3 50 1.0
P O 1.3 50 2.6 gradient on
T O 1.3 50 1.0 gradient on
P X 1.3 50 24.0 1 min. pause in high

energy state
P X 1.3 50 1.0 below masing threshold?
P O 1.3 50 1.6
P X 1.3 50 1.9 1 min. pause in high

energy state
P O 1.3 50 5.0
P O 3.1 50 1.9
P O 3.1 50 2.1 gradient on
P O 1.3 50 2.2 pump in high energy state
P O 3.1 50 0.7 pump in high energy state
P O 3.1 50 4.4 pause 1 min. in low

energy state

TABLE 4.11: Summary of AFP losses for Engelbert at the University of Virginia.

evidence for masing. When the spins were flipped to the high energy state during

AFP-EPR, the EPR resonance frequency continued to increase, indicating that the

polarization was decreasing. However, the frequency began to stabilize when the

masing threshold was reached and the frequency remained stable when the spins

were in the low energy state. It should be noted that the RF turning on and off

seemed to have an effect on the EPR frequency, but it is not clear why this might

happen.

4.8 Conclusions from AFP loss studies

• The spherical cell data indicate that cells with similar geometry can have different

losses and that large losses are possible with both Rb-only cells and hybrid cells.

The very small loss from Cell#1 confirmed that there were no problems with the
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FIG. 4.19: AFP-EPR showing evidence of masing in Engelbert at UVA. The EPR fre-
quency rises when the spins are in the high energy state, but is stable in the low energy
state. This indicates that the polarization is decreasing in the high energy state.

NMR or polarization systems. However, Cell#2 had rather large AFP losses. In

addition to having different 3He number densities, calculations from AM-EPR

data show that the alkali ratio is 5.7 for Cell#1 and 2.5 for Cell#2. This implies

that the alkali spin-exchange rates, which depend on the alkali number density,

will be different for these cells when they are polarized at the same temperature.

• The AFP condition equations have been shown to provide a poor prediction of

the values of dH/dt and H1 that minimize the losses for the cells used in this

study. The sweep rate calculated from these equations is typically much too slow,

presumably due to a short transverse relaxation time, short longitudinal lifetime,

and/or masing.

• Many cells had short room temperature lifetimes, with the valved cells having

extremely short lifetimes. Cell#1’s lifetime increased when the holding field was

increased from 13 to 25 G, although the spin-up time and AFP loss were not



121

affected. It also seems that only Gravy showed large losses in the target chamber

with the valve open, presumably due to faster diffusion.

• The Gravy and Engelbert data show that these cells have large AFP losses that

appear to originate in the pumping chamber. The Batman data are inconclusive,

but did not show a loss of less than 2% in the pumping chamber.

• Increasing the sweep rate decreased the AFP loss due to the spins passing through

resonance more quickly and/or spending less time in the high energy state.

• AFP losses do not appear to be sensitive to the value of H1.

• Large AFP losses were also observed at room temperature.

• Engelbert data from UVa strongly suggest masing, but the introduction of a

gradient did not completely eliminate the loss.

• For all double-chamber cells studied, it was not possible to reduce the loss to less

than 2 − 3%.

Ultimately, there appears to be an additional, unidentified source of relaxation in

the pumping chamber.

4.9 Possible sources of relaxation

Because most of the cells studied had unusually large AFP losses and short

lifetimes, it was not clear if these resulted from the cells themselves or from irregu-

larities with the NMR electronics and coils. To rule out the possibility of masing,

AFP losses were measured as a function of magnetic field gradient. In addition,

a thorough diagnosis of the NMR system was carried out with the tests and their

results summarized below.
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4.9.1 Magnetic field gradients

To map the magnetic field and evaluate the magnitude and location of any

gradients, a three-axis magnetometer with a range of 0 − 1 G and sensitivity of 1

mG was mounted between the coils near the approximate center of the configuration.

Based on the orientation of the individual sensors in the probe, the coordinate system

was such that the y-direction was along the holding field with x horizontal and z

vertical. Since transverse gradients were of interest and the field component in the

y-direction saturated the probe, data were initially recorded from the x and z sensors

only. The probe was mounted such that data were collected along a grid marked

in 0.5-inch increments in the y−direction for a fixed x; the mount was shifted to

the next x value and the measurement repeated. Appendix A provides a map of

the field with the coil current at 9.00 A, which corresponds to a magnitude in the

y−direction of approximately 30 G. To isolate the contribution from the Helmholtz

coils, the measurement was repeated with the coils off so that the local magnetic

field could be subtracted from the original data. Linear fits were attempted and a

negligible gradient was found in the transverse direction. The measurements were

repeated at a sufficiently low field (I ≈ 0.3A) to evaluate the magnetic field in the

y-direction (longitudinal direction) without saturation to check for the presence of a

longitudinal gradient; these maps can also be found in Appendix A. The longitudinal

gradient was slightly larger (10 mG/cm), but still not large enough to be responsible

for the short lifetimes. Despite the fact that the large Helmholtz coils appear to

be slightly misaligned externally, simulations show that the degree of misalignment

generates negligible field gradients.
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FIG. 4.20: Study of AFP loss for Cell#1 in the presence of a longitudinal magnetic field
gradient with a sweep rate of 1.2 G/s.

4.9.2 Masing

To study the effect of a longitudinal magnetic field gradient on AFP measure-

ments, the losses for Cell#1 and Cell#2 were measured as a function of gradient

coil current. The anti-Helmholtz coils have approximately the same diameter and

separation as the coils that provide the holding field and can generate a gradient

of 3.75 mG/cm/A at the center. Figure 4.20 is the resulting plot for Cell#1. The

losses are less than 1% for a small gradient and grow quickly as the gradient is in-

creased. When masing is present, it is expected that large losses would also appear

on the left side of the plot with a minimum loss at the gradient value appropriate

to suppress masing. The effect of a longitudinal gradient on the AFP loss of Cell#2

was investigated for dH
dt

= 1.2 and 2.4 G/s. The resulting plots in Figure 4.21 are

similar to each other and to the previous measurement with Cell#1. The increasing

loss with increasing gradient is likely due to a reduction in T2 as indicated by Eqn.

4.23.
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FIG. 4.21: Study of AFP loss for Cell#2 in the presence of a longitudinal magnetic field
gradient with a sweep rate of 2.4 G/s; a similar trend resulted for a sweep rate of 1.2
G/s (not shown).

4.9.3 The RF field magnitude

During the analysis of the NMR data collected from Cell#2, it was noted that

the value of H1 returned from the fit was inconsistent in that different values resulted

from the same RF voltage. To find the actual value of H1, we directly measured

the magnitude of the field as a function of RF voltage. A coil with an area of

A = 5.75×10−4 m2 and N = 40 turns was placed in the center of the RF coils. The

peak-to-peak voltage was monitored while the RF voltage was increased from 0.1 to

3.0 Vrms. The RF field magnitude is related to Vpp through

Hrf =
Vpp

A2Nω
(4.29)

where ω = 2πf , f = 53.6 kHz, and H1 = Hrf/2. The resulting plot is in Figure

4.22; note the non-linearity.
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FIG. 4.22: H1,calculated from the peak-to-peak induced voltage using (4.29), as a func-
tion of RF voltage with linear fit, y = bx+ a.

Impedance matching

During the NMR system diagnostics, it was noted that at large values of Vrf , the

output signal from the coil used to measure H1 became non-sinusoidal. While the

signal from the RF generator was as expected, the signal out of the RF amplifier

was also non-sinusoidal. To solve this problem, a transformer was added to the

impedance-matching circuit, as described in Chapter 3. This addition altered the

value of H1 for a given Vrf , so a new calibration was performed with the result in

Figure 4.23. Note that the remaining non-linearity is inherent to the amplifier.

4.9.4 Metal reduction

While no significant gradients were discovered when the holding field was mapped,

some metal hardware was present near the oven. Although care was taken to select

non-ferromagnetic components, the decision was made to remove as much metal

as possible and re-acquire AFP loss data to see if any improvement resulted. The
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FIG. 4.23: Calibration of the magnitude of the oscillating field as a function of Vrf with
linear fit, y = bx+ a.

stainless steel bolts, washers, and wing nuts supporting the oven between the coils

were replaced with fiberglass bolts and teflon hardware. The stainless steel pipes

and fittings of the hot air delivery system were replaced with teflon pipes and fit-

tings. Also, the cage holding the EPR photodiode and optics was removed while

NMR data were collected. Cell#2 was re-polarized after replacing the oven hard-

ware; NMR data were collected to track the polarization build-up and measure AFP

loss. The resulting spin-up time, 3He and alkali polarization, and AFP loss were

comparable to those previously measured.

4.9.5 Lock-in amplifier time constant

Since the lock-in amplifier time constant influences the shape of the NMR signal

[54], the effect of the time constant for 1.2 and 2.4 G/s sweep rates was investigated.

A time constant of 30 ms had been previously used for NMR calibration measure-

ments with water, which are no longer performed. The time constant value was
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dB/dt (G/s) tc H1 (mG)
1.2 30 ms 87.0

10 ms 72.2
3 ms 70.3
1 ms 69.7

300 µs 69.7
100 µs 70.0

2.4 100 ms 270.9
30 ms 115.6
10 ms 78.6
3 ms 71.8
1 ms 70.1

300 µs 70.5
100 µs 70.4

TABLE 4.12: The effect of the lock-in amplifier time constant on the width (H1) of the
NMR signal.

never re-optimized for 3He-only NMR. Data were collected with Vrf = 2.00 Vrms,

which corresponds to H1 = 76.7 mG. Plots of the data with their fits are in Figures

4.24 and 4.25; note the poor fit for the longest time constant and the increase in

noise as the time constant decreases. The widths determined by the fits are sum-

marized in Table 4.12. The longer time constants give much larger values of H1

and while the smaller time constants are fairly consistent with each other, they do

not quite agree with the measured value of H1. Based on these results, the time

constant was set to 3 ms as this value gave consistent results between the different

sweep rates with minimum noise.

4.10 Modified relaxation equations

It has always been assumed that the relaxation mechanisms related to the

cell are independent of temperature, but there seems to be no justification for this

assumption. We can define three different relaxation rates, two of which (Γu and

Γh) are relevant when the cell is hot (i.e., during a spin-up and hot spin-down) and
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FIG. 4.24: NMR signals with fits for a range of lock-in amplifier time constants with
dH
dt = 1.2 G/s.
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FIG. 4.25: NMR signals with fits for a range of lock-in amplifier time constants with
dH
dt = 2.4 G/s.
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one (Γr) during the room temperature spin-down:

Γu = Γ′

u + γse (4.30)

Γh = Γ′

h + γ
′

se (4.31)

Γr = Γ′

r + ΓB + Γdip (4.32)

We have explicitly allowed for different spin-exchange rates with the lasers on (γse)

and off (γ
′

se). The Γ′

x are rates associated with any relaxation mechanisms that

are related to the cell geometry, cell temperature, the state of the alkali, or the

lasers being on or off. They are assumed to dominate the relaxation when the cell

lifetime is very short. Thus, the relaxation rates due to field gradients and dipole

interactions can be ignored in the short lifetime limit. However, in the case of a

“good” cell with a long lifetime (as in the X-factor studies of [28]), the relaxation

rate due to the cell is much smaller. In this case, it is possibly appropriate to assume

that Γu = Γh = Γr + γse.

4.11 Further investigations

Low-density, double-chamber cell Since the double-chamber cells used for this

study had either a valve or high 3He number density, it would be extremely

useful to construct a double-chamber, valveless, low-density (3He ≈ 1 amg) cell.

Repeating the measurements with this type of cell could help identify the role of

the valve and/or the low 3He density in the large AFP losses and short lifetimes.

Modified NMR For this measurement, the holding field would be ramped to per-

form an up-sweep, but not immediately ramped back down. During this time, if

T1 is very short or if masing is occuring, the spins will begin to relax. The field

is eventually ramped down and the AFP loss measured [35].
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Rb-only cell Previously, most cells characterized in our target system were used

for scattering experiments, so these cells have a high 3He number density and,

until recently, contained only Rb. Since the large AFP losses and short lifetimes

have only been recently observed, it would be useful to include a high-density

Rb-only cell in this study. Furthermore, most of the data collected during the

X-factor studies in [28] were from Rb-only cells.

Effect of H1 gradients The role of gradients in H1, possibly resulting from metal

components in the target system, were not investigated during this study and it

is not clear what effect they might have on AFP losses.

Masing and gradients A more thorough study of the masing phenomenon should

be undertaken.

Holding field magnitude The effect of the holding field magnitude on cell life-

time should be investigated since Cell#1’s room temperature lifetime increased

significantly when the holding field magnitude was increased from 13 G to 25 G.

It should be noted, however, that there was no change to the spin-up time or hot

spin-down time.



CHAPTER 5

Pressure Broadening and Shift of

the D1 and D2 Lines of Rb and K

with 3He and N2

5.1 Introduction

In Chapter 3, a method for measuring the 3He number density of a target cell

after it is filled was introduced. This technique relies on knowledge of the relevant

broadening coefficients that relate the alkali D1 and D2 line widths to the density

of the surrounding buffer gas, which is a mixture of 3He and N2 for our target cells.

While the most current measurements of the broadening coefficients for Rb with

3He and N2 are quite accurate [51], we are not aware of similar measurements for K

in the presence of 3He or N2. Recent experiments have measured these coefficients

for K D1 up to gas pressures of 80 torr [55], but our 3He target cells are filled to

significantly higher pressures.

The theory of collisional broadening predicts a linear relationship between the

132
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density and the line width, which has been experimentally verified (for example,

[51]). In addition to broadening the alkali transition, the presence of a buffer gas

also shifts the central frequency by an amount proportional to the buffer gas number

density. Furthermore, a temperature dependence with the form T n is also predicted

for both the broadening and shift [52], but little data exploring this dependence has

been published.

To determine broadening and shift coefficients for K that are valid up to our

pressures, to verify the Rb coefficients, and to evaluate any temperature depen-

dence in the coefficients, we have designed a valved glass cell, which can be filled

and re-filled with different buffer gases and is compatible with the current pressure

broadening setup. With this cell, we have collected spectroscopic data on Rb and K

for several number densities of both 3He and N2 over a range of temperatures from

approximately 340 K to 400 K.

5.2 The pressure-broadened line shape

The effect of collisions with neutral atoms on atomic spectral lines has been

the subject of extensive theoretical and experimental studies. Surveys of the devel-

opment of various techniques for describing the modification of atomic line shapes

by collisions are given by [56, 57, 58] with a general discussion of broadening in [59]

and [60].

If an atom in an initial state makes a transition to a final state while colliding

with another atom, the presence of the collision partner perturbs the energy levels

such that the atom can absorb or emit frequencies that the free atom cannot [56].

If the resonant frequency is ν0 and the detuning is ∆ ≡ ν − ν0, in the core region

of the line shape where ∆ ≪ t−1
d , the collision is considered instantaneous. This is
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the impact approximation and the line shape is well described by [56]

L(ν) ∝ γ

(ν − ν0 − δ)2 + (γ/2)2
(5.1)

where the central frequency shift, δ, and line width, γ, are proportional to the buffer

gas density.

In the near wings, where the detuning is not much larger than the collision

duration, the line shape begins to deviate from the impact approximation. Walkup

et al.[61] found that fitting the Na D1 and D2 lines, broadened by the presence of

various buffer gases, with Eqn. (5.1) resulted in a linear asymmetry in the near

wings not attributable to other sources, e.g., the proximity of the D lines to each

other. The physical origin of the asymmetry is the finite duration of the collision

[62] and the Lorentzian profile should be modified to include a detuning-dependent

broadening rate:

γ = γN + γc(∆) (5.2)

where γN is the natural line width and the low perturber density regime is assumed.

Here, the binary collision approximation is valid where the time between collisions is

assumed to be much longer than the duration of the collision, td [63]. This condition

can be expressed as tdγ ≪ 1 since the time between collisions is on the order of 1/γ

[51]. For this experiment, maximum values of tdγ were approximately 0.02.

The form of γc(∆) depends on the interatomic potential between the alkali atom

and the perturbing atom. Walkup et al. [50] have calculated γc(∆) numerically for

an attractive van der Waals potential of the form V (R) = −|C6|R−6, assuming

straight-line trajectories for the perturbing atoms, i.e., R(t) =
√

b2 + v2(t− t0)2

where b is the impact parameter, v is the perturber velocity, and t0 is the time of
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FIG. 5.1: A collision between an alkali atom and a perturbing atom (adapted from Ref.
[64]) where the distance of closest approach is the impact parameter, b.

closest approach (see Figure 5.1). The broadening rate can be written as

γc(∆) = [n]vth8πR2
thI(∆td) (5.3)

where [n] is the number density of the perturbing gas, vth =
√

2kT/µ is the

most probable relative velocity, µ is the reduced mass of the colliding pair, Rth =

(|C6|/vth)1/5 is the collision radius, and C6 is defined by the potential, V (R) =

−|C6|R−6. The dimensionless function I(∆td) contains the detuning dependence

and is given by

I(∆td) =

∫

∞

0

4

π
ue−u2

du

∫

∞

0

1

r9
dr

∣

∣

∣

∣
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∫ π/2

0

cos4 θ cosψ(θ)dθ

∣

∣

∣

∣

∣

2

(5.4)
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with the following definitions:

ψ(θ) =
∆tdr tan θ

u
+
W6θ

ur5
(5.5)

u =
v

vth
(5.6)

r =
b

Rth

(5.7)

tan(θ) =
vt

b
(5.8)

W6(θ) =

∫ θ

0

cos4 φdφ =
3θ

8
+

sin 2θ

4
+

sin 4θ

32
(5.9)

A Taylor’s expansion of Eqn. (5.4) up to the term linear in ∆td gives the impact

limit plus the lowest order correction due to td 6= 0:

I(∆td) ≃ 0.3380 − 0.2245∆td (5.10)

Substituting Eqn. (5.10) into Eqn. (5.2) gives an expression for the broadening

rate:

γc(∆) = γc(0)(1 − 0.6642∆td) (5.11)

which is valid for −1.5 < ∆td < 0.5. Under our experimental conditions, where

−0.1 < ∆td < 0.2, the line shape is best described by substituting Eqn. (5.11) in

the numerator of the impact approximation (Eqn. (5.1)) to give:

 L(ν) ∝ γ(1 + 0.6642 · 2π∆td)

(∆ − δ)2 + (γ/2)2
(5.12)

5.3 Experimental arrangements

Figure 5.2 shows the experimental setup. A spherical cell containing a mixture

of Rb and K along with either 3He or N2 was held inside the oven and heated to
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FIG. 5.2: The optics, oven, and electronics used for collecting pressure broadening data.
Solid lines indicate the laser path; dashed lines are electronic connections.

vaporize the alkali. A tunable Ti:sapphire laser was used to collect spectroscopic

data for the D1 and D2 lines of the alkali metals. The transmission of laser light

through the cell was monitored while the wavelength of the laser was scanned across

the D1 and D2 transitions. A series of scans were performed over a range of buffer

gas densities and temperatures. The absorption profiles were fit with the modified

Lorentzian, Eqn. (5.12), and the line width and central frequency were extracted

and plotted as a function of buffer gas density and temperature.

5.3.1 Cell design and preparation

Figure 5.3 shows the cell constructed specifically for this experiment. It is a

2-inch Pyrex sphere with a narrow stem connected to a stainless steel valve by a

glass-to-kovar seal. The valve allows the cell to be filled with a buffer gas to a

specified pressure, pumped out, and re-filled multiple times. The alkali was mixed
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at the University of Virginia such that the ratio of Rb to K would be approximately

1:1 at our operating temperatures. Prior to moving the alkali into the cell, the cell

was connected to the vacuum system and baked for several days. As described in

Chapter 3, the alkali was melted out of its ampoule with a hand torch, heated to

vaporize, and allowed to condense inside the spherical portion of the cell. The cell

was detached from its string and filled with the buffer gases on a separate system.

Data were first collected with N2 and then the cell was pumped out and re-filled

with 3He. A specialized filling system was constructed to fill and pump the valved

cell and accurately measure the gas pressure. Each time the cell was filled or gas

was released, a baratron pressure transducer was used to measure the final pressure

to an accuracy of 0.5% and the temperature was recorded from two thermocouples

attached to the exterior of the cell with an accuracy of 0.03% of the reading ±1◦C.

The pressure and temperature data were used to calculate the number density in

amagats (amg) of the buffer gas. Note that 1 amg = 2.69×1025 m−3 and the number

density in amagats for an ideal gas is related to pressure through

ρ =
P

P0

T0
T

(5.13)

where P0 = 1 atm and T0 = 273.14 K are standard temperature and pressure. The

uncertainties on the densities are based on the temperature and pressure uncertain-

ties:

δρ =

√

(

T0
P0

1

T
δP

)2

+

(

T0
P0

P

T 2
δT

)2

(5.14)

The measured 3He densities ranged from [3He] = 1.00±0.01 to 6.02±0.04 amg, while

the N2 number densities were [N2] = 2.50 ± 0.02, 1.87 ± 0.01, and 0.92 ± 0.02 amg.

Higher number densities of N2 were not used because the low density approximation

fails at a critical density of [N2] = 5.5 amg, where the line shape begins to deviate
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FIG. 5.3: The custom-made valved cell for pressure broadening studies.

significantly from Eqn. (5.12); the critical density is defined as the density for which

tdγ = 1 [51].

5.3.2 Data acquisition

After filling the cell to a specified pressure of buffer gas, spectroscopic data were

acquired across the D1 and D2 transitions of Rb and K for a range of temperatures.

Then, some of the buffer gas was released through the cell’s valve and the new pres-

sure was recorded. The spectroscopic measurements were repeated with the new

buffer gas pressure at the same temperatures as the previous scan. This process was

repeated until the pressure in the cell decreased to approximately atmospheric pres-

sure at room temperature. During the spectroscopic scans, the temperature of the

oven was held constant and controlled by a variable transformer. The temperatures

typically ranged from 333 K to 403 K with data collected at 10 K increments. How-

ever, the signal-to-noise ratio of the data taken at 333 K was too low due to weak

absorption, so these data were excluded from the final analysis. The temperatures

of the oven and several points on the cell were monitored with thermocouples. The

temperature of the system was allowed to stabilize each time the oven temperature

was adjusted so that the gas inside the cell was approximately the same temperature
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FIG. 5.4: Oscillatory structure in the K spectrum due to an interference effect from the
oven’s entrance and exit windows.

as the exterior of the cell. An average was taken of the temperatures reported by

the thermocouples on the cell to determine the temperature of the gas inside. The

cell was carefully positioned to avoid sinusoidal modulation of the absorption profile

due to an interference effect from the cell walls and to minimize any overall slope

across the wavelength range [25, 65]. The oven’s entrance and exit windows were

removed to eliminate an additional interference effect (as in Figure 5.4), but their

absence did not compromise the temperature stability.

The hybrid alkali was mixed such that the vapor density ratio would be ap-

proximately 1:1 in the middle of our temperature range. However, by examining

the relative strength of the absorption, we found the actual ratio of Rb to K to

be closer to 5:1. This deviation from 1:1 most likely occurred when the alkali was

moved into the cell. The higher Rb to K ratio resulted in the Rb spectrum saturat-
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ing at a much lower temperature than the K spectrum and the K absorption being

weak compared to that of Rb at lower temperatures. Additionally, since the spectral

line width increases as the buffer gas density increases, the signal-to-noise ratio for

the K spectra at low temperatures and high buffer gas densities was very small.

Consequently, Rb and K spectra were acquired across slightly different temperature

ranges.

The wavelength of the Ti:sapphire laser is tunable from 700 to 1000 nm, which

allows the D1 and D2 transitions for both Rb and K to be probed. Coarse adjustment

of the output wavelength in 225 GHz (0.5 nm) increments is achieved by rotating a

birefringent filter (BRF). The output may be fine-tuned within this range by tuning

the intracavity etalon. While the etalon scan can be automated, the BRF tuning

cannot, so all scanning was performed manually. The laser line width is sufficiently

narrow to easily resolve K D1 and D2, which are separated by 4 nm.

As shown in Figure 5.2, an optical isolator was positioned after the laser to

prevent back-reflections into the laser cavity. The portion of the beam reflected

from the front of the isolator was coupled into a multi-mode optical fiber feeding a

wavelength meter, with an accuracy of ±0.75 parts per million. The half-wave plate

before the isolator controls the intensity of light sent to the wavelength meter and the

half-wave plate after the isolator controls the amount of light sent to the experiment.

The light transmitted through the polarizing beam splitter is coupled into a single-

mode optical fiber with the output at the oven. An optical chopper modulates the

beam at 331 Hz. A non-polarizing beam splitter directs the transmitted beam into

the oven where it passes through the cell while the reflected beam bypasses the

oven to become a reference to account for laser power fluctuations. The output

power varies with wavelength and is dependent on the position of the etalon knob.

The photodiodes at the end of each path are each connected to a lock-in amplifier

referenced to the chopper frequency. Note that these are commercial, amplified
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photodiodes that are linear across the range of intensities studied. The lock-in time

constant and sensitivity were typically 10 ms and 1 V, respectively. The phase was

adjusted as necessary to maximize the signal in the x-channel. The lock-in outputs

were digitized using an ADC, which was read by the data acquisition computer, and

the ratio of the transmitted signal to the reference signal was plotted as a function

of wavelength.

5.4 Fitting and analysis

The intensity transmitted through the cell is given by Beer’s law [59]:

It(ν) = I0(ν) exp(−[A]σ(ν)L) (5.15)

where I0 is the incident intensity, [A] is the alkali density, and L is the path length

through the cell. The absorption cross section, σ(ν), is given by the modified

Lorentzian from Section 5.2:

σ(ν) =
(σ0

2π

) γ(1 + 0.6642 · 2π(ν − ν0)td)

(ν − ν0)2 + (γ/2)2
(5.16)

The line width is γ, ν0 is the central frequency, and td is the collision duration,

which depends on the effective radius of the collision and the most probable thermal

velocity in the center of mass frame. Values of td from the fits ranged from around

0.1 × 10−13 s for 3He to around 10 × 10−13 s for N2

Integrating the cross section over all frequencies gives

∫

∞

0

σ(ν)dν = σ0 = πrecf (5.17)

where re is the classical electron radius, c is the speed of light, and f is the oscillator
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strength [51].

At the reference and transmission photodiodes we measure

Sr(ν) = GrI0(ν) and St(ν) = GtIt(ν) (5.18)

where G is the gain of each circuit. Taking the natural log of the ratio of the signals

gives

ln

(

St

Sr

)

=

(−γ[A]σ0L

2π

)

(1 + 0.6642 · 2π(ν − ν0)td)

(ν − ν0)2 + (γ/2)2

+ ln

(

Gr

Gt

) (5.19)

For fitting the data, we write Eqn. (5.19) as

f(ν) =
a(1 + 0.6642 · 2π(ν − ν0)td)

(ν − ν0)2 + (γ/2)2
+ g (5.20)

and plot the log of the signal ratio as a function of frequency. The data are fit using

a nonlinear Levenberg-Marquardt algorithm to optimize the five parameters in Eqn.

(5.20) such that χ2 is minimized where

χ2 =
∑

i

(

y − yi
σi

)2

(5.21)

and yi is the value of a data point, y is the fit value, and σi is the standard deviation

of yi.

For Rb, the ground state hyperfine splitting is larger than 3 GHz for both

isotopes [66], so we fit to a sum of four equations with the form of Eqn. (5.20)—

one for each ground state of each isotope. Each term is weighted with the natural

abundance of 85Rb and 87Rb. Fitting to a single Lorentzian over-estimates the

line width. The hyperfine splitting is less than 1 GHz for the ground state of the
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Width (GHz/amg) Shift (GHz/amg)
Rb D1 18.71 ± 0.10 5.57 ± 0.32
Rb D2 20.79 ± 0.10 0.62 ± 0.01
K D1 14.61 ± 0.15 1.53 ± 0.06
K D2 20.02 ± 0.15 0.67 ± 0.05

TABLE 5.1: Summary of broadening and shift coefficients given by the slopes of γ and
∆ν vs. [3He] at 363 K.

abundant isotopes of K, as is the excited state hyperfine splitting for both alkali

metals. Figure 5.5 shows the absorption profile of K D2 for a range of buffer gas

densities. The fit is displayed along with the data; the residuals appear at the top

of each plot.

5.4.1 Alkali density

The alkali density is related to the strength of the absorption through

[A] =
−a
γ

2

Lrecf
(5.22)

where a describes the strength of the absorption and f is the oscillator strength

for the transition [51]. The oscillator strengths are related to the probability for

the transitions and for Rb D1 and D2 are f1 = 0.3219 and f2 = 0.6749, while

f1 = 0.3394 and f2 = 0.6816 for K [36]. The alkali ratio can be calculated from the

fitting parameters of line profiles acquired at the same temperature from:

D =
[K]

[Rb]
=
aK
γK

γRb

aRb

fRb

fK
(5.23)
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FIG. 5.5: Broadening of K D2 in the presence of 3He at 363 K. Lorentzian fits and
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5.5 Temperature and density dependence of the

line width and shift

We assume that the number density, ρ, and temperature dependence are sepa-

rable such that γ = f(ρ)g(T ) and ∆ν = f
′

(ρ)g
′

(T ) where ∆ν is the frequency shift

from the known central frequency given in [67, 68]. To determine the best form for

the functions f(ρ) and g(T ), we have examined the width and shift as a function

of density and temperature separately and as a function of both variables simul-

taneously such that γ = h(ρ, T ) and ∆ν = h
′

(ρ, T ). The results of each analysis

follow.

5.5.1 Broadening and shift coefficients as a function of tem-

perature

The line width and central frequency shift were first plotted as a function of

3He number density, [3He], for each temperature as in Figure 5.6, which shows γ

vs. [3He] at 363 K, and Figure 5.7, which shows the analogous frequency shift plot.

All data sets showed a strong linear trend. An orthogonal distance regression was

used to perform a linear fit to each data set where γ was weighted by the standard

deviation from the modified Lorentzian fit and the number density was weighted by

the propagated uncertainty from the pressure measurement. The slopes from the

fits provide the broadening and shift coefficients at a specific temperature in units

of GHz/amg as in [51, 65]. Table 5.1 summarizes the linear fit results.

Both the broadening and shift coefficients are predicted to have a temperature

dependence of the form

C(T ) = CT0

(

T

T0

)n

(5.24)

with n = 0.3 predicted only for the heavy noble gases [52], so we expect n 6=
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n = 1 n = 2 n = 3 power
Rb D1 6.7 4.4 1.4 6.2
Rb D2 2.1 2.9 0.87 2.9
K D1 0.55 0.54 0.57 0.51
K D2 3.3 1.8 1.0 -

TABLE 5.2: χ̃2 from fitting the broadening coefficients for 3He with power and polyno-
mial functions of temperature.

n = 1 n = 2 n = 3 power
Rb D1 1.7 0.90 0.84 2.1
Rb D2 5.8 5.8 7.6 7.7
K D1 4.3 5.1 5.1 11
K D2 11 3.1 3.9 12

TABLE 5.3: χ̃2 from fitting the frequency shift coefficients with power and polynomial
functions of temperature.

0.3. The coefficients were plotted as a function of temperature and fit with Eqn.

(5.24). However, this fit returned poor results with large uncertainties in the fitting

parameters. Consequently, we attempted to fit all data sets with a power function

(y = a0 + a1x
a2) and polynomial functions (y =

∑n
i=0 aix

i with n = 1, 2, 3) as in

Figures 5.8 and 5.9. The goal was to find a function that best described all data

sets by evaluating the reduced χ2. However, as is shown in Tables 5.2 and 5.3, none

of these functions consistently returned the smallest χ̃2.

5.5.2 Line width and central frequency shift as a function

of temperature

Since data were collected at a constant buffer gas density over a range of tem-

peratures, we examined γ as a function of temperature for each number density,

rather than as a function of number density for a constant temperature, and fit each

data set with a linear and power function. For the power fits, we used γ = γ0

(

T
T0

)n

where T0 = 353 K and γ0 is the measured line width at T0. Plots with the corre-

sponding fits are in Appendix B. In general, a linear fit appears to best describe
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most of the data.

To establish the density dependence, we used the results from the linear fit:

γ(T ) = γ0 +BT, (5.25)

which gives a γ0 and B for each number density. The weighted averages of the γ0

and B were calculated and labeled γ
′

0 and B
′

. To determine the density dependence,

we calculated

Γ =
γ

γ
′

0 +B′T
(5.26)

for each temperature, T . Plotting Γ as a function of density strongly suggests a

linear fit, which gives:

Γ(ρ) = Cρ+ ǫ (5.27)

For all transitions, ǫ is consistent with zero within error bars. A weighted average

of all C was calculated, which provides an expression for γ as a function of both ρ

and T :

γ(ρ, T ) = C
′

ρ(γ
′

0 +B
′

T ) (5.28)

These parameters are summarized in Table 5.4. A similar analysis was performed on

the central frequency shift data with a linear fit applied to ∆ν vs T at each number

density:

∆ν(T ) = ν0 + bT (5.29)

The weighted averages, ν
′

0 and b
′

, were used to calculate

F =
∆ν

ν
′

0 + b′T
(5.30)
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C
′

γ
′

0 B
′

Rb D1 0.489 ± 0.003 27.8 ± 0.4 0.027 ± 0.001
Rb D2 0.393 ± 0.003 28.0 ± 0.7 0.068 ± 0.002
K D1 0.747 ± 0.009 9.7 ± 0.6 0.026 ± 0.002
K D2 0.694 ± 0.006 18.2 ± 0.6 0.028 ± 0.002

TABLE 5.4: Summary of temperature and density dependence of line width based on
the linear fits to γ vs. T as described in Section 5.5.2.

C
′

A
′

b
′

ν
′

0

Rb D1 0.470 ± 0.004 0.026 ± 0.008 0.0115 ± 0.0005 7.5 ± 0.2
Rb D2 0.26 ± 0.05 0.19 ± 0.05 0.0115 ± 0.0007 -2.1 ±0.3
K D1 1.45 ± 0.01 0.06 ± 0.02 - -
K D2 0.54 ± 0.01 0.14 ± 0.02 - -

TABLE 5.5: Summary of temperature and density dependence of central frequency shift
using the scaled frequency from linear fits to ∆ν vs. T.

for each temperature and F vs. ρ was fit with

F (ρ) = Cρ+ A (5.31)

where, unlike the line width fits, the offset A is not negligible. Weighted averages

of the fitting coefficients are listed in Table 5.5. The frequency shift as a function of

temperature for K did not exhibit a linear trend and any temperature dependence

appears negligible. For both K D1 and D2, weighted averages of the shifts were

calculated at each temperature and fit with Eqn. (5.31).

5.5.3 Line width and central frequency shift as a function

of density and temperature

Based on the results from the previous sections, the temperature and density

dependence of both the width and shift appear to be well-described by linear func-

tions. Consequently, fits to both variables simultaneously were performed with the
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fitting function for the line widths having the form

γ(ρ, T ) = ρ(a + bT ) (5.32)

where ρ is the number density and T is temperature. Similarly, the frequency shifts

were fit with

∆ν(ρ, T ) = ρ(c+ dT ) (5.33)

Although previous efforts to fit the temperature dependence with a power function

were not successful, another attempt was made since a power dependence has been

predicted [50, 52]. The widths and shifts were fit with

γ(ρ, T ) = Aρ

(

T

T0

)n

(5.34)

and

∆ν(ρ, T ) = Cρ

(

T

T0

)m

, (5.35)

where T0 = 353 K. The results of the fits are shown in Tables 5.6 and 5.7. Note

that d < 0 and m < 0 for K and Rb D2, which indicates that the frequency shift

decreases with increasing temperature. This is unexpected and, to our knowledge,

not predicted by the theory of the central frequency pressure shift [52].

5.6 Fitting results for N2

Figure 5.10 shows the absorption profile of K D1 in the presence of various

number densities of N2 at 363 K. The profiles were fit as for 3He and after the

widths and central frequencies were extracted, two of the preceding methods for

establishing the density and temperature dependence of the line width and shift

were also applied to the N2 data. Figures 5.11 and 5.12 show the linear fits for
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a (GHz/amg) b (GHz/amg/K)
Rb D1 13.50 ± 0.12 0.013 ± 0.001
Rb D2 11.66 ± 0.10 0.025 ± 0.001
K D1 9.35 ± 0.31 0.014 ± 0.001
K D2 12.56 ± 0.28 0.020 ± 0.001

A (GHz/amg) n
Rb D1 18.23 ± 0.01 0.27 ± 0.01
Rb D2 20.34 ± 0.01 0.44 ± 0.01
K D1 14.37 ± 0.03 0.37 ± 0.02
K D2 19.66 ± 0.03 0.38 ± 0.01

TABLE 5.6: Coefficients for line width in the presence of 3He as a function of both density
and temperature with a linear (a, b) and power (A, n) dependence for the temperature.

c (GHz/amg) d (GHz/amg/K)
Rb D1 4.62 ± 0.06 0.003 ± 0.001
Rb D2 0.87 ± 0.05 -0.001 ± 0.001
K D1 2.05 ± 0.16 -0.002 ± 0.001
K D2 1.60 ± 0.14 -0.003 ± 0.001

C (GHz/amg) m
Rb D1 5.62 ± 0.01 0.21 ± 0.01
Rb D2 0.79 ± 0.01 -0.12 ± 0.07
K D1 1.54 ± 0.02 -0.38 ± 0.10
K D2 0.71 ± 0.02 -1.53 ± 0.22

TABLE 5.7: Coefficients for the central frequency shift in the presence of 3He as a func-
tion of both density and temperature with a linear (c, d) and power (C,m) dependence
for the temperature.
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Width (GHz/amg) Shift (GHz/amg)
Rb D1 17.01 ± 0.21 -7.72 ± 0.09
Rb D2 17.78 ± 0.21 -5.86 ± 0.07
K D1 18.66 ± 0.38 -6.16 ± 0.18
K D2 17.57 ± 0.28 -4.90 ± 0.11

TABLE 5.8: Summary of broadening and shift coefficients given by the slopes of γ and
∆f vs. [N2] at 363 K.

n = 1 n = 2 n = 3 power
Rb D1 4.6 9.2 - 9.2
Rb D2 15 13 - 20
K D1 3.1 5.8 - 6.3
K D2 4.1 5.0 1.7 6.2

TABLE 5.9: χ̃2 from fitting the broadening coefficients for N2 with power and polynomial
functions of temperature.

line width and frequency shift as a function of N2 number density at 363 K with

the resulting slopes in Table 5.8. These broadening and shift coefficients were then

plotted as a function of temperature and fit with polynomial and power functions;

however, most sets were not fit with n = 3 polynomials due to the small number of

data points. The plots and their fits are in Figures 5.13 and 5.14 with the reduced

χ2 for each fit in Tables 5.9 and 5.14. As with the 3He phenomenological fits, none

returned consistently small χ̃2. Ultimately, the line widths and frequency shifts

were fit to a function of both temperature and density, as described in Section 5.5.3

for 3He. These results are summarized in Tables 5.11 and 5.12. Note that the

coefficients relating density to line width and shift are negative; this is consistent

with previous results and predictions [19, 51, 52]. However, unlike the 3He shift,

d < 0, but m > 0.

5.7 Comparison of results

Table 5.13 compares the results of this study to the broadening and shift coeffi-

cients for Rb in the presence of 3He and N2 found by Romalis, et al. [51], which were
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FIG. 5.10: K D1 absorption in the presence of N2 at 363 K. Lorentzian fits and residuals
are shown. The N2 number density is 0.92± 0.02, 1.87± 0.01, and 2.50± 0.02 amg from
top to bottom. The corresponding line widths (FWHM) are 16.5 ± 0.1, 33.8± 0.4, and
46.5± 0.6 GHz.



157

45

40

35

30

25

20

F
W

H
M

 (
G

H
z
)

2.42.22.01.81.61.41.21.0

N2 Number Density (amg)

40

35

30

25

20

 Rb D1

 Rb D2

 K D1

 K D2

FIG. 5.11: Line widths of D1 and D2 as a function of N2 number density at 363 K. The
slopes of the linear fits provide the broadening coefficients and are summarized in Table
5.8.

-16

-14

-12

-10

-8

-6

F
re

q
u
e
n
c
y
 S

h
if
t 

(G
H

z
)

2.42.22.01.81.61.41.21.0

N2 Number Density (amg)

-18

-16

-14

-12

-10

-8

-6

 Rb D1

 Rb D2

 K D1

 K D2

FIG. 5.12: Shift of central frequency of D1 and D2 as a function of N2 number density
at 363 K. The slopes of the linear fits provide the frequency shift coefficients and are
summarized in Table 5.8.



158

19.5

19.0

18.5

18.0

B
ro

a
d
e
n
in

g
 C

o
e
ff

ic
ie

n
t 

(G
H

z
/
a
m

g
)

390380370360350

Temperature (K)

18.5

18.0

17.5

17.0

16.5

16.0

 kd2

 kd1

 n=1

 n=2

 n=3

 power

18.2

18.0

17.8

17.6

17.4

17.2

17.0

16.8

370365360355350345

20.5

20.0

19.5

19.0

18.5

18.0

17.5  rbd2

 rbd1

n=1

 n=2

 power

FIG. 5.13: Broadening coefficients given by the slopes of γ vs. [N2] as a function of
temperature with linear, polynomial, and power law fits.

n = 1 n = 2 n = 3 power
Rb D1 0.43 0.54 - 0.82
Rb D2 2.8 2.6 - 3.4
K D1 2.1 1.2 - 1.7
K D2 5.6 7.2 - 8.5

TABLE 5.10: χ̃2 from fitting the frequency shift coefficients for N2 with power and
polynomial functions of temperature.
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FIG. 5.14: Frequency shift coefficients given by the slopes of ∆ν vs. [N2] as a function
of temperature with linear, polynomial, and power law fits.

a (GHz/amg) b (GHz/amg/K)
Rb D1 15.35 ± 0.20 0.005 ± 0.001
Rb D2 10.52 ± 0.19 0.019 ± 0.001
K D1 13.30 ± 0.58 0.015 ± 0.002
K D2 15.05 ± 0.43 0.008 ± 0.001

A (GHz/amg) n
Rb D1 17.06 ± 0.01 0.11 ± 0.01
Rb D2 17.34 ± 0.01 0.40 ± 0.01
K D1 18.47 ± 0.05 0.30 ± 0.03
K D2 17.88 ± 0.04 0.17 ± 0.02

TABLE 5.11: Coefficients for line width in the presence of N2 as a function of both density
and temperature with a linear (a, b) and power (A, n) dependence for the temperature.
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c (GHz/amg) d (GHz/amg/K)
Rb D1 -4.46 ± 0.10 -0.009 ± 0.001
Rb D2 -2.66 ± 0.10 -0.008 ± 0.001
K D1 -2.32 ± 0.38 -0.011 ± 0.001
K D2 -1.67 ± 0.22 -0.010 ± 0.001

C (GHz/amg) m
Rb D1 -7.51 ± 0.01 0.42 ± 0.01
Rb D2 -5.55 ± 0.01 0.53 ± 0.02
K D1 -6.22 ± 0.04 0.64 ± 0.06
K D2 -5.03 ± 0.02 0.68 ± 0.04

TABLE 5.12: Coefficients for the central frequency shift in the presence of N2 as a func-
tion of both density and temperature with a linear (c, d) and power (C,m) dependence
for the temperature.

3He (GHz/amg) n
D1 width 18.7 ± 0.3 0.05 ± 0.05

previous shift 5.64 ± 0.15 1.1 ± 0.1
D2 width 20.8 ± 0.2 0.53 ± 0.06

shift 0.68 ± 0.05 1.6 ± 0.4
D1 width 18.23 ± 0.01 0.27 ± 0.01

new shift 5.62 ± 0.01 0.21 ± 0.01
D2 width 20.34 ± 0.01 0.44 ± 0.01

shift 0.79 ± 0.01 -0.12 ± 0.07

N2 (GHz/amg) n
D1 width 17.8 ± 0.3 -

previous shift -8.25 ± 0.15 -
D2 width 18.1 ± 0.3 -

shift -5.9 ± 0.1 -
D1 width 17.06 ± 0.01 0.11 ± 0.01

new shift -7.51 ± 0.01 0.42 ± 0.01
D2 width 18.47 ± 0.05 0.40 ± 0.01

shift -5.55 ± 0.01 0.53 ± 0.02

TABLE 5.13: Comparison of Rb broadening and shift coefficients and temperature de-
pendence to the results presented in [51].
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measured at 353 K. In this work, the temperature dependence, broadening and shift

coefficients measured for 4He at different temperatures were scaled by the reduced

mass and then assumed to be valid for 3He. The coefficients were plotted as a func-

tion of temperature and fit to a function of the form T n. Note that the temperature

dependence of the width and shift in the presence of N2 was not investigated. For

comparison, our values in Table 5.13 were calculated using Eqns. (5.34) and (5.35)

with T0 = 353 K and ρ = 1 amg.

Our initial motivation for exploring the pressure dependence of the Rb and K

line widths was to accurately determine the density of 3He inside sealed cells. To

compare the results of our fitting analysis with previous values of the broadening

coefficients, we have calculated the 3He number density for several cells for which

we have pressure broadening data. Since these cells also contain a small amount of

N2, the line width is given by:

γ = f(T )
[

3He
]

+ g(T )[N2] (5.36)

where f, g(T ) are either linear or power functions, i.e., Eqns. (5.32) or (5.34) and [N2]

was estimated when the cell was filled. Since only a small amount of N2 is present in

the cell–[N2] = 0.1 amg–the uncertainty in its number density does not contribute

significantly to the overall uncertainty in the 3He number density calculated using

Eqn. (5.36). Table 5.14 compares the results using the linear dependence for the

temperature to the power dependence. The number density, [3He], is the weighted

average of the number densities calculated from the widths of D1 and D2 for both

K and Rb.
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Cell [3He]linear (amg) [3He]power (amg)

Cell#1 1.00 ± 0.01 1.01 ± 0.01
Cell#2 2.02 ± 0.01 2.02 ± 0.01
Ringo 6.40 ± 0.08 6.41 ± 0.01

Electra 6.35 ± 0.06 6.33 ± 0.01
CN Yang 6.30 ± 0.05 6.27 ± 0.01

Yu 6.57 ± 0.05 6.50 ± 0.01

TABLE 5.14: The 3He number densities of recently filled cells calculated using the new
density and temperature dependence determined for the D1 and D2 line widths of Rb
and K. The results using both the power and linear dependence for the temperature are
shown.

5.8 Conclusion

We have investigated the effect of collisions of vapors of Rb and K with 3He

and N2 on the D1 and D2 transitions. The dependence of the line width and central

frequency shift on both the surrounding gas number density and temperature were

measured. Our results show a linear dependence on the density in agreement with

previous measurements. Additionally, we find that the temperature dependence of

the broadening and shift is well-described by either a linear or power function within

the temperature range across which the data were collected. However, if the results

from the power fit are used to calculate the 3He number density, the uncertainty in

[3He] is much smaller. By examining the widths of the D1 and D2 lines of polarized

3He target cells, we expect to determine the 3He density to close to 1%.



APPENDIX A

Magnetic Field Maps

These are the holding field maps generated from the measurements described

in Section 4.9.1. Note that the coordinate system was defined such that y is the

longitudinal direction, i.e., perpendicular to the plane of the Helmholtz coils. The

data are fit with linear functions y = bx+ a, where the slope has units of V/in. For

the probe used, 1V = 100mG, so 1V/in = 254mG/cm.
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APPENDIX B

Additional Pressure Broadening

Plots

The following plots were made in order to study the temperature dependence of

the line width and frequency shift of the D1 and D2 lines of Rb and K as described

in Chapter 5, Section 5.5.2. Note that the K D1 and D2 frequency shifts were not

very well described by a linear fit, so the weighted average was calculated instead.

The tables show the slopes from the linear fits to line width and central fre-

quency shift as a function of density and as a function of temperature.

168



169

T γ vs. [3He] ∆ν vs. [3He]
(◦C) (GHz/amg) (GHz/amg)

Rb D1 70 17.7 ± 0.1 5.31±0.06
80 18.3± 0.1 5.46± 0.04
90 18.7± 0.1 5.57± 0.03
100 18.7± 0.2 5.60± 0.03
110 18.5± 0.1 5.59 ±0.04
120 18.3±0.2 5.70± 0.06
130 19.2± 0.3 5.62± 0.09

Rb D2 70 20.0±0.1 .60±0.03
80 20.5±0.1 0.64±0.01
90 20.8±0.1 0.62±0.01
100 20.7±0.1 0.58±0.02
110 21.2±0.2 0.72±0.02
120 22.2±0.3 0.70±0.03

K D1 80 14.3±0.2 1.12±0.1
90 14.6±0.2 1.53±0.06
100 14.7±0.1 1.54±0.04
110 14.9±0.1 1.43±0.03
120 14.8±0.1 1.48±0.02
130 15.0±0.1 1.46±0.02

KD2 80 18.9±0.2 0.51±0.09
90 20.0±0.1 0.67±0.05
100 20.1±0.1 0.56±0.03
110 20.3±0.1 0.45±0.02
120 20.4±0.1 0.58±0.02
130 20.5±0.1 0.68±0.03

TABLE B.1: The line widths and central frequency shifts were plotted as a function of
[3He] at each temperature and fit with a linear function. The slopes from the fits are
shown above.
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T γ vs. [N2] ∆ν vs. [N2]
(◦C) (GHz/amg) (GHz/amg)

Rb D1 70 16.3 ± 0.4 -7.2±0.2
80 18.5± 0.3 -7.6± 0.1
90 17.2± 0.3 -7.7± 0.1
100 17.3± 0.2 -7.8± 0.1

Rb D2 70 17.4±0.3 -5.6±0.1
80 19.2±0.3 -5.5±0.1
90 18.3±0.2 -5.5±0.1
100 20.6±0.3 -5.7±0.1

K D1 80 18.7±0.8 -5.4±0.4
90 19.2±0.5 -6.3±0.2
100 19.1±0.3 -6.4±0.1
110 19.7±0.3 -6.2±0.1
120 20.0±0.3 -7.0±0.1

KD2 70 20.0±0.9 -5.8±0.4
80 16.9±0.5 -5.4±0.2
90 19.1±0.4 -5.0±0.2
110 18.4±0.3 -5.6±0.1
120 18.6±0.2 -5.2±0.1

TABLE B.2: The line widths and central frequency shifts were plotted as a function of
[3He] at each temperature and fit with a linear function. The slopes from the fits are
shown above.
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[3He] γ vs. T ∆ν vs. T
(amg) (GHz/K) (GHz/K)

Rb D1 1.00 13.4±0.6 2.7±0.3
1.70 21.0±0.8 6.1±0.4
2.53 31±1 13.6±0.5
3.48 58±2 10.1±0.7
4.18 60±1 12.8±0.9
5.02 71±2 17.7±0.9
6.02 74±3 28±2

Rb D2 1.00 8±1 -4.4±0.6
1.70 14±1 -1.5±0.5
2.53 37±2 -1.4±0.6
3.48 40±3 -2.8±0.6
4.18 34±2 -1.3±0.9
5.02 65±2 -1.5±0.7
6.02 65±3 1±1

K D1 1.00 6.4±0.7 1.48±0.01
1.70 11±1 2.58±0.01
2.53 26±3 3.71±0.03
3.48 58±5 5.10±0.03
4.18 36±5 5.97±0.05
5.02 54±6 7.47±0.09
6.02 44±13 8.7±0.1

K D2 1.00 14.7±0.7 0.70±0.01
1.70 19±1 1.02±0.01
2.53 24±3 1.49±0.03
3.48 45±3 1.98±0.03
4.18 36±5 2.49±0.05
5.02 656 3.04±0.08
6.02 120±11 3.6±0.1

TABLE B.3: The line widths and central frequency shifts were plotted as a function
of temperature at each number density and fit with a linear function for. The slopes
from the fits are shown above. However, the K frequency shifts were not fit with linear
functions; a weighted average was calculated instead.
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FIG. B.6: K D1 frequency shift as a function of temperature at each 3He number density
with weighted average.
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FIG. B.7: K D2 line width as a function of temperature at each 3He number density
with linear fits.
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FIG. B.8: K D2 frequency shift as a function of temperature at each 3He number density
with weighted average.
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